Эту работу 1,5 недели делали Митюшкин Алексей и Грачев Максин
Чтобы вы так не мучились берите как есть может поможет
Экзамен сдавался в ЦО №1828 «Сабурово» Толмачевой Ольге Зиновьевне
БИЛЕТ №1
ВОПРОС 1.
Уровни организации живой материи
Молекулярный. Любая живая система, как бы сложно она ни была организована, состоит из биологических макромолекул: нуклеиновых кислот, белков, полисахаридов, а также других важных органических веществ. С этого уровня начинаются разнообразные процессы жизнедеятельности организма: обмен веществ и превращение энергии, передача наследственной информации и др.
Клеточный. Клетка — структурная и функциональная единица, а также единица развития всех живых организмов, обитающих на Земле. На клеточном уровне сопрягаются передача информации и превращение веществ и энергии.
Организменный. Элементарной единицей организменного уровня служит особь, которая рассматривается в развитии — от момента зарождения до прекращения существования — как живая система. На этом уровне возникают системы органов, специализированных для выполнения различных функций.
Популяционно-видовой. Совокупность организмов одного и того же вида, объединенная общим местом обитания, в которой создается популяция — надорганизменная система. В этой системе осуществляются элементарные эволюционные преобразования — процесс микроэволгоции.
Биогеоценотический. Биогеоценоз — совокупность организмов разных видов 'и различной сложности организации с факторами среды их обитания. В процессе совместного исторического развития организмов разных систематических групп образуются динамичные, устойчивые сообщества.
Биосферный. Биосфера — совокупность всех биогеоценозов, система, охватывающая все явления жизни на нашей планете. На этом уровне происходит круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов.
Основные положения клеточной теории
Создание клеточной теории
Несмотря на чрезвычайно важные открытия XVII-XVIII вв., вопрос о том,
входят ли клетки в состав всех частей растений, а также построены ли из них
не только растительные, но и животные организмы, оставался открытым. Лишь в
1838-1839 гг. вопрос этот окончательно решили немецкие ученые ботаник
Матиас Шлейден и физиолог Теодор Шванн. Они создали так называемую
клеточную теорию. Сущность ее заключалась в окончательном признании того
факта, что все организмы, как растительные, так и животные, начиная с
низших и кончая самыми высокоорганизованными, состоят из простейших
элементов — клеток.
М. Шлейден и Т. Шванн ошибочно считали, что клетки в организме возникают
путем новообразования из первичного неклеточного вещества. Это
представление было опровергнуто выдающимся немецким ученым Рудольфом
Вирховом. Он сформулировал (в 1859 г.) одно из важнейших положений
клеточной теории: «Всякая клетка происходит из другой клетки... Там, где
возникает клетка, ей должна предшествовать клетка, подобно тому, как
животное происходит только от животного, растение — только от растения».
Основные положения клеточной теории:
1. Все организмы состоят из одинаковых частей — клеток; они образуются и растут по одним и тем же законам.
2. Общий принцип развития для элементарных частей организма — образование клеток.
3. Каждая клетка в определенных границах есть индивидуум, некое самостоятельное целое. Но эти индивидуумы действуют совместно, так, что возникает гармоничное целое ткань. Все ткани состоят из клеток.
4. Процессы, происходящие в клетках растений, сводятся к следующим: возникновение новых клеток :увеличение размеров клеток : изменение клеточного содержимого и утолщение клеточной стенки.
Благодаря созданию клеточной теории стало понятно, что клетка — это важнейшая составляющая часть всех живых организмов. Из клеток состоят ткани и органы. Развитие всегда начинается с одной клетки, и поэтому можно сказать, что она представляет собой предшественник многоклеточного организма.
ВОПРОС 2.
Доказательства эволюции органического мира
Биологические науки накопили огромный материал, доказывающий единство происхождения и историческое развитие органического мира.
