Чтение RSS
Рефераты:
 
Рефераты бесплатно
 

 

 

 

 

 

     
 
Разработка автоматизированной системы управления сбором и отображением информации на установке продувки азотом

АННОТАЦИЯ

Пояснительная записка к дипломному проекту "Разработка автоматизированной системы управления сбором, обработкой и отображением информации на установке продувки стали азотом (аргоном) электросталеплавильного цеха №2 общества с ограниченной ответственностью
"Сталь Кузнецкого металлургического комбината".

Дипломный проект по специальности "Технология, математическое обеспечение и автоматизация литейных процессов (110403). – Новокузнецк,
2002. – 113с. Табл.18, ил. 25, источников 36, приложений 1, чертежей 6 листов.

Ключевые слова: автоматизированная система, сбор, обработка и отображение информации, алгоритм, модель, установка продувки стали азотом
(аргоном), технология, представление информации, химический состав, экономический эффект.

Объектом исследования является процесс обработки металла на установке продувки стали азотом (аргоном) (УПСА).

В дипломном проекте проведено изучение технологии обработки стали в ковше применительно к ООО "Сталь КМК" с целью снижения экономических затрат на осуществление вышеуказанного процесса.

В работе проведен ряд технологических исследований для создания подсистемы автоматизированной системы управления технологическим процессом
УПСА.

Исполнитель

Карпинский А.В.

THE SUMMARY

СОДЕРЖАНИЕ


ВВЕДЕНИЕ 6
1 ХАРАКТЕРИСТИКА ЗАВОДА, ПОТОКОВ СЫРЬЯ И ГОТОВОЙ ПРОДУКЦИИ 8
1.1 Характеристика металлургического комплекса дочерних предприятий ОАО
"КМК" 8
1.2 Характеристика электросталеплавильного производства 13
1.3 Характеристика ДСП – 100И7 15
1.4 Характеристика УПСА 20
1.5 Постановка задачи 24
2 РАЗРАБОТКА АВТОМАТИЗИРОВАННОЙ СИСТЕМЫ СБОРА, ОБРАБОТКИ И ОТОБРАЖЕНИЯ
ИНФОРМАЦИИ НА УПСА 25
2.1 Проверка достоверности и восстановления первичной информации на УПСА
25
2.2 Математическое описание 28
2.3 Анализ работы алгоритма оценки достоверности и восстановления первичной информации 34
2.4 Оценка и контроль масс дозируемых материалов 40
2.5 Алгоритм распознавания свищей продувочной фурмы 48
3 ТЕХНИЧЕСКАЯ СТРУКТУРА АВТОМАТИЗИРОВАННОЙ СИСТЕМЫ СБОРА, ОБРАБОТКИ И
ОТОБРАЖЕНИЯ ИНФОРМАЦИИ НА УПСА 58
3.1 Общая техническая структура АСУ ТП УПСА 58

3.1.1 Обоснование и краткая характеристика основных решений по функциональной и обеспечивающей частям АСУ ТП УПСА 58

3.1.2 Назначение АСУ ТП УПСА 62

3.1.3 Описание параметров, использующихся в АСУ ТП УПСА 63
4 ОТОБРАЖЕНИЕ ИНФОРМАЦИИ В АСУ ТП УПСА 69
5 ЭКОНОМИЧЕСКАЯ ЧАСТЬ 78
6 ОХРАНА ТРУДА И ОКРУЖАЮЩЕЙ СРЕДЫ 85
6.1 Анализ условий труда на объекте проектирования 85

6.1.1 Анализ условий труда на УПСА в ЭСПЦ-2 ООО "Сталь КМК" 85
6.2 Мероприятия по безопасности труда при эксплуатации УПСА 93
6.3 Мероприятия по производственной санитарии 97
6.4 Пожарная безопасность 101
6.5 Охрана окружающей среды 103
ЗАКЛЮЧЕНИЕ 107
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ ИНФОРМАЦИИ 108
ПРИЛОЖЕНИЕ А 111
Мероприятия при чрезвычайных ситуациях 111

ВВЕДЕНИЕ

Сложившаяся в настоящее время экономическая ситуация требует от предприятий черной металлургии выпуска продукции, конкурентоспособной на внутреннем и внешнем рынках. Конкурентоспособность во многом определяется стоимостью и качеством продукции, что в свою очередь обусловлено применяемой технологией, контролем за точностью ее соблюдения, а также количеством и стоимостью используемых в работе материалов.

Сегодня, как правило, технология производства стали предполагает использование внепечной обработки металла в том или ином виде, от простейших установок до агрегатов комплексной обработки стали с вакуумированием.

При использовании агрегатов внепечной обработки стали осуществляется доведение металла по химическому составу и корректировка его температуры путем подачи ферросплавов и продувки инертным газом. При этом ставится задача экономного расходования корректирующих добавок и более точного попадания в узкие пределы по химическому составу, чем на основном технологическом агрегате.

В составе электросталеплавильного цеха №2 ООО "Сталь КМК" работают две установки продувки стали азотом (аргоном) – УПСА. Планируется произвести демонтаж недостроенного агрегата комплексной обработки стали (АКОС) и начать строительство нового АКОС, удовлетворяющего современным требованиям.

Анализ технологии, применяемой при работе агрегатов внепечной обработки стали, показал, что необходимо вести более точный контроль за сбором и обработкой информации о состоянии металла и оперативно представлять эту информацию операторам в виде различного рода графиков и таблиц с использованием предыстории процесса.

Поэтому в работе было выбрано практическое направление – создание подсистемы автоматизированного сбора, обработки и отображения информации в рамках общей автоматизированной системы управления технологическим процессом УПСА (АСУ ТП УПСА).

Для возможности создания автоматизированной системы требовалось провести ряд технологических исследований с использованием паспортных данных, данных автоматизированного сбора информации и специальной регистрации при наблюдении за процессом обработки металла в ковше. Для исследования рассматривали температуру металла при поступлении на УПСА, угоревшие массы материалов, время обработки в ковше и другое.

После проведенных исследований появилась возможность проведения сбора, обработки и отображения информации на УПСА по определенным алгоритмам, используемым в автоматизированной системе управления.

1 ХАРАКТЕРИСТИКА ЗАВОДА, ПОТОКОВ СЫРЬЯ И ГОТОВОЙ ПРОДУКЦИИ

1.1 Характеристика металлургического комплекса дочерних предприятий ОАО

"КМК"

В состав металлургического завода входят следующие подразделения: коксохимическое, доменное, сталеплавильное, прокатное, цехи отдела главного механика, цехи отдела главного энергетика, автотранспортный цех, ремонтно- строительные цехи, цехи металлоизделий.

КОКСОХИМПРОИЗВОДСТВО (КХП)

В состав КХП входят следующие цехи: углеподготовительный, коксовый, цехи улавливания.

Углеподготовительный цех имеет в своем составе угле приемные ямы, вагоноопрокидыватель, два отделения окончательного дробления углей, два дозировочных отделения, смесительные отделения и четыре угольные башни, конвейеры для транспортировки углей и шихты с галереями и мостами.

Коксовый цех состоит из восьми коксовых батарей. Период коксования на батареях 1…6 – 14,7ч. На коксовой установке девять углезагрузочных вагонов, девять коксовыталкивателей, семь коксотушильных вагонов, восемь электровозов, десять двересъемных машин. Тушение кокса осуществляется в четырех тушильных башнях автоматически по программе. Фенольная вода после биохимочистки подается на тушение кокса непосредственно насосами. В цехе три коксосортировки, где кокс разделывается на следующие классы: 40мм, 25-
40мм, 10-15мм, 0-10мм.

Цех управления №1 состоит из следующих отделений: конденсация газа, машинного, аммиачно–перидинного, сульфатного, обезвоживания смолы, бустерной станции и обесфеноливающей установки. Продукцией цеха является аммиак и сульфат аммония. Цех управления №2 включает отделения окончательного охлаждения газа и улавливания бензола. В цехе имеется два нафталинопромывателя пластинчатого типа для промывки вод от нафталина.
Продукцией цеха является бензол и каменноугольная смола.

ДОМЕННОЕ ПРОИЗВОДСТВО

В состав доменного производства входят пять печей, в том числе, объемом 1310м3 - четыре (в настоящее время печь №1 законсервирована),
1719м3 – одна. Общий полезный объем доменных печей по цеху 6959м3.

Для транспортировки чугуна и шлака используются чугуновозные ковши емкостью до 100 т и шлаковозные ковши емкостью 11-16м3.

СТАЛЕПЛАВИЛЬНОЕ ПРОИЗВОДСТВО

В состав сталеплавильного производства входят следующие цехи: мартеновский №1, №2 (в настоящее время оба цеха объединены в один сталеплавильный цех); электросталеплавильный №1, №2; копровый, цех подготовки составов.

Копровый цех состоит из пяти производственных участков, где осуществляется разделка скрапа до габаритных размеров.

ПРОКАТНОЕ ПРОИЗВОДСТВО

Прокатное производство включает в себя цехи: обжимной с блюмингом 1100 и последовательно расположенным заготовочным станком 900; рельсобалочный; цех рельсовых скреплений; среднесортный с шаропрокатным станом; листопрокатный; сортопрокатный со станами 750, 450, 360, 280 и тонколистовой стан 1000.

Обжимной цех. Для обработки товарной заготовки, прокатываемой обжимным цехом, имеется отдельный пролет с двумя мостовыми кранами грузоподъемностью
10т. каждый. Заготовки для всех прокатных станов (за исключением рельсобалочного) передаются из обжимного цеха на железнодорожных вагонах.

Рельсобалочный стан выпускает рельсы длиной 25 и 12,5м с закаленными концами. Закалка производится на горячих стеллажах водоструйными аппаратами, используется тепло, оставшееся после прокатки. После закалки рельсы поступают в короба замедленного охлаждения. Загрузка и выгрузка рельсов производится мостовыми кранами с электромагнитами грузоподъемностью
15т. Для отделки длинномерных рельсов и других видов проката имеется отделение отделки проката, рельсов с проектной производительностью 750000 т/год, в котором установлены две правильные машины, три вертикально- правильных пресса, два горизонтально-правильных цеха, четыре поточных автоматических линии с шестнадцатью сверлильно-фрезерными станками, пила холодной резки. Для уборки и погрузки прокатной продукции имеется четыре электромостовых крана. Кроме того, для отделки рельсов и других видов проката имеется рельсоотделочная мастерская, в которой установлены две правильные машины, четыре штемпельных пресса и четырнадцать сверлильно- фрезерных станков.

Листопрокатный цех. Склад слябов занимает часть соседнего со станом пролета. Склад обслуживается двумя мостовыми кранами. В пролете стана установлены: а) правильная одиннадцативалковая машина для правки листов толщиной 5-12мм; б) дисковые ножницы; максимальная толщина разрезаемых листов на дисковых ножницах – 25мм, на гильотинных ножницах-25мм. В пролете склада готовой продукции, смежным со становым, имеются два магнитных крана грузоподъемностью 15т. Имеется термическое отделение с четырьмя камерными печами с вытяжным подом, с тремя мостовыми кранами грузоподъемность 10т.
Травление листов производится в травильном отделении, имеющем четыре кислотных ванны, одну промывочную ванну и три мостовых крана грузоподъемностью по 5т. Здесь же расположена площадка для зачистки поверхности листов ручными машинками.

ЦЕХИ УПРАВЛЕНИЯ ГЛАВНОГО МЕХАНИКА (УГМ)

В УГМ входят следующие цехи: литейный, ремонтно-механический, сварочная лаборатория. Литейный цех включает следующие участки: участок производства изложниц, участок чугунного фасонного и машинного литья, участок стального фасонного и машинного литья, участок цветного литья, участок производства прокатных валков, участок отливки пробок для изложниц, участок мартеновского производства, подготовки и хранения шихтовых материалов, рубки изложниц, чугунного. Для обеспечения производства жидким металлом в цехе имеются: две вагранки производительностью 14т/ч, одна вагранка производительностью 57т/ч, две электропечи “Детройт” емкостью по
500 кг, электросталеплавильная печь, мартеновская печь емкостью 30 т, электросталеплавильная печь ДСП-10 емкостью 10 т. В цехе 33 мостовых крана.
Имеется модельное отделение.

ЦЕХИ УПРАВЛЕНИЯ ГЛАВНОГО ЭНЕРГЕТИКА (УГЭ)

В состав УГЭ входят следующие цехи: теплоэлектроцентраль, газовый, цех водоснабжения, электроремонтный, технологической диспетчеризации.

УПРАВЛЕНИЕ ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

Железнодорожный транспорт завода примыкает к станциям Новокузнецк пассажирская и Новокузнецк сортировочная Западно-Сибирской железной дороги.

АВТОТРАНСПОРТНЫЙ ЦЕХ

Использует автотранспорт для внутренних перевозок, для обеспечения цехов различными материалами, оборудованием, запчастями, а так же материалами для выполнения строительных работ.

ЦЕХИ ПРОИЗВОДСТВА ТОВАРОВ НАРОДНОГО ПОТРЕБЛЕНИЯ

Цех эмалированной посуды выпускает железную эмалированную посуду: бидоны, ведра с крышками, кастрюли, кофейники, кружки питьевые, миски, тазы, тарелки, чайники и пр. Проектная мощность цеха 10000т. в год.

Имеется цех сложнобытовой техники.

1.2 Характеристика электросталеплавильного производства

Электросталеплавильный цех - 2 (ЭСПЦ - 2) ООО "Сталь КМК" представляет собой сложный технологический комплекс, состоящий из ряда взаимосвязанных агрегатов. Цех имеет в своем составе две электропечи по 100т каждая. Кроме того, цех оснащен двумя сортовыми машинами непрерывного литья заготовок
(МНЛЗ), каждая из которых имеет четыре ручья. Перед отправкой на МНЛЗ металл обрабатывается на установках продувки стали азотом/аргоном (УПСА). В настоящее время строится агрегат комплексной обработки стали (АКОС), который позволит в дополнение к УПСА подогревать металл и осуществлять большее количество операций по доводке стали до требуемого качества в ковше. Связи агрегатов, основные технологические потоки показаны на рис.1.

Описание действующей и проектируемой технологии в ЭСПЦ - 2 далее приводится по агрегатам.

Рисунок 1 – Технологическая схема ЭСПЦ-2

1.3 Характеристика ДСП – 100И7

Дуговая электропечь ДСП - 100И7 используется в составе электросталеплавильного комплекса (ДСП - 100, УПСА, АКОС - 100, МНЛЗ) (см. рисунок 1), где использованы технологические и организационные решения, направленные на достижение устойчивой предельной производительности всей технологической цепочки в целом, а именно - выплавка стали, осуществляется в двух технологических взаимосвязанных агрегатах: дуговой сталеплавильной печи и агрегате внепечной обработки стали.

В ДСП выплавляют быстрорежущие, инструментальные, конструкционные, нержавеющие, трансформаторные, жаропрочные, шарикоподшипниковые и другие стали.

В ДСП осуществляется расплавление скрапа и кислородная продувка жидкой ванны с последующей короткой доводкой (или вообще без доводки) металла по химическому составу и температуре. Печной шлак не участвует в рафинировании стали и скачивается из печи перед сливом металла. По окончании окислительного периода плавки полученный полупродукт выпускается из печи в тигель-ковш, где и осуществляется окончательная доводка стали до заданной марки.

Использование ДСП - 100 для процессов плавления шихты и окисления примесей жидкой ванны обеспечивает выпуск стандартного полупродукта для различных марок стали, при этом сокращается время выдержки жидкого металла в печи, уменьшается износ футеровки и повышается производительность печи.

Печь ДСП - 100 имеет следующие основные параметры:

|емкость номинальная, т |100 |
|мощность трансформатора, МВ |7.5 |
|пределы вторичного напряжения, В |(761-654)-250 |
|диаметр электрода, мм |610 |
|время расплавления под током, мин | Z (2) >…> Z (N) .

Алгоритм релейно-экспоненциального сглаживания в формульной записи имеет вид:

(3)

(4)

где Z(i) - значение контролируемой величины в текущий (i - ый) момент времени;

(i) - сглаженное значение Z(i);

( – настроечный коэффициент сглаживания;

( – функция «срезки»; sgn - знаковая функция (функция образования знака).

Алгоритм контроля информации представлен на рисунке 3.

Работа алгоритма оценки достоверности и восстановления первичной информации заключается в следующем. При поступлении исходной информации производится распознавание параметра, т.е. назначение измеренной величины – температура, химический анализ, и т.п. (блок 2), после чего производится вычисление диапазона, в котором в котором может изменяться измеренная величина (блок 3). Выбор базового значения - это ответственная работа, оказывающая большое влияние оценку достоверности информации. После контроля наличия измеряемой величины (блок 4), при ее наличии, производится вычисление сглаженного значения (блок 7). Значение коэффициента l2j выбирается для каждого параметра индивидуально и влияет на степень сглаживания сигнала – чем меньше значение l2j, тем более гладкой оказывается кривая сглаженного сигнала. В блоке 8 данного алгоритма производится фильтрация грубых выбросов измеряемого параметра на основе
"коридора", рассчитанного в блоке 3. В случае непопадания поступившего параметра в диапазон (блок 3), выдается сообщение о неверности полученного значения (блок 9) и выдается запрос на повторный ввод (блок 10). Если полученные данные не удовлетворяют условиям блока 11, то выдается сообщение о недостоверности полученного значения (блок 12) и происходит восстановление первичной информации, то есть текущему сглаженному значению присваивается значение предыдущего сглаженного значения (блок 16), и расчет переходит к блоку 6. В случае удовлетворительного прохождения измеренной величины через блок 8 производится проверка "гладкости" сглаженного сигнала
(блоки 14 и 15). Значения коэффициентов l1j и l3j также выбираются для каждого параметра индивидуально. В случае неудовлетворения данных условиям блоков 14 и 15 выдается соответствующее сообщение оператору (блок 13), после чего производится восстановление первичной информации (блок 16).

При отсутствии измеряемого параметра (блок 4) происходит присвоение текущему измеряемому параметру значения предыдущего сглаженного значения
(блок 5), после чего происходит переход к блоку 6.

В блоке 6 производится проверка количества контролируемых параметров заданному числу, и, в случае контроля всех параметров, производится запись данных в массив (блок 17), иначе работа алгоритма начинается заново.

Рисунок 3 – Алгоритм оценки достоверности и восстановления первичной информации

2.3 Анализ работы алгоритма оценки достоверности и восстановления первичной информации

Для проверки работы алгоритма воспользуемся данными, содержащимися в паспорте обработки плавки на УПСА. Численные значения данных, содержащихся в обрабатываемых массивах, представлены в таблице 1.

Таблица 1 - Входные данные, обрабатываемые алгоритмом
| |С |Mn |Si |
|1 |2 |3 |4 |
|0 |0.697 |23 |1.2 |
|1 |0.749 |24 |1.17 |
|2 |0.810 |25 |1.2 |
|3 |0.855 |26 |1.751 |
|4 |0.910 |27 |0.99 |
|5 |0.951 |28 |0.946 |
|6 |1.015 |29 |0.905 |
|7 |1.08 |30 |0.851 |
|8 |1.03 |31 |0.825 |
|9 |1.09 |32 |0.77 |
|10 |1.14 |33 |0.72 |
|11 |1.21 |34 |0.66 |
|12 |1.17 |35 |0.68 |
|13 |1.27 |36 |0.665 |
|14 |1.165 |37 |0.69 |
|15 |1.12 |38 |0.705 |
|16 |1.169 |39 |0.73 |
|17 |1.215 |40 |0.72 |
|18 |1.26 |41 |0.7 |
|19 |1.33 |42 |0.72 |
|20 |1.28 |43 |0.74 |
|21 |1.32 |44 |0.755 |
|22 |1.26 |45 |0.753 |
Таблица 5 – Результаты обработки весовой кривой по методу текущего среднего
|(, мин |Значение массы m при |Значение массы m при |
| |n=5 |n=7 |
|1 |2 |3 |
|0 |0.647 |0.677 |
|1 |0.710 |0.694 |
|2 |0.754 |0.696 |
|3 |0.804 |0.693 |
|4 |0.855 |0.680 |
|5 |0.908 |0.677 |
|6 |0.962 |0.669 |
|7 |0.997 |0.661 |
|8 |1.033 |0.667 |
|9 |1.071 |0.689 |
|10 |1.110 |0.719 |
|11 |1.130 |0.759 |
|12 |1.196 |0.805 |
|13 |1.211 |0.855 |
|14 |1.207 |0.910 |
|15 |1.199 |0.950 |
|16 |1.208 |0.99 |
|17 |1.186 |1.031 |
|18 |1.219 |1.074 |
|19 |1.251 |1.105 |
|20 |1.281 |1.156 |
|21 |1.290 |1.168 |
|22 |1.278 |1.186 |
|23 |1.246 |1.192 |
|24 |1.214 |1.203 |
|25 |1.160 |1.210 |
|26 |1.106 |1.233 |
|27 |1.055 |1.220 |
|28 |1.002 |1.246 |
|29 |0.949 |1.262 |
|30 |0.903 |1.260 |
|31 |0.859 |1.240 |
|1 |2 |3 |
|32 |0.814 |1.200 |
|33 |0.765 |1.159 |
|34 |0.731 |1.105 |
|35 |0.699 |1.055 |
|36 |0.683 |1.005 |
|37 |0.680 |0.955 |
|38 |0.698 |0.905 |
|39 |0.708 |0.858 |
|40 |0.719 |0.811 |
|41 |0.721 |0.773 |
|42 |0.725 |0.739 |
|43 |0.723 |0.716 |
|44 |0.728 |0.699 |
|45 |0.735 |0.696 |

Таблица 6 – Результаты обработки весовой кривой робастным алгоритмом
|(, мин |Скорость изменения |Значение массы m |
| |показаний, кг/с | |
|1 |2 |3 |
|0 |4.00 |0.57 |
|1 |5.00 |0.66 |
|2 |6.00 |0.76 |
|3 |6.4 |0.84 |
|4 |6.46 |0.90 |
|5 |6.24 |0.96 |
|6 |6.21 |1.02 |
|7 |6.17 |1.08 |
|8 |5.17 |1.09 |
|9 |4.62 |1.11 |
|10 |4.38 |1.15 |
|11 |4.52 |1.20 |
|12 |3.74 |1.21 |
|13 |4.74 |1.30 |
|14 |3.74 |1.29 |
|15 |2.74 |1.28 |
|16 |1.74 |1.26 |
|17 |1.18 |1.25 |
|18 |1.18 |1.26 |
|19 |1.76 |1.30 |
|20 |1.38 |1.30 |
|21 |1.45 |1.32 |

Рисунок 7 – Результаты обработки кривой методом текущего среднего

Рисунок 8 – Результаты обработки весовой кривой методом робастной фильтрации

2.5 Алгоритм распознавания свищей продувочной фурмы

В процессе продувки расплава происходит заметалливание сопла фурмы, то есть намораживание своеобразной металлической диафрагмы на конце трубы с постепенно уменьшающимся отверстием по мере продолжения продувки.
Заметалливание образуется и разрушается непрерывно в течение всей продувки.
По мере роста заметалливания давление перед фурмой растет, так как гидравлическое сопротивление сопла увеличивается. При частичном разрушении
(размывании расплавом) заметалливания давление падает. Полное разрушение заметалливания имеет место, как правило, лишь при укорочении фурмы, когда часть фурмы вместе с заметалливанием на конце отделяется от оставшейся части. При отделении части фурмы давление быстро снижается, так как укорочение фурмы при ее закрепленном положении в ковше ведет к снижению металлостатического напора. Перед отделением ковша в фурме обязательно возникают один или несколько свищей.

При частичном разрушении заметалливания либо при образовании небольших свищей газового тракта (при их зарождении) распознавание последних затруднено. Это связано с тем, что их зарождение имеет близкий по характеру отклик на кривой давления к появлению эффекта частичного разрушения заметалливания. В обоих случаях наблюдается снижение давления не ниже глобального минимума давления Рmin.

Задача распознавания зарождающихся свищей газового тракта при отсутствии стабилизатора давления может быть решена с использованием пробных воздействий по положению фурмы. При значительном снижении давления фурма приподнимается на расчетное значение (Нм и анализируется дискретный аналог производной давления по величине перемещения:

(Нм = Vn*(t (5)

где Vn – скорость приподнимания фурмы; Vn(const;

(t – время приподнимания фурмы;

Свищ располагается обязательно выше сопла фурмы. Металлостатический напор для свища Нмс оказывается меньше, чем для сопла фурмы Нмф.

Суммарное гидравлическое сопротивление газового тракта для свищей:

R(с = R1 + Rс + Rмс, (6)

где R1 – среднее гидравлическое сопротивление на участке газового тракта от места регистрации давления до свищей;

Rс – гидравлическое сопротивление свищей;

Rмс – среднее гидравлическое сопротивление столба расплава над свищами.

Суммарное гидравлическое сопротивление газового тракта для сопла:

R(с = R1 + R2+ Rф + Rмф, (7)

где R2– среднее гидравлическое сопротивление на участке газового тракта от свищей до сопла;

Rф – гидравлическое сопротивление сопла фурмы;

Rмф – гидравлическое сопротивление столба расплава над соплом.

Учитывая продолжительность пробного воздействия, можно принять во время воздействия R1, R2, Rф, Rс постоянными:

R(с = Kс + Rмс;

R(ф = Kф + Rмф;

где - Kc = R1 + Rc = const;

Kф = R1 + R2 + Rф = const.

На основе выражения изменение R(ф при пробном воздействии составит:

(R(ф = ( Rмф. (9)

При появлении свищей, находящихся при наложении пробного воздействия в расплаве, изменение гидравлического сопротивления (R( будет меньше, чем изменение гидравлического сопротивления (R(Ф без свищей. На зависимости давления Р по времени t при наложении пробного воздействия это отражается в меньшем угле наклона (падении) прямой изменения давления Р по отношению к оси времени при наличии свищей, чем при отсутствии последних.

Чем больше свищи, тем уменьшение давления Р до наложения пробного воздействия больше. Такое же начальное падение давления Р может происходить не вследствие появления свищей, а за счет уменьшения заметалливания сопла.
В этом случае давления до наложения пробного воздействия совпадут. Однако по итогам наложения пробного воздействия – анализируется угол наклона прямой давления от начальной точки Р1 до наложения воздействия до конечной точки Р2 после наложения воздействия – можно выявить причину падения давления Р.

Для этого измеренное изменение давления (Р = Р1 – Р2 под влиянием поднятия фурмы за время (t со скоростью Vn на величину (Нм = Vn*(t сравниваем с расчетным:

(Ррасч = (мс*g*(Нм, (10)

где - (мс – плотность жидкого металла в ковше; g – ускорение свободного падения.

Для избежания ошибки анализа из-за колебания заметалливания во время наложения пробного воздействия, неточностей контрольно-измерительной и пускорегулирующей аппаратуры, случайных колебаний давления Р и прочее устанавливается некоторый порог (Рпор отклонение (Р относительно (Ррасч.
Причиной изменения давления (Р, отклонившимся от (Ррасч на величину (Р(, большую, чем (Рпор, считается наличие свищей. Если же (Р при наложении пробного воздействия отклоняется на величину (Р(, не превышающую (Рпор, то считается, что свищей нет, и отклонение (Р( носит псевдослучайный характер.
Иначе говоря, в последнем случае причиной падения давления до наложения пробного воздействия считается снижение заметалливания сопла.

Если свищи выходят над поверхностью расплава как во время нанесения, так и до него, то справедливость выводов на основе данного способа распознавания зарождающихся свищей сохраняется. Способ определения наличия свищей в этом случае также работоспособен.

Время нанесения пробного воздействия составляет несколько секунд.
Поэтому рост заметалливания при одновременном росте свищей, с компенсирующими друг друга эффектами и не проявляющимися поэтому на кривой
Р(t), маловероятен. Кроме того, вскоре после укорочения фурмы и, таким образом, снижения заметалливания вероятность быстрого образования свищей мала, так как с падением давления Р понижается величина механического усилия на элементы газового тракта.

Таким образом, вновь введенные операции в указанной связи с другими операциями дают возможность определить наличие свищей газового тракта при продувке расплава в ковше. Процедура определения наличия свищей запускается в действие по информации о локальном снижении давления перед фурмой.
Распознавание наличие свищей осуществляется с использованием активного эксперимента путем наложения пробного сигнала на рабочие управления. В качестве информационного признака наличия свищей принят пониженный угол наклона к оси времени по отношению к рассчитываемому углу наклона, оцениваемый при известных (t и (Р.

С точки зрения реализации этого подхода в промышленных условиях удобно совмещать операцию активной идентификации состояния газового тракта с продувкой металла в автоматическом режиме (режим "качания" фурмы).

Проверка работоспособности алгоритма проводилась в ходе эксплуатации.
При распознавании ситуации появления свищей продувочной фурмы фурма вынималась и обследовалась визуально. Алгоритм в 80% случаев правильно распознавал появление свищей.

Алгоритм распознавания свищей продувочной фурмы показан на рисунке 9.

Рисунок 9 – Алгоритм распознавания свищей продувочной фурмы

Результаты работы алгоритмов распознавания состояния фурмы приведены на рисунках 10-13.

Время продувки мин:сек

Рисунок 10(а) – Измеренные параметры продувки

Время продувки мин:сек

Рисунок 10(б) – Расчетные параметры состояния фурмы

Время продувки мин:сек

Рисунок 11(а) – Измеренные параметры продувки

Время продувки мин:сек

Рисунок 11(б) – Измеренные параметры состояния фурмы

Время продувки мин:сек

Рисунок 12(а) – Измеренные параметры продувки

Время продувки мин:сек

Рисунок 12(б) – Расчетные параметры состояния фурмы

Время продувки мин:сек

Рисунок 13(а) – Измеренные параметры продувки

Время продувки мин:сек

Рисунок 13(б) – Расчетные параметры состояния фурмы

3 ТЕХНИЧЕСКАЯ СТРУКТУРА АВТОМАТИЗИРОВАННОЙ СИСТЕМЫ СБОРА, ОБРАБОТКИ И

ОТОБРАЖЕНИЯ ИНФОРМАЦИИ НА УПСА

3.1 Общая техническая структура АСУ ТП УПСА

3.1.1 Обоснование и краткая характеристика основных решений по функциональной и обеспечивающей частям АСУ ТП УПСА

3.1.1.1 АСУ ТП УПСА разрабатывается с целью обеспечения оперативного контроля за ходом процесса обработки стали в ковше инертным газом, оперативного предоставления информации технологическому персоналу на постах управления УПСА, архивирования информации о процессе обработки стали на
УПСА, формирование отчетных документов и подготовки информации для ретроспективного анализа хода процесса обработки стали в ковше на УПСА.

Технически АСУ ТП имеет двухуровневую иерархическую структуру (рисунок
14). В состав нижнего уровня иерархии входит подсистема "Параметры", реализованная на базе программируемого контроллера КТС ЛИУС-2 и предназначенная для сбора информации о ходе процесса обработки стали на
УПСА (мгновенный расход газа на продувку, давление на фурме, состояние клапана подачи газа и контрольное положение фурмы (реперные точки), сигналы слива на печах, состояние весового оборудования (питатели, затворы) и текущий вес сыпучих по весо-дозаторам, текущее положение фурмы, признак разливки и масса разлитой на МНЛЗ №№ 1 и 2 стали), предварительной обработки и передачи информации на верхний уровень.

В состав верхнего уровня входят подсистемы "Диспетчер" и "Обработка", реализованные на базе персонального компьютера типа IBM PC 486DX.

Рисунок 14 – Существующая структура технических средств АСУ ТП УПСА
Подсистема "Диспетчер" предназначена для приема информации от подсистемы
"Параметры", клавиатур ВТА-2000 на постах управления УПСА №№ 1 и 2, обработки полученной информации, формирования и выдачи на экраны ВТА-2000 на постах управления УПСА №№ 1 и 2 видеограмм, архивирования принятой информации.

Подсистема "Обработка" предназначена для ретроспективной обработки архивной информации, формирования отчетных документов, представления информации о ходе обработки стали на УПСА в графическом виде.

Техническая связь между уровнями – асинхронная последовательная по прерываниям.

3.1.1.2 Описание общих принципов функционирования АСУ ТП УПСА

Работа АСУ ТП УПСА совместно с технологическим оборудованием дает возможность реализовать в реальном времени функции оперативного контроля технологических параметров процесса и состояния, их отображения на постах управления УПСА, выдачи рекомендаций оперативному персоналу.

АСУ ТП УПСА функционирует в информационно-советующем режиме, с оперативным представлением информации и предупреждающих сообщений на экранах ВТА-2000, при минимуме операций ручного ввода.

Подсистема нижнего уровня "Параметры" обеспечивает:

. сбор информации о ходе процесса на УПСА, первичную обработку, пересылку на верхний уровень;

. прием из внешней (по отношению к АСУ ТП УПСА) подсистемы

"Электричество" информации о сливе на печах №1 и №2 и пересылку на верхний уровень;

. прием из внешней (по отношению к АСУ ТП УПСА) подсистемы "МНЛЗ" информации о массе разлитой стали и пересылку на верхний уровень;

. прием из внешней (по отношению к АСУ ТП УПСА) подсистемы "Сталь" информации о химическом составе и температуре стали в ковше, пересылку на верхний уровень.

Подсистема верхнего уровня "Диспетчер" обеспечивает:

. прием информации из подсистемы "Параметры", обработку, вычисление расчетных параметров;

. прием информации с клавиатур ВТА-2000 на постах управления УПСА, обработку полученной информации;

. формирование видеограмм и вывод их на экраны ВТА-2000 на постах управления УПСА, а также по требованию и на экран ПК, на котором реализован верхний уровень.

Подсистема верхнего уровня "Обработка" обеспечивает:

. выделение требуемой информации из файла базы данных;

. формирование документов: паспорт, протокол, графический протокол, графики параметров продувки для заданной обработки;

. формирование справок по расходу ферросплавов и инертного газа на

УПСА за заданный промежуток времени.

3.1.1.3 Пользователями системы в частности оперативного контроля хода процесса обработки стали в ковше является оперативный персонал УПСА. В части формирования документов и анализа хода обработки стали на УСПА – инженер по сопровождению АСУ ТП УПСА, мастер УПСА.

3.1.1.4 Совместимость АСУ ТП УПСА с АСУ других уровней и других функциональных назначений. АСУ ТП УПСА односторонне связана с подсистемой
"Сталь" для приема температуры и химического анализа, относящихся к УПСА, с подсистемой "МНЛЗ" для приема данных о признаке разливки и весе разлитой стали на МНЛЗ №№ 1и 2 и подсистема "Электричество" для приема информации о сливе на печи №№ 1 и 2.

3.1.2 Назначение АСУ ТП УПСА

АСУ ТП предназначена для автоматизации функций оперативного контроля и управления технологическим процессом обработки стали в ковше на УПСА с целью повышения качества обработки на установке, что дает снижение брака по поверхностным дефектам при разливке на МНЛЗ, снижения расхода фурм на продувку.

АСУ ТП УПСА реализует следующие функции:

. информационные функции:

. контроль технологических параметров;

. контроль состояния оборудования;

. представление информации технологическому персоналу;

. формирование и печать учетных документов;

. управляющие функции:

. выдача оперативному технологическому персоналу рекомендаций по управлению (по состоянию фурмы).

3.1.3 Описание параметров, использующихся в АСУ ТП УПСА

1. Номер УПСА – классифицируется по номеру сообщения из подсистемы

"Параметры", либо по номеру порта, с которого поступила информация.

Формат: #

2. Номер печи – из подсистемы "Параметры", либо берется из параметра 8.

Формат: #

3. Номер плавки – из подсистемы "Параметры", либо берется из параметра

8. Формат: # # # #

4. Код марки стали – с ВТА-2000 на постах управления УПСА.

Формат: # #

5. Марка стали – читается из файла-марочника для введенного параметра

"Код марки". Формат: # # # # # # # # # #

6. Масса Al – с ВТА-2000 на постах управления УПСА. Формат: # # #

7. Масса кокса – с ВТА-2000 на постах управления УПСА.

Формат: # # #

8. Номер плавки в формате X X X X X: старшая цифра – номер печи (п.2), остальные четыре – номер плавки (п.3) – с ВТА-2000 на постах управления УПСА, либо формируется по значениям параметров 2 и 3.

Формат: # # # # #

9. Дата обработки плавки (начало обработки плавки).

Формат: # # / # # / # #

10. текущая дата – внутренний параметр. Формат: # # / # # / # #

11. Текущее время – внутренний параметр. Формат: # # : # #

12. Время начала обработки плавки – внутренний параметр, формируется при возникновении ситуации "начало обработки плавки".

Формат: # # : # #

13. Время окончания обработки плавки – внутренний параметр, формируется по ходу процесса обработки плавки. Формат: # # : # #

14. Продолжительность обработки плавки – внутренний параметр.

Формат: # # : # #

15. общая продолжительность продувки плавки (суммарное время всех продувок) – внутренний параметр. Формат: # # : # #

16. Текущее положение фурмы – из подсистемы "Параметры".

Формат: # . #

17. Контрольное положение фурмы (вне ковша, верх, низ ковша) – из подсистемы "Параметры". Формат: #

18. Резерв.

19. Состояние клапана подачи газа (открыт – закрыт) – из подсистемы

"Параметры". Формат: #

20. давление перед фурмой – из подсистемы "Параметры". Формат: # . #

21. Мгновенный расход газа – из подсистемы "Параметры".

Формат: # # . #

22. Интегральный расход газа на продувку (сумма интграьных раходов по всем продувкам). Формат: # # . #

23. Средний мгновенный расход газа за всю продувку – расчетный параметр.

Формат: # # . #

24. Резерв.

25. Табельный номер оператора – с ВТА–2000 на постах управления УПСА.

Формат: # # # #

26. Номер бригады – с ВТА–2000 на постах управления УПСА. Формат: #

27. Признак начала продувки (по факту) - расчетный (1 – продувка, 0- нет продувки). Формат: #

28. Время начала текущей продувки – расчетный параметр, формируется при получении сигнала "клапан подачи газа открыт".

Формат: # # : # #

29. продолжительность текущей продувки – расчетный параметр.

Формат: # # : # #

30. Интегральный расход газа на текущей продувке – расчетный параметр.

Формат: # # . #

31. Средний мгновенный расхода газа за текущую продувку – расчетный параметр. Формат: # # . #

32. Признак разливки на МНЛЗ №1– поступает из подсистемы "Параметры".

Формат: #

33. Резерв.

34. Масса разлитого на МНЛЗ №1 металла – из подсистемы "Параметры".

Формат: # # # . #

35. Продолжительность разливки на МНЛЗ №1 – расчетный параметр.

Формат: # # : # #

36. Масса разлитого на МНЛЗ №2 металла – из подсистемы "Параметры".

Формат: # # # . #

37. Продолжительность разливки на МНЛЗ №2 – расчетный параметр. Формат:

# # : # #

38. Назначение плавки (МНЛЗ – 0, состав -1) – с ВТА-20

 
     
Бесплатные рефераты
 
Банк рефератов
 
Бесплатные рефераты скачать
| Интенсификация изучения иностранного языка с использованием компьютерных технологий | Лыжный спорт | САИД Ахмад | экономическая дипломатия | Влияние экономической войны на глобальную экономику | экономическая война | экономическая война и дипломатия | Экономический шпионаж | АК Моор рефераты | АК Моор реферат | ноосфера ба забони точики | чесменское сражение | Закон всемирного тяготения | рефераты темы | иохан себастиян бах маълумот | Тарых | шерхо дар борат биология | скачать еротик китоб | Семетей | Караш | Influence of English in mass culture дипломная | Количественные отношения в английском языках | 6466 | чистонхои химия | Гунны | Чистон | Кус | кмс купить диплом о language:RU | купить диплом ргсу цена language:RU | куплю копии дипломов для сро language:RU
 
Рефераты Онлайн
 
Скачать реферат
 
 
 
 
  Все права защищены. Бесплатные рефераты и сочинения. Коллекция бесплатных рефератов! Коллекция рефератов!