Чтение RSS
Рефераты:
 
Рефераты бесплатно
 

 

 

 

 

 

     
 
О нелинейной динамике

О нелинейной динамике

Успехи механики в XVII-XIX веках были столь впечатляющими, что стало казаться возможным представить себе всю Вселенную как гигантскую динамическую систему. Эту позицию четко сформулировал Лаплас: «Состояние системы природы в настоящем есть, очевидно, следствие того, каким оно было в предыдущий момент, и, если мы представим себе разум, который в данное мгновение постиг все связи между объектами Вселенной, то он сможет установить соответствующие положения, движения и общие воздействия этик объектов в любое время в прошлом или будущем» (1776 г.).Эта доктрина, получившая название лапласовского детерминизма, выразила в концентрированном виде идеал научного познания, каким он виделся в те времена. Понадобился длительный путь развития науки и научного мировоззрения (термодинамика и статистическая физика, квантовая механика), чтобы убедиться в несостоятельности такого представления о мире. И все же лапласовский детерминизм совсем недавно казался незыблемым для простых моделей типа осциллятора.

Конец XX века привнес ощущение научной революции, сравнимой с возникновением собственно научного метода в эпоху Галилея. В центре внимания исследователей вновь оказались самые фундаментальные свойства окружающего мира: эволюция систем во времени и геометрия природы. Однако характер интереса к этим понятиям изменился. Картина мира стала переосмысляться, наполняясь новыми образами (катастрофы, бифуркации, хаос, фракталы). Весьма характерны в этом смысле слова нобелевского лауреата И.Пригожина: "Если в физике и химии где-то и существует простота, то заведомо не в микроскопических моделях. Она скорее кроется в идеализированных макроскопических представлениях, например, о простых движениях типа гармонического осциллятора". Модели в виде осцилляторов, различных одномерных отображений и др. оказались во многом центральными объектами интенсивно развивающихся синтетических научных дисциплин, к которым относятся теория колебаний, теория бифуркаций, теория динамических систем, теория динамического хаоса и др.

В 1963 г. американский метеоролог Э. Лоренц опубликовал статью "Детерминированное непериодическое течение", в которой обсуждались результаты численного исследования достаточной простой системы дифференциальных уравнений, моделирующих динамику жидкости при конвекциив подогреваемом снизу слое. Лоренц подверг полученные результаты тщательному и глубокому обсуждению, акцентируя внимание на связь между сложным поведением системы и присущей ей неустойчивости. Позднее это свойство пропагандировалось им как "эффект бабочки" (butterfly effect): в приложении к метеорологии взмах крыльев бабочки может через достаточно время повлечь существенное изменение погоды.Таким образом оказывается невозможно предсказать поведение даже простой системы.

К настоящему времени соответствующие представления развиты настолько глубоко, что можно говоритьо теории динамического хаоса – науке о "непредсказуемого" поведения простых динамических систем.

 
     
Бесплатные рефераты
 
Банк рефератов
 
Бесплатные рефераты скачать
| Шеър дар бораи фанни математика | реферат аз фани физика | хикоя дар бораи иди галаба | куваи ампер табики куваи ампер | 9 май | куваи ампер табики куваиампер | "Эссе" 9-май Рузи Галаба | "Иншо" дар бнраи 9-май Рузи Галаба | Шеър оиди фани математика | Сухтор чист | 9май иди | эссе дар Бораи мавъзуи касбу хунар | расиши кутох | Иншо дар бораи дусти аз хар нигох | Архитектор иншо | иншо дусти аз хар нигох | Ам малумот | Антисептика точики | иншо дар бораи хунар омуз к аз хунарманди | конуни якуми нютон чист | шеър ба мавзуи алгебра | Маълумот дар бораи фанни математика | менечмент ва маркетинг | Пиронро азиз дон | Малумот дар бораи Пифагор | тригонометрия | Конуни 1 2 3 Ньютон | Дар чавони дор пиронро азиз шеъри кист | ЭССЕ-Дар чавони дор пиронро азиз | Эссе дар чавони дор пиронро азиз
 
Рефераты Онлайн
 
Скачать реферат
 
 
 
 
  Все права защищены. Бесплатные рефераты и сочинения. Коллекция бесплатных рефератов! Коллекция рефератов!