Сравнительная анатомия — наука о сравнительном строении живых организмов
— показывает общность строения и происхождения живых организмов. Так,
позвоночные имеют двустороннюю симметрию, общий план строения скелета
черепа, передних и задних конечностей, головного мозга и всех основных
систем (нервной, пищеварительной, кровеносной и др.). Единство
происхождения подтверждается строением гомологичных органов, наличием
рудиментов, атавизмов и переходных форм. Гомологичные органы сходны по
строению и происхождению независимо от выполняемой функции (кости
конечностей земноводных, пресмыкающихся, птиц и млекопитающих). Рудименты
(остаток) — недоразвитые органы, утратившие в ходе эволюции свое значение и
находящиеся в стадии исчезновения (колючки кактусов, чешуйки на корневище
папоротников — рудиментарные листья; у лошади — грифельные косточки; у
горных гусей — перепонки на лапах и др.). Атавизм — возврат к признакам
предков (у человека наличие хвоста, волосатость). Переходные формы —
занимающие промежуточное положение между крупными систематическими группами
(низшие млекопитающие утконос и ехидна, подобно пресмыкающимся, откладывают
яйца и имеют клоаку)
Доказательством эволюции органического мира служат аналогичные органы у представителей не родственных таксонов. Они различаются по строению и происхождению, но выполняют одинаковую функцию. Например, у некоторых комнатных растений функцию опоры выполняют присоски (у плюща это видоизмененные воздушные корни) и усики циссуса (это видоизмененные листья). К аналогичным органам относятся крыло птиц и бабочек, жабры раков и рыб, роющие конечности кротов и медведок. Аналогичные органы возникают у далеких в систематическом отношении организмов в результате конвергенции — схождения признаков вследствие приспособленности этих организмов к сходному образу жизни.
Эмбриология — наука, изучающая зародышевое развитие организмов, —
доказывает, что процесс образования половых клеток (гаметогенез) сходен у
всех многоклеточных: все они начинают развитие из одной клетки — зиготы. У
всех позвоночных зародыши схожи между собой на ран них стадиях развития.
Они имеют жаберные щели и одинаковые отделы тела (головной, туловищный,
хвостовой). По мере развития у зародышей появляются различия. Вначале они
приобретают черты, характеризующие их класс, затем отряд, род и на поздних
стадиях — вид. Все это говорит об общности их происхождения и
последовательности расхождения у них признаков.
Связь между индивидуальным и историческим развитием организмов Ф. Мюллер
(1864) и Э. Геккель (1866) выразили в биогенетическом законе, который
гласит: каждая особь в индивидуальном развитии (онтогенезе) повторяет
историческое развитие своего вида (филогенез). Позднее Алексей Николаевич
Северцов (1866—1936) уточнил и дополнил положения биогенетического закона.
Он доказал, что в процессе онтогенеза происходит выпадение отдельных этапов
исторического развития, повторение зародышевых стадий предков, а не
взрослых форм, возникновение изменений, мутаций, каких не было у предков.
Полезные мутации передаются по наследству (например, сокращение числа
позвонков у бесхвостых земноводных), вредные — ведут к гибели зародыша.
Таким образом, онтогенез не только повторяет филогенез, но и является
источником новых направлений филогенеза.
Палеонтология. Палеонтологический материал позволяет констатировать, что смена форм животных и растений осуществляется в порядке изменения предшествующей организации и преобразования ее в новую. Развитие хордовых, например, осуществлялось поэтапно. Вначале возникли низшие хордовые, затем последовательно во времени возникают рыбы, амфибии, рептилии. Рептилии, в свою очередь, дают начало млекопитающим и птицам. На заре своего эволюционного развития млекопитающие были представлены небольшим числом видов, в то время процветали рептилии. Позднее резко увеличивается число видов млекопитающих и птиц и исчезает большинство видов рептилий. Таким образом, палеонтологические данные указывают на смену форм животных и растений во времени.
БИЛЕТ №2
ВОПРОС 1.
Химический состав клетки
Сходство в строении и химическом составе у разных клеток свидетельствует о
единстве их происхождения. По содержанию элементы, входящие в состав
клетки, можно разделить на 3 группы:
1. Макроэлементы. Они составляют основную массу вещества клетки. На их долю приходится около 99% всей массы клетки. Особенно высока концентрация четырех элементов: кислорода, углерода, азота и водорода (98% всех макроэлементов). К макроэлементам относят также элементы, содержание которых в клетке исчисляется десятыми и сотыми долями процента. Это, например, такие элементы, как калий, магний, натрий, кальций, железо, сера, фосфор, хлор.
2. Микроэлементы. К ним относятся преимущественно ионы тяжелых металлов, входящие в состав ферментов, гормонов и других жизненно важных веществ. В организме эти элементы содержатся в очень небольших количествах: от 0,001 до 0,000001%; в числе таких элементов бор, кобальт, медь, молибден, цинк, ванадий, йод, бром и др.
3. Ультра микроэлементы. Концентрация их не превышает 0,000001%. К ним относятся уран, радий, золото, ртуть, бериллий, цезий, селен и другие редкие элементы.
Роль ряда ультра микроэлементов в организме еще не уточнена или даже неизвестна (мышьяк). При недостатке этих элементов могут нарушаться обменные процессы. Молекулярный состав клетки сложен и разнороден.
Неорганические соединения — вода и минеральные вещества — встречаются также в неживой природе; другие — органические соединения (углеводы, жиры, белки, нуклеиновые кислоты и др.) — характерны только для живых организмов.
Минеральные соли.
Большая часть неорганических веществ в клетке находится в виде солей —
либо диссоциированных на ионы, либо в твердом состоянии. Из катионов важны
К+ , Na+ , Са2-, Mg2+, а из анионов H2PO4-, Cl-, НС03-.
Концентрация различных ионов неодинакова в различных частях клетки и
особенно в клетке и окружающей среде. Так, концентрация ионов натрия всегда
во много раз выше во внеклеточной среде, чем в клетке, а ионы калия и
магния концентрируются в значительно большем количестве внутри клетки. От
концентрации солей внутри клетки зависят буферные свойства цитоплазмы, т.е.
способность клетки сохранять определенную концентрацию водородных ионов.
Роль воды в живой системе — клетке
За очень немногими исключениями (кость и эмаль зуба), вода является
преобладающим компонентом клетки. Вода необходима для метаболизма (обмена)
клетки, так как физиологические процессы происходят исключительно в водной
среде. Молекулы воды участвуют во многих ферментативных реакциях клетки.
Например, расщепление белков, углеводов и других веществ происходит в
результате катализируемого ферментами взаимодействия их с водой. Такие
реакции называются реакциями гидролиза.
Вода служит источником ионов водорода при фотосинтезе. Вода в клетке
находится в двух формах: свободной и связанной. Свободная вода составляет
95% всей воды в клетке и используется главным образом как растворитель и
как дисперсионная среда коллоидной системы протоплазмы. Связанная вода, на
долю которой приходится всего 4% всей воды клетки, непрочно соединена с
белками водородными связями. Из-за асимметричного распределения зарядов
молекула воды действует как диполь и потому может быть связана как
положительно, так и отрицательно заряженными группами белка. Дипольным
свойством молекулы воды объясняется способность ее ориентироваться в
электрическом поле, присоединяться к различным молекулам и участкам
молекул, несущим заряд. В результате этого образуются гидраты. Благодаря
своей высокой теплоемкости вода поглощает тепло и тем самым предотвращает
резкие колебания температуры в клетке. Содержание воды в организме зависит
от его возраста и метаболической активности. Оно наиболее высоко в эмбрионе
(90% ) и с возрастом постепенно уменьшается. Содержание воды в различных
тканях варьируется в зависимости от их метаболической активности. Например,
в сером веществе мозга воды до 80%, а в костях до 20%. Вода — основное
средство перемещения веществ в организме (ток крови, лимфы, восходящие и
нисходящие токи растворов по сосудам у растений) и в клетке. Вода служит
«смазочным» материалом, необходимым везде, где есть трущиеся поверхности
(например, в суставах). Вода имеет максимальную плотность при 4°С. Поэтому
лед, обладающий меньшей плотностью, легче воды и плавает на ее поверхности,
что защищает водоем от промерзания. Это свойство воды спасает жизнь многим
водным организмам.
ВОПРОС 2.
Критерии вида.
Видом считают совокупность особей, обладающих наследственным сходством
морфологических, физиологических и биохимических особенностей, свободно
скрещивающихся и дающих плодовитое потомство, приспособленных к
определенным условиям жизни и занимающих в природе определенную область —
ареал...
Конкретные положения — критерии позволяют отличить один вид от другого.
В основе морфологического критерия лежит сходство внешнего и внутреннего строения особей одного вида. Но особи в пределах вида иногда настолько изменчивы, что только по морфологическому критерию не всегда удается определить вид. Вместе с тем существуют виды, морфологически сходные, однако особи таких видов не скрещиваются между собой. Это — виды-двойники, которые исследователи открывают во всех систематических группах. Например, у черных крыс два вида-двойника —с 38 и 42 хромосомами. Открыли 6 видов- двойников малярийного комара, раньше считавшихся одним видом. Таким образом, одни морфологические признаки не обеспечивают выделения вида.
Для определения вида важное значение имеет генетический критерий',
имеется в виду набор хромосом, свойственный конкретному виду. Виды обычно
отличаются по числу хромосом или по особенностям их строения, поэтому
генетический критерий достаточно надежен. Однако и он не абсолютен.
Встречаются случаи, когда виды имеют практически неразличимые по строению
хромосомы. Кроме того, в пределах вида могут быть широко распространены
хромосомные мутации, что затрудняет его точное определение.
В основе физиологического критерия лежит сходство всех процессов
жизнедеятельности особей одного вида, прежде всего сходство размножения.
Представители разных видов, как правило, не скрещиваются, или потомство их
бесплодно. Не скрещиваемость видов объясняется различиями в строении
полового аппарата, сроках размножения и др. Однако в природе есть виды,
которые скрещиваются и дают плодовитое потомство (некоторые виды канареек,
зябликов, тополей, ив). Следовательно, физиологический критерий
недостаточен для определения видовой принадлежности особей.
Географический критерий — это определенный ареал, занимаемый видом в
природе. Он может быть большим или меньшим, прерывистым или сплошным. Есть
виды, распространенные повсеместно и нередко в связи с деятельностью
человека (многие виды сорных растений, насекомых-вредителей).
Географический критерий также не может быть решающим.
Основа экологического критерия — совокупность факторов внешней среды, в которой существует вид. Например, лютик едкий распространен на лугах и полях; в более сырых местах растет лютик ползучий; по берегам рек и прудов, на болотистых местах встречается лютик жгучий (прыщинец).
В настоящее время ученые разработали и другие критерии вида, которые позволяют точнее определить место вида в системе органического мира (по различию белков и нуклеиновых кислот).
Для установления видовой принадлежности недостаточно использовать какой-
нибудь один критерий; только совокупность их, взаимное подтверждение
правильно характеризует вид.
Популяция — единица вида и эволюции
Каждый вид характеризуется определенным ареалом — территорией обитания.
Внутри ареала могут быть самые разнообразные преграды (реки, горы, пустыни
и т.д.), которые препятствуют свободному скрещиванию между группами особей
одного и того же вида, так что оно осуществляется значительно реже.
Совокупность свободно скрещивающихся особей одного вида, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида, называют популяцией.
Таким образом, вид состоит из популяций. Каждая популяция занимает
определенную территорию (часть ареала вида). В течение многих поколений, за
продолжительное время популяция успевает накопить те аллели, которые
обеспечивают высокую приспособленность особей к условиям данной местности.
Так как из-за разницы условий естественному отбору подвергаются различные
комплексы генов (аллелей), популяции одного вида генетически неоднородны.
Они отличаются друг от друга частотой встречаемости тех или иных аллелей.
По этой причине в разных популяциях одного вида один и тот же признак может
проявляться по-разному. Например, северные популяции млекопитающих обладают
более густым мехом, а южные чаще темно-окрашенные. В зонах ареала, где
граничат разные популяции одного вида, встречаются как особи контактирующих
популяций, так и гибриды. Таким образом осуществляется обмен генами между
популяциями и реализуются связи, обеспечивающие генетическое единство вида.
Обмен генами между популяциями способствует большей изменчивости
организмов, что обеспечивает более высокую приспособленность вида в целом к
условиям обитания. Иногда изолированная популяция в силу различных
случайных причин (наводнение, пожар, массовое заболевание) и недостаточной
численности может полностью погибнуть.
Таким образом, каждая популяция эволюционирует независимо от других
популяций того же вида, обладает собственной эволюционной судьбой.
Популяция — наименьшее подразделение вида, изменяющееся во времени. Вот
почему популяция представляет собой элементарную единицу эволюции.
Начальный этап эволюционных преобразований популяции — от возникновения
наследственных изменений до формирования адаптаций и возникновения новых
видов — называют микро эволюцией
БИЛЕТ №3
ВОПРОС 1.
Органические соединения. Белки.
Белки — обязательная составная часть всех клеток. В жизни всех организмов
белки имеют первостепенное значение. В состав белка входят углерод,
водород, азот, некоторые белки содержат еще и серу. Роль мономеров в белках
играют аминокислоты. У каждой аминокислоты имеется карбоксильная группа (-
СООН) и аминогруппа (-NH2). Наличие в одной молекуле кислотной и основной
групп обусловливает их высокую реактивность. Между соединившимися
аминокислотами возникает связь называемая пептидной, а образовавшееся
соединение нескольких аминокислот называют пептидом. Соединение из большого
числа аминокислот называют полипептидом. В белках встречаются 20
аминокислот, отличающихся друг от друга своим строением. Разные белки
образуются в результате соединения аминокислот в разной последовательности.
Огромное разнообразие живых существ в значительной степени определяется
различиями в составе имеющихся у них белков.
В строении молекул белков различают четыре уровня организации:
Первичная структура — полипептидная цепь из аминокислот, связанных в определенной последовательности ковалентными (прочными) пептидными связями.
Вторичная структура — полипептидная цепь, закрученная в виде спирали. В ней между соседними витками возникают мало прочные водородные связи. В комплексе они обеспечивают довольно прочную структуру.
Третичная структура представляет собой причудливую, но для каждого белка
специфическую конфигурацию — глобулу. Она удерживается мало прочными
гидрофобными связями или силами сцепления между неполярными радикалами,
которые встречаются у многих аминокислот. Благодаря их многочисленности они
обеспечивают достаточную устойчивость белковой макромолекулы и ее
подвижность. Третичная структура белков поддерживается также ковалентными S-
S-связями возникающими между удаленными друг от друга радикалами
серосодержащей аминокислоты — цистеина.
Благодаря соединению нескольких молекул белков между собой образуется четвертичная структура. Если пептидные цепи уложены в виде клубка, то такие белки называются глобулярными. Если полипептидные цепи уложены в пучки нитей, они носят название фибриллярных белков.
Нарушение природной структуры белка называют денатурацией. Она может
возникать под действием высокой температуры, химических веществ, радиации и
т.д. Денатурация может быть обратимой (частичное нарушение четвертичной
структуры) и необратимой (разрушение всех структур).
ФУНКЦИИ:
Биологические функции белков в клетке чрезвычайно многообразны. Они в
значительной мере обусловлены сложностью и разнообразием форм и состава
самих белков.
1 Строительная функция- построены оргонойды.
2 Каталитическая- белки ферменты.( амилаза ,превращает крахмал в глюкозу )
3 Энергетическая- белки могут служить источником энергии для клетки. При
недостатке углеводов
или жиров окисляются молекулы аминокислот. Освободившаяся при этом энергия
используется на поддержание процессов жизнедеятельности организма.
4 Транспортная – гемоглобин (переносит кислород )
5 Сигнальная –рецепторные белки участвуют в обрзовании нервного импульса
6 Защитная – антитела белки
7 Яды ,гормоны- это тоже белки (инсулин, регулирует потребление глюкозы)
ВОПРОС 2.
Первые системы, созданные ботаниками и зоологами XVI-XVIII вв. были
искусственными, так как растения и животные группировались по признакам,
избранным произвольно (например, по форме плода, окраске венчика и т.д.).
Такие системы вносили некоторую упорядоченность, но не отражали родственных
связей между организмами. Вершиной искусственной систематики явилась
система, разработанная шведским натуралистом Карлом Линнеем (1707-1778 Его
основные работы посвящены проблемам систематики растений. В предложенной К.
Линнеем системе классификации было принято деление растений и животных на
несколько соподчиненных групп: классы, отряды, роды, виды и разновидности.
Им была узаконена бинарная, или двойная, номенклатура видовых названий.
Согласно бинарной номенклатуре, наименование вида состоит из родового
названия и видового эпитета: пшеница мягкая, пшеница твердая и т.д.
Недостатки системы Линнея состояли в том, что при классификации он учитывал
лишь 1-2 признака (у растений число тычинок, у животных строение
дыхательной и кровеносной систем), не отражающих подлинного родства,
поэтому далекие роды оказывались в одном классе, а близкие — в разных.
Работы К. Линнея сыграли важную роль в развитии биологии и способствовали
формированию исторического взгляда на природу. Действительно, применение
бинарной номенклатуры способствует формированию представлений о родстве
форм в пределах рода, а соподчиненность таксономических единиц в конце
концов приводят к мысли об общности происхождения органических форм.
Французский биолог Жан-Батист Ламарк в 1809 году выдвинул гипотезу о
механизме эволюции, в основе которой лежали две предпосылки: упражнение и
не упражнение частей организма и наследование приобретенных признаков.
Изменения среды, по его мнению, могут вести к изменению форм поведения, что
вызовет необходимость использовать некоторые органы или структуры по-новому
или более интенсивно (или, наоборот, перестать ими пользоваться). В случае
интенсивного использования эффективность и (или) величина органа будет
возрастать, а при не использовании может наступить дегенерация и атрофия.
Эти признаки, приобретенные индивидуумом в течение его жизни, согласно
Ламарку, наследуются, то есть передаются потомкам. С точки зрения
ламаркизма, длинная шея и ноги жирафа — результат того, что многие
поколения его некогда коротконогих и короткошеих предков питались листьями
деревьев, за которыми им приходилось тянуться все выше и выше.
Незначительное удлинение шеи и ног, происходившее в каждом поколений,
передавалось следующему поколению, пока эти части тела не достигли своей
нынешней длины. Хотя теория Ламарка способствовала подготовке почвы для
принятия эволюционной концепции, его взгляды на механизм изменения никогда
не получали широкого признания. Однако Ламарк был прав, подчеркивая роль
условий жизни в возникновении фенотипических изменений у данной особи.
Например, занятия физкультурой увеличивают объем мышц, но хотя эти
приобретенные признаки затрагивают фенотип, они не являются генетическими
и, не оказывая влияние на генотип, не могут передаваться потомству.
Разрабатывая систематику животных, Ламарк совершенно правильно подметил
основное направление эволюционного процесса — постепенное усложнение
организации от низших форм к высшим (градация). Но причиной градации Ламарк
считал заложенное всевышним стремление организмов к совершенствованию, что
в корне неверно. Выдающаяся заслуга Ламарка заключается в создании первого
эволюционного учения. Он отверг идею постоянства видов, противопоставив ей
представление об изменяемости видов. Его учение утверждало существование
эволюции как исторического развития от простого к сложному. Впервые был
поставлен вопрос о факторах эволюции. Ламарк совершенно правильно считал,
что условия среды оказывают важное влияние на ход эволюционного процесса.
Он был одним из первых, кто верно оценил значение времени в процессе
эволюции и отметил чрезвычайную длительность развития жизни на Земле.
Однако Ламарк допустил серьезные ошибки прежде всего в понимании факторов
эволюционного процесса, выводя их из якобы присущего всему живому
стремления к совершенству. Он также неверно понимал причины возникновения
приспособленности, прямо связывал их с влиянием условий окружающей среды.
Это породило очень распространенные, но научно совершенно не обоснованные
представления о наследовании признаков, приобретаемых организмами под
непосредственным воздействием среды.
Основные положения эволюционного учения Ч. Дарвина
Выделяют такие факторы эволюционного процесса: наследственная изменчивость, естественный отбор, дрейф генов, изоляция, миграция особей и др.
Основные принципы эволюционного учения Ч. Дарвина сводятся к следующим
положениям:
1. Каждый вид способен к неограниченному размножению.
2. Ограниченность жизненных ресурсов препятствует реализации потенциальной возможности беспредельного размножения. Большая часть особей гибнет в борьбе за существование и не оставляет потомства.
3. Гибель или успех в борьбе за существование носят избирательный характер.
Организмы одного вида отличаются друг от друга совокупностью признаков. В природе преимущественно выживают и оставляют потомство те особи, которые имеют наиболее удачное для данных условий сочетание признаков, то есть лучше приспособлены. Избирательное выживание размножение наиболее приспособленных организмов Ч. Дарвин назвал естественным отбором.
4. Под действием естественного отбора находящиеся в разных условиях группы особей одного вида из поколения в поколение накапливают различные приспособительные признаки. Они приобретают настолько существенные отличия, что превращаются в новые виды (принцип расхождения признаков).
Эволюционная теории Дарвина совершила переворот в биологической науке. На
основе изучения гигантского материала, собранного во время путешествия на
корабле «Бигл», Дарвину удается вскрыть причины изменения видов. Изучив
геологию Южной Америки, Дарвин убедился в несостоятельности теории
катастроф и подчеркнул значение естественных факторов в истории земной коры
и ее животного и растительного населения. Благодаря палеонтологическим
находкам он отмечает сходство между вымершими и современными животными
Южной Америки. Он находит так называемые переходные формы, которые
совмещают признаки нескольких современных отрядов. Таким образом был
установлен факт преемственности между современными и вымершими формами. На
Галапагосских островах он нашел нигде более не встречающиеся виды ящериц,
черепах, птиц. Они близки к южноамериканским. Галапагосские острова имеют
вулканическое происхождение, и поэтому Ч. Дарвин предположил, что виды
попали на них с материка и постепенно изменились. В Австралии его
заинтересовали сумчатые и яйцекладущие, которые вымерли в других местах
земного шара. Австралия как материк обособилась, когда еще не возникли
высшие млекопитающие. Сумчатые и яйцекладущие развивались здесь независимо
от эволюции млекопитающих на других материках. Так постепенно крепло
убеждение в изменяемости видов и происхождении одних от других.
Однако в естественных условиях численность взрослых особей каждого вида длительно сохраняется примерно на одном уровне, следовательно, большинство появляющихся на свет особей гибнет в борьбе за существование — внутривидовой, межвидовой и в борьбе с неблагоприятными абиотическими факторами (условиями неживой природы). Сопоставив два вывода — о перепроизводстве потомства и о всеобщей изменчивости, Дарвин пришел к главному заключению: больше шансов выжить и достичь взрослого состояния имеют особи, отличающиеся от множества других какими-либо полезными свойствами. Так был открыт принцип естественного отбора как главной движущей силы эволюции.
Хотя эволюция протекает как единый процесс, обычно выделяют два уровня — микроэволюционный и макроэволюционный. Процессы, протекающие на популяционном и внутривидовом уровне, называют микро эволюцией, на уровне выше видового — макро эволюцией.
БИЛЕТ№4
ВОПРОС 1.
Биополимеры- белки. Полимеры- высокомалекулярные соединