Чтение RSS
Рефераты:
 
Рефераты бесплатно
 

 

 

 

 

 

     
 
Разработка логической схемы управления двустворчатых ворот судоходного шлюза

Разработка логической схемы управления двустворчатых ворот судоходного шлюза

№ Содержание Объ- ем Кол-во Чер-ей Сроки вы­полнения 1 Введение 10 07.04.99 2 Описание управляемого объекта 15 1 17.04.99 3 Описание существующих схем управления 15 1 24.04.99 4 Синтез логического автомата 15 2 30.04.99 5 Преобразование контактной схемы управления в бесконтактную 20 1 12.05.99 6 Датчики информации и схемы сопряжения управляемого объекта с логической системой управления 15 2 22.05.99 7 Экономическое обоснование 5 29.05.99 8 Охрана труда 5 05.06.99

СОДЕРЖАНИЕ.

1. ВВЕДЕНИЕ

1.1. Общие сведения об электрооборудовании водных пу­тей.

1.2. Состав и назначение механического оборудования гидротехнических сооружений.

1.3. Основные свойства электрофицируемых механизмов гидротехнических сооружений.

1.4 Элементы электрического оборудования шлюзов.

1.4.а. Силовое оборудование приводов.

1.4.б. Электрические аппараты системы управления.

1.4.в Оперативная сигнализация.

1.4.г. Поисковая сигнализация.

1.4.д. Светофорная сигнализация.

1.4.е. Элементы и устройства электроснабжения.

2. ОПИСАНИЕ УПРАВЛЯЕМОГО ОБЪЕКТА

2.1. Элементы ворот и действующие нагрузки.

2.2. Приводной механизм для перемещения двустворчатых ворот.

2.3. Определение мощности и выбор электродвигателя для электромеханического привода двустворчатых ворот судоход­ного шлюза.

2.3.1. Исходные данные.

2.3.2. Определение статических моментов сопротивления.

2.3.3. Предварительный выбор электродвигателя.

2.3.4. Определение момента сопротивления приведенных к валу двигателя.

2.3.5. Проверка предварительно выбранного двигателя.

2.3.6.Выбор электрических аппаратов для управления ме­ханическими тормозами.

2.3.7.Расчет резисторов пускового реостата и выбор ящиков сопротивлений.

3. ОПИСАНИЕ СУЩЕСТВУЮЩИХ СХЕМ УПРАВЛЕНИЯ

3.1. Привод с асинхронными двигателями без регулирова­ния скорости движения.

3.2. Привод с асинхронными фазными двигателями с регу­лированием скорости движения изменением сопротивления це­пи ротора.

3.3. Электрический привод с гидропередачей.

3.4. Электропривод двустворчатых ворот с тормозным ге­нератором.

3.5. Электропривод с тиристорным управлением.

4. БЕСКОНТАКТНЫЕ АППАРАТЫ И СТАНЦИИ УПРАВЛЕНИЯ.

5. СИНТЕЗ ЛОГИЧЕСКОГО АВТОМАТА

5.1. Построение СГСА.

5.2. Кодирование СГСА. ( ГСА ).

5.3. Граф абстраактного автомата.

5.4. Функции выхода. Таблицы переходов. Функции возбу­ждения. Кодирование состояний.

6. ОХРАНА ТРУДА

6.1. Правила технической эксплуатации электродвигате­лей.

6.2. Анализ вредных и опасных факторов на гидротехни­ческих  сооружениях.  Нормы,  мероприятия  по поддержанию норм, меры безопасности.

6.3. Электробезопасность.

6.4. Расчет защитного заземления трансформаторной подс­танции.

7. ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ.

8. ЛИТЕРАТУРА

1. ВВЕДЕНИЕ.

Для увеличения грузооборота речного флота требуется совершенс­твование водных путей и судов транспортного флота.

Различные по своим техническим характеристикам современные вод­ные пути и суда технического флота представляют собой объекты с вы­сокой степенью электрификации. Электрическая энергия на них приме­няется для привода основных и вспомогательных механизмов, связи и сигнализации, освещения и отопления. Суммарная мощность электродви­гателей гидротехнических сооружений и судов технического флота не­редко превышает 300-500 кВт. Такая энерговооруженность объектов водного транспорта соответствует общему состоянию электрификации народного хозяйства, где электропривод потребляет более 60 процен­тов вырабатываемой электроэнергии.

Отличной чертой современного производства является высокоразви­тая система управления объектами, которая обеспечивает автоматичес­кое управление технологическими процессами. Электропривод все более приобретает черты автоматизированного. Автоматизированные электроп­риводы условно делятся на три уровня. Основу систем первого уровня составляют автоматизированные электроприводы отдельных рабочих ма­шин или процессов ( локальные системы ). Системы второго уровня объединяют электроприводы функционально связанных рабочих машин или процессов с включением устройств контроля, сбора и обработки инфор­мации. Системы третьего уровня включают ЭВМ и обеспечивают опти­мальное управление группой сложных приводов или процессов по задан­ным критериям и алгоритмам.

Энерговооруженность основных объектов водного транспорта позво­ляет коренным образом улучшить их характеристики.

Основой электропривода производственных объектов является элект­рическая машина. Первый электрический двигатель постоянного тока с вращательным движением был создан в 1834 г. академиком Б. С. Якоби при участие академика Э. Х. Ленца. Этот двигатель в 1838 г. был применен Б. С. Якоби для приведения в движение катера на реке Неве. Таким образом, родиной электродвигателя, а вместе с тем и первого электропривода была Россия. Указанная работа Б. С. Якоби получила мировую известность и многие последующие технические решения в об­ласти электропривода отечественных и иностранных электротехников были вариацией или развитием идей Б. С. Якоби.

К наиболее существенным практическим достижениям в области ран­него развития электропривода можно отнести работы В. Н. Чиколева создавшего привод электродов дуговой лампы ( 1873 г. ) и вентилято­ров ( 1886 г. ), П. Н. Яблочкова, создавшего трансформатор ( 1876 г. ), М. О. Доливо-Добровольского, изобретателя асинхронного двига­теля ( 1889 г. ), А. Н. Шубина,разработавшего привод с индивидуаль­ным генератором ( 1899 г. ) ( система генератор-двигатель ) и дру­гие.

Огромную роль в развитие электоропривода сыграли научные идеи крупнейшего русского электротехника Д. А. Лачинова, который раскрыл преимущества электрического распределения механической энергии, дал классификацию электрических машин по способу возбуждения, рассмот­рел условия питания двигателя от генератора и особенности механи­ческих характеристик двигателя постоянного тока. Эта выдающаяся ра­бота Д. А. Лачинова явилась основой науки об электроприводе, кото­рая позднее была развита трудами главным образом русских и советс­ких ученых, среди которых должны быть названы П. Д. Войнаровский,

В. К. Дмитриев, С. А. Ринкевич, В. К. Попов, Р. Л. Аронов, А. Г. Голованов, М. Г. Чиликин, В. И. Полонский и другие.

Развитие науки об электроприводе способствовало росту степени электрификации и автоматизации производственных объектов и созданию совершенных систем автоматизированного привода механизма ворот и затворов шлюзов, судоподъемных устройств и судов технического фло­та.

Электрооборудование на речном транспорте развивается по пути дальнейшего совершенствования существующих устройств и создание но­вых эффективных автоматизированных систем.

1.1. Общие сведения об электрооборудовании водных путей. Протяженность внутренних водных путей,  пригодных для  судоходс-

тва, в нашей стране составляет около 500 тысяч километров, однако активно используются только 150 тысяч километров, из которых около 80 тысяч километров освоено за годы советской власти. В это же вре­мя построено около 16 тысяч километров искусственных водных путей, в том числе Беломорско-Балтийский канал ( ББК ), Волго-Балтийский водный путь ( ВБВП ) имени В. И. Ленина, Волго-Донской судоходный канал ( ВДСК ) имени В. И. Ленина, канал имени Москвы ( УКиМ ). Водный транспорт занимает все более заметное место в народном хо­зяйстве нашей страны и для дальнейшего роста грузооборота и пасса­жирских перевозок требует совершенствования водных путей. Для этого проводят руслоочищение, дноуглубдение, выправление, регулирование стока и шлюзование. Кроме того, для обеспечения безопасности плава­ния на водных путях создается судоходная обстановка в виде системы береговых и плавучих знаков, определяющих направление судового хода и его границы. Судоходная обстановка, выправление водных путей с помощью дамб, полузапруд и других сооружений, а также регулирование стока благодаря специальным водохранилищям при все своей масштаб­ности не отличаются большими расходами электроэнергии или специфи­кой электрификации. Поэтому основное внимание уделяется шлюзованию и использованию специального флота для руслоочищения и дноуглубле­ния.

Шлюзование реки позволяет резко увеличить глубины в речном пото­ке в результате строительства вдоль пути водоудерживающих плотин со специальными судопропускными сооружениями в виде шлюзов или судо­подъемников.

Улучшение судоходности водных путей повышает безопасность плава­ния и является одним из условий успешного развития водного транс­порта. Оно, в частности, осуществляется подъемом воды напорными гидротехническими сооружениями с судоходными шлюзами или судоподъ­емниками.

Судоходным шлюзом называется сооружение, предназначенное для пе­ревода судов из одного бьефа в другой, отличающихся уровнем воды. Разность уровней воды в верхнем и нижнем бьефах воспринимается шлю­зом как напор.

Схематический план и продольный разрез однокамерного шлюза при­ведены на рисунке 1.

Шлюзование осуществляется с помощью камеры 1, разделяющей бьефы, и устройств, позволяющих выравнивать уровни воды в камере отдельно с верхним и нижним бьефами. Со стороны каждого бьефа камера имеет судоходные отверстия, перекрываемые воротами 2. Для маневрирования воротами шлюзы оборудуются механизмами, располагаемыми на площадках или помещениях голов шлюзов.При наполнении и опорожнении камера со­единяется с бьефами водопроводными галереями 3, которые перекрыва­ются затворами. Водопроводных галерей и затворов может не быть, ес­ли для наполнения или опорожнения используются судоходные отверс­тия.

Для ремонта шлюза предусматриваются затворы, позволяющие отде­лить его от верхнего и нижнего бьефа при осушении камеры.

Кроме ворот и затворов с механизмами, камеры шлюза оборудуются причальными устройствами для учалки судов.

Примыкающие к верхней и нижней головам шлюза подходы состоят из каналов для захода судна в шлюз, направляющих устройств, обеспечи­вающих безопасность входа судов в камеру, причальных устройств и сооружений для отстоя судов в ожидании шлюзования.

Обеспечение четкой и безопасной проводки судов на современных шлюзах гарантируется с помощью навигационной сигнализации, связи и автоматического управления всеми операциями шлюзования.

На внутренних водных путях нашей страны эксплуатируются более 100 судоходных шлюзов. Габариты шлюзовых камер достигают: длина - 300 м, ширина - 30 м, напор на одну камеру - 20 м.

Различные по своим техническим характеристикам современные судо­ходные шлюзы представляют собой уникальные сооружения с высокой степенью электрофикации, которая позволяет коренным образом улуч­шить технологию производственных процессов и условия труда обслужи­вающего персонала.

Состав и характер электрического оборудования шлюза определяются его местом в технологической линии, интенсивностью движения на вод­ной магистрали и уровнем автоматизации управления.

Успешная работа судоходного шлюза зависит от надежности и чет­кости действия всех элементов электрического оборудования. В про­цессе проектирования и строительства шлюзов предусматривается, что их электрическое оборудование должно обеспечивать:

заданный технологический режим работы объекта;

постоянную готовность  к действию;

возможность дистанционного, а в необходимых случаях и автомати­ческого управления;

экономичность и полную безопасность работы.

Указанные требования выполнимы лишь при высокой степени электри­фикации, автоматизации и качества электрического оборудования.

1.2. Состав и назначение механического оборудования гидротехни­ческих сооружений.

Механическое оборудование шлюзов делится на:

основное, предназначенное для непосредственного выполнения опе­раций по пропуску судов через шлюз. К нему относятся рабочие воро­та, затворы и их механизмы;

вспомогательное, необходимое для обеспечения пропуска судов по определенной схеме и включающее подвижные и неподвижные причальные устройства;

ремонтное, предназначенное для отделения камеры от верхнего и нижнего бьефов, состоящее из ремонтных и аварийных ворот, подъемных устройств, насосных агрегатов и т.п.

Различные размеры камер шлюзов и назначения напоров, а также специфика работы вызвали появление большого разнообразия конструк­ций шлюзовых ворот ( плоские,подъемно-опускные, сегментные, откат­ные, двустворчатые и другие ) и затвор галерей ( плоские, сегмент­ные, цилиндрические, дисковые и т.п.).

В настоящее время наибольшее распространение получили плоские подъемно-опускные и сегментные ворота для верхних голов шлюзов, двустворчатые - для нижних, плоские и цилиндрические затворы - для галерей.

Плоские подъемно - опускные ворота ( рисунок 2 ) представляет собой щит 1, перекрывающий судоходное отверстие и перемещающийся на

колесных или скользящих опорах в вертикальных боковых пазах 2. Ниж­няя часть ворот выполнена с наклоном в сторону камеры для направле­ния струи при наполнении на гасители и устранения вакуума под щитом и при его подъеме. Аналогичное устройство имеют и плоские затворы водопроводных галерей.

В эксплуатационных условиях ворота могут принимать три положе­ния: 1) рабочее ( судоходное отверстие перекрыто ); 2) наполнение

( открыта часть судоходного отверстия ); 3) судоходное ( судоходное

отверстие открыто ).

По эксплуатационно - гидравлическим требованиям при наполнении камеры шлюза ворота приподнимаются над рабочем положением на 1-3 м с ограниченной скоростью до 0,2-0,6 м/мин, а по окончании наполне­ния, на скорости, превышающей скорость перемещения при наполнении в 20-25 раз, они опускаются в судоходное положение. В рабочее положе­ние из судоходного ворота перемещаются также с большой скоростью.

Плоские ворота конструктивно просты и позволяют перекрывать су­доходные отверстия значительных размеров при относительно небольших габаритах голов камеры. Однако перемещение в вертикальной плоскости и требование двух резко отличающихся скоростей движения вызывает необходимость применения сложных приводных устройств и сооружения помещении для расположения электромеханического оборудования.

Сегментные ворота (рисунок 3 ) по назначению аналогичны плоским подъемно - опускным, но перемещаются они не по вертикали, а по ду­ге. Рабочая поверхность их криволинейна, что позволяет за счет дав­ления воды в операции наполнения камеры обходится меньшими усилиями для подъема таких ворот по сравнению с плоскими.

Двустворчатые ворота (рисунок 4 ) состоят из двух полотен 1, вращающихся вокруг вертикальных осей, расположенных у стен камеры

2. В закрытом состоянии полотна опираются друг на друга опорными подушками створных столбов, образуя угол 160-170о с вершиной,нап­равленной в сторону большего уровня воды ( верхнего бьефа ), созда­ющего усилие для удержания створок закрытыми.

В эксплуатационных условиях двустворчатые ворота могут занимать лишь два положения: рабочее ( судоходное отверстие закрыто )и судо­ходное ( судоходное отверстие полностью открыто ), так как наполне­ние камеры шлюза при такой системе ворот осуществляется с помощью обводных галерей, снабженных своими затворами.

Цилиндрические затворы водопроводных галерей (рисунок 5 ) предс­тавляет собой цилиндр 1, установленный в специальной нише и перек­рывающий водопроводное отверстие своей торцовой частью. Рабочее пе­ремещение затвора осуществляется в вертикальной плоскости с помощью винтовой передачи 2 или гибкого тягового органа.

Благодаря цилиндрической форме поверхности затвора боковое дав­ление воды на него уравновешивается, поэтому подъемное усилие при маневрирование затвором невелико. К недостаткам цилиндрических зат­воров относятся потребность в сложной форме галерей и чувствитель­ность к вибрациям.

Механизмы ворот и затворов различаются в зависимости от размеров шлюзов, их конструкции и общей компоновки. Все механизмы, как пра­вило, имею редукторы или гидравлические передачи и тяговые органы. В качестве последних применяются цепные, тросовые, кривошипно-ша­тунные,штангово-цепные и штанговые устройства.

Гидравлические передачи используют как для изменения передаточ­ного числа и скорости движения рабочего органа, так и для получения необходимого вида механической характеристики привода. В гидравли­ческих передачах рабочем телом является жидкость, свойства которой и определяют особенности этого типа передач.

Как и в любой передаче, в гидравлической также имеются входное и выходное звенья: первым может быть вал насоса,вторым - поступатель­но перемещающийся поршень в гидроцилиндре.

Гидравлические передачи делятся на гидростатические ( объемного действия ) и гидродинамические. В первых давление, создаваемое на­сосом, передается через жидкость как рабочее тело на исполнительный орган, во вторых жидкость приводится во вращательное движение веду­щим звеном и увлекает за собой ведомое.

Мощность гидростатических систем в основном определяется давле­нием жидкости, и расход ее сравнительно невелик. Гидродинамические системы, наоборот, характеризуются большим расходом жидкости и ма­лым статическим давлением.

Гидростатические передачи, способные обеспечить большие переда­точные числа и преобразовать вид движения, получили преимуществен­ное применение на водном транспорте. Выходные звенья этих передач могут иметь возвратно-поступательное, вращательное или возврат­но-поворотное движение ( соответственно силовые гидроцилиндры, гид­ромоторы, моментные гидроцилиндры ).

На рисунке 6 представлена простейшая гидропередача, преобразую­щая вид движения. Давление, создаваемое насосом 1, с помощью расп­ределителя 2 передается правой или левой полости цилиндра 3, обес­печивая необходимое направление движения рабочего органа. Дроссели­рованием, т.е. отводом части жидкости с помощью дросселя 4 в ем­кость 5 по сливной магистрали, можно управлять скоростью движения поршня. Скорость движения рабочего органа можно изменять также ре­гулированием насосной утановки.

Гидравлические передачи имеют ряд достоинств, обеспечивающих их широкое применение в промышленности и на транспорте:

возможность различного расположения узлов и  элементов;

сравнительная легкость изменения направления движения рабочего органа;

простота защиты установки и рабочих органов от перегрузки;

бесшумность работы;

малая масса на единицу  мощности;

простота преобразования вращательного движения в поступательное и обеспечение больших передаточных чисел в объемных передачах.

Основными недостатками этих передач являются; сложности прокладки трубопроводных коммуникаций; большие потери давления  и  утечки жидкости в уплотнениях; зависимость характеристик  систем  от  температуры жидкости и ее

вязкости.

Тяговые органы служат для соединения приводного механизма с ра­бочим органом, т. е. с воротами или затворами шлюзов.Тяговые органы работают в исключительно тяжелых условиях, особенно в подъемных ме­ханизмах,где часто они находятся в воде и трудно доступны для обс­луживания. Учитывая неравномерность нагрузки и тяжелые условия их работы, при проектировании тяговых органов стремятся обеспечить им прочность и надежность.

1.3. Основные свойства электрофицируемых механизмов гидротехни­ческих сооружений.

Электрифицируемые механизмы гидротехнических сооружений работают в условиях, отличающихся влажностью ( 100 %), большими перепадами температуры ( 20-50оС ),значительными колебаниями нагрузки  и  дли­тельными перерывами в работе ( при шлюзовании и особенно в межнави­гационный период ).  Для обеспечения безаварийной работы эти  меха­низмы  должны быть достаточно прочными,  долговечными и надежными в эксплуатации. Кроме того, они должны иметь высокие технико-экономи­ческие показатели.

Перечисленные требования распространяются и на электрическое оборудование.

Главные нагрузки, действующие на электроприводы основных меха­низмов гидротехнических сооружений, создаются:

собственным весом перемещаемых устройств;

давлением воды и ветра на них.

Кроме этого, могут возникнуть случайные нагрузки, вызванные на­валом свободно плавающих предметов и шлюзуемых судов, обледенением, ледоходом и т. п.

Указанные нагрузки, веса устройств, не остаются неизменными в процессе работ, поэтому все расчеты выполняются для двух возможных их сочетаний: основного и особого. В основное сочетание включают нагрузки, действующие постоянно при работе механизма, в особое - главные и случайные ( удары топляков, заклинивание, ледоход и т. п.). Сочетания нагрузок выбирают в соответствии с практической воз­можностью одновременного их воздействия как на привод в целом, так и на отдельные его элементы. Нагрузки определяют для статического и динамического режимов работы.

По действующим в системе нагрузкам рассчитывают соответствующие им моменты и суммированием последних вычисляют результирующие мо­менты сопротивления движению Мс.

При определении момента сопротивления нагрузки от навала свобод­но плавающих предметов и шлюзуемых судов, а также от обледенения и ледоходов можно не учитывать, пологая их выходящими за пределы мак­симального момента привода и регламентирующими лишь прочность конс­трукции электрифицируемого устройства.

При этом например, для двустворчатых ворот с тросовыми, цепными, штанговыми и штангово-цепными передачами моменты ( в Н*м ) от дейс­твующих нагрузок приближенно будут такими:

а) от веса системы ( момент трения в пяте и гвльсбанде )

Мтр=23Fиfrи+Fгfrг,

где Fг и Fи - реакция в пяте и гальсбане, Н;

f  - коэффициент трения;

rи, rг - радиус пяты и гальсбана, м;

б) от гидростатического и гидродинамического давления воды на створку

Мг=0,5Yhl2Dh+0,15rhl2*q2

где Y - вес единицы объема воды, Н/м3;

h - заглубление створки, м;

l - длинна створки, м;

Dh - перепад уровней воды, м; r - плотность воды, кг/м3: q - скорость движения створки, м/с:

в) от действия ветра

Мв=Fвl/2,

где Fв - сила ветра,действующая на створку, Н;

l  - длина створки, м.

Момент сопротивления будет равен

Мс=Мтр+Мг+Мв.

В динамическом режиме работы, кроме перечисленного, учитывают дополнительный момент ( в Н*м ) от сил инерции створки:

Ми=Jw/t,

где J - момент инерции створки, кг*м2;

w - угловая скорость движения створки, с-1;

t - время динамического режима, с;

Момент сопротивления движению подъемно-опускных ворот ( затворов ) создается главным образом весом ворот и сопротивлением трения в опорно-ходовых и закладных частях. Составляющие момента сопротивле­ния ( в Н*м ) можно определить следующим образом:

а) от собственного веса ворот ( затвора )

Мв=GRб,

где G - вес ворот с тяговым устройством, Н;

Rб - радиус барабана подъемной лебедки, м;

б) от трения в опорно-ходовых и закладных частях

Мтр=f1PRб+f2DPRб,

где f1, f2 - коэффициент трения опорного устройства и уплотнения;

P и DP - силы гидростатического давления на ворота и на заклад­ные части, Н.

При этом Мс=Мв+Мтр. Для привода затворов галерей,кроме указанных нагрузок, учитывают момент, создаваемый вертикальным давлением во­ды:

Мверт=YSRб( Hв-fоНн ),

где   S - площадь затвора,м2;

Hв, Нн - напор на верхнюю и нижнюю ( выпор ) поверхности затво­ра,м;

fо - коэффициент подсоса.

1.4 Элементы  электрического оборудования шлюзов.

Электрическое оборудование, обеспечивающее четкую и надежную ра­боту гидротехнических сооружений, условно можно разделить на три основных группы: силовое электрооборудование приводов, электричес­кие аппараты и системы управления, элементы и устройства электрос­набжения.

1.4.а. Силовое оборудование приводов. К силовому электрооборудо­ванию прежде всего относят электрические двигатели и электрические приводы тормозов.

Электрические двигатели. К электрическим двигателям гидротехни­ческих сооружений предъявляются высокие требования в отношении обеспечение нормальной работы в условиях резких колебаний нагрузки, температуры окружающей среды и повышенной влажности. На гидротехни­ческих сооружениях применялись исключительно крановые электродвига­тели переменного тока с короткозамкнутым и фазным ротором серии МТК и МТ специального исполнения, обладающие достаточно высокой перег­рузочной способностью и механической стойкостью. От обычных они от­личаются тем, что обмотка статора их при изготовлении подвергается вакуумной пропитке изоляционным влагостойким компаундом, а в под­шипниковых щитах имеются вентиляционные отверстия, предназначенные для предотвращения появления конденсата внутри двигателя.

В настоящее время на гидротехнических сооружениях получают расп­ространение и крановые двигатели серий МТКВ МТВ с изоляцией класса В, допускающей увеличение номинальной мощности двигателя при преж­них габаритных размерах.

Из - за отсутствия крановых двигателей необходимой мощности ста­ли применяться двигатели общепромышленного назначения. Однако эти двигатели менее надежны в эксплуатации, хуже работают в условиях гидротехнических сооружений, обладают меньшей перегрузочной способ­ностью.

Режим работы двигателей гидротехнических сооружений, как прави­ло, кратковременный с ярко выраженной цикличностью работы. Продол­жительность цикла в зависимости от вида сооружения и характера ра­боты составляет 30 -60 минут. Продолжительность работы двигателей в цикле при этом колеблется от одной до 6 - 8 минут.

Электрические приводы тормозов. Большинство механизмов гидротех­нических сооружений снабжают тормозами закрытого типа, как правило, колодочными. Тормоза служат для удержания подъемноопускных устройс­тв в поднятом положении, а поворотных в строго фиксированном поло­жении. Кроме того, с помощью тормоза можно сократить тормозной путь

- выбег механизма. Особенно высокие требования предъявляются к тор­моза многодвигателтельных систем, где необходима одинаковая эффек­тивность действия тормозов для сохранения синхронизации и последо­вательности движения элементов.

Для приведения в действие механических тормозов применяются длинноходовые электромагниты серии МО и электрогидравлические тол­катели серии ЭГП.

1.4.б. Электрические аппараты системы управления. Эта группа объединяет аппараты коммутации и защиты, аппараты технологической последовательности и блокировок, контроля и сигнализации. Кроме уп­равления основными механизмами и процессами, специальные системы этой группы аппаратов обеспечивают информацию о состоянии наиболее ответственных элементов и режимах работы и осуществляют регулирова­ние движения судов.

Коммутационные аппараты.  Для коммутации силовых цепей гидротех-

нических сооружений применяются в основном электромагнитные контак­торы серии КТ.  Бесконтактные ( полупроводниковые ) контакторы тока используют лишь в опытном порядке с тиристорными станциями управле­ния.

Аппараты защиты. На шлюзах применяются максимальная токовая и минимальная защита. Для максимальной токовой защиты двигателей во­рот и затворов обычно используют электромагнитные или индукционные реле максимального тока серии РЭ и ИТ, Для защиты от перегрузок электротепловые реле ТР, для минимальной защиты - реле напряжения.

Реле промежуточное используется для подготовки цепей управления к заданным операциям ( например, цикловому или раздельному управле­нию ). Кроме того, промежуточные реле в некоторых случаях позволяют сократить число контактов, включаемых в цепь управления. Например, вместо того чтобы включить кнопку " Стоп " всех постов управления в цепь управления, можно включить их цепь катушки промежуточного ре­ле. При нажатии любой из этих кнопок размыкаются контакты этих реле в цепи управления и происходит остановка привода. В качестве проме­жуточных реле широкое применение находят реле серии РП.

Реле времени служат для управления контакторами ускорения, а также в других случаях, когда необходимо, чтобы между двумя опера­циями был определенный промежуток времени. Для этих целей на водных путях в основном используются электромеханические реле с приводом на переменном токе и электромагнитные реле времени постоянного то­ка.

Кнопки и ключи управления применяются общего назначения, рассчи­танные на работу в условиях повышенной влажности.

Путевые выключатели. На шлюзах черезвычайно распространены путе­вые выключатели. Они служат для отключения двигателей при достиже­нии затворами конечных и предельных положений, а также для блокиро­вок. Различают путевые выключатели двух типов: блок - аппараты и конечные выключатели. Первые, по своему устройству подобные коман­доконтроллерам, являются средством управления и блокировок в функ­ции пути, а вторые, обычно рычажного типа, устанавливаются для сра­батывания в конце пути.

На гидротехнических сооружениях находят применение и бесконтакт­ные выключатели, работа которых основана на изменении их индуктив­ного или емкостного сопротивления при перемещении подвижного якоря. Такие выключатели малогабаритны, герметичны, с успехом работают в агрессивной среде, и в частности в подводных частях сооружений.

Панели и пульты. Аппаратуру управления и защиты располагают, как правило, на контакторных панелях, собранных из прямоугольных изоля­ционных плит и укрепленных на угловых стойках. Коммутационную аппа­ратуру, реле управления и защиты устанавливают на лицевой стороне с выводом защиты для монтажа с обратной стороны панелей, где находят­ся измерительные трансформаторы и пускорегулирующие резисторы. Раз­мещение чувствительных реле на контактных панелях в непосредствен­ной близости от мощных контакторов имеет существенный недостаток, заключающийся в ложных срабатываниях реле от вибрации, вызываемой включением и выключением контакторов. Поэтому на современных шлюзах чувствительную аппаратуру управления располагают на отдельных пане­лях, называемых панелями автоматики. Командоаппараты и приборы тех­нологического контроля и сигнализации устанавливают в полном объеме на центральном или в сокращенном на местном пультах управления. Все приборы и устройства на центральном пульте управления размещают в соответствии с мнемонической схемой объекта. Центральный пульт на­ходится в отдельном помещении, чтобы обеспечить оператору хорошую видимость объекта. Местный пульт обычно устанавливают непосредс­твенно около управляемого механизма и снабжают запирающейся крыш­кой.

1.4.в Оперативная сигнализация. К числу основных устройств сиг­нализации и контроля относятся устройства производственной ( опера­тивной, поисковой и аварийной ) сигнализаций. Среди них наиболее заметное место занимает оперативная сигнализация.

Для успешной работы оператор шлюза должен иметь возможность в любое время установить, в каком положении находятся ворота и затвор ( насколько они открыты или закрыты ), а также каковы уровни воды в камере и обоих бьефах. Для этой цели применяется оперативная указа­тельная ( индикаторная ) сигнализация. На (рисунке 6,а и б) изобра­жены показатели положения подъемно - опускных и двустворчатых во­рот. Основу указателей составляют сельсины, образующие систему синхронной связи (см. п. 30 ).

С приводом ворот связан ротор сельсина - датчика, который пово­рачивается при их перемещении. При этом поворачивается и ротор сельсина приемника, электрически соединенного с сельсином - датчи­ком. С сельсином - приемником, находящемся на центральном пульте управления, связан указатель, который и отражает положение ворот.

Указатель уровня воды в камере работает следующим образом. На одной из голов шлюза устанавливают колодец, сообщающийся с камерой, в который помещают поплавок, закрепленный на тросе и уравновешенный противовесом. При изменении уровня воды в камере поплавок поднима­ется или опускается, отчего начинает вращаются ролик, охватываемый тросом. Это вращение передается через редуктор сельсину - датчику и через сельсин - приемник отражается на экране стрелочного, ленточ­ного или цифрового указателя. Аналогично работают и указатели уров­ня воды в бьефах.

Как известно, дифференциальный сельсин - приемник позволяет оп­ределить угол рассогласования между роторами двух сельсинов - дат­чиков. Этот принцып положен в основу работы указателей ( индикато­ров ) разности уровней воды в камере, верхнем или нижнем бьефах и указателей перекоса затвора.

Обмотка статора дифференциального сельсина - указателя разности уровней получает питание от ротора сельсина - датчика, угол поворо­та которого зависит от уровня воды в бьефе ( верхнем или нижнем ), а обмотка ротора включена на зажимы ротора датчика, угол поворота которого зависит от уровня воды в камере. Указатель разности уров­ней воды необходим для управления воротами шлюза.

Указатель перекоса предусматривают, если затвор поднимается и опускается с помощью двух механически не связанных двигателей, ус­тановленных на противоположных устоях камеры. Даже при наличие " электрического вала " в таких случаях возможно появление перекоса. Перекос затвора весьма опасен из - за увеличения напряжений в нем и возможности его заклинивания, а также перегрузок электрических дви­гателей.

Статор дифференциального сельсина - указателя перекоса получает питание от ротора сельсина - датчика положения левой стороны затво­ра, а его ротор подключен к ротору сельсина - датчика положения правой стороны затвора. Если перекос превышает заданное максималь­ное значение, цепь управления данным приводом автоматически разры­вается.

Рассматриваемые приборы выполняют не только функции сигнализа­ции, но и контроля. Они имеют контакты, замкнутые при угле рассог­ласования, не превышающем заранее заданного значения, и разомкну­тые, если этот угол больше допустимого. Контакты указателей включа­ются в цепь соответствующих реле, а контакты последних - в цепь уп­равления. На (рисунке 6) приведена принципиальная схема оперативной указательной сигнализации для одного из шлюзов.

На схеме приняты следующие обозначения: ВСВ - датчик уровня воды верхнего бьефа; ВС11 - датчик положения ворот верхней головы; ВС12

- то же, правой стороны; ВЕВ2 - приемник разности уровней воды меж­ду верхним бьефом и камерой; ВЕВ - приемник абсолютного уровня воды верхнего бьефа; ВЕ1 - приемник положения ворот верхней головы; ВЕР1

- приемник перекоса ворот верхней головы; ВС2 - датчик уровня воды в камере; ВСН - датчик уровня воды в нижнем бьефе; ВС31 - датчик положения левой створки ворот нижней головы; ВС32 - датчик положе­ния правой створки ворот нижней головы; ВС41 - датчик положения ле­вого затвора галерей; ВС42 - то же правого затвора галерей; ВЕН2 - приемник разности уровней воды между камерой и нижним бьефом; ВЕН - приемник абсолютного уровня воды в нижнем бьефе; ВЕ31 - приемник положения левой створки ворот нижней головы; ВЕ32 - приемник поло­жения правой створки ворот нижней головы; ВЕ41 - приемник положения затвора левой галереи; ВЕ42 - приемник положения затвора правой га­лереи; KV2 - реле напряжения цепи питания сельсинов; КВ2 - реле разностей уровней воды межу верхним бьефом и камерой; КН2 - реле разностей уровней воды между камерой и нижним бьефом; KV1 - реле перекоса.

Как видно из схемы, в камере, в верхнем и нижнем бьефах, уста­новлено три датчика: ВС2 - датчик уровня воды в камере; ВСВ - дат­чик уровня воды в верхнем бьефе; ВСН - датчик уровня воды в нижнем бьефе, каждый из которых питает ротор обычного сельсина - указателя уровня. Кроме того, каждый из этих

 
     
Бесплатные рефераты
 
Банк рефератов
 
Бесплатные рефераты скачать
| Интенсификация изучения иностранного языка с использованием компьютерных технологий | Лыжный спорт | САИД Ахмад | экономическая дипломатия | Влияние экономической войны на глобальную экономику | экономическая война | экономическая война и дипломатия | Экономический шпионаж | АК Моор рефераты | АК Моор реферат | ноосфера ба забони точики | чесменское сражение | Закон всемирного тяготения | рефераты темы | иохан себастиян бах маълумот | Тарых | шерхо дар борат биология | скачать еротик китоб | Семетей | Караш | Influence of English in mass culture дипломная | Количественные отношения в английском языках | 6466 | чистонхои химия | Гунны | Чистон | Кус | кмс купить диплом о language:RU | купить диплом ргсу цена language:RU | куплю копии дипломов для сро language:RU
 
Рефераты Онлайн
 
Скачать реферат
 
 
 
 
  Все права защищены. Бесплатные рефераты и сочинения. Коллекция бесплатных рефератов! Коллекция рефератов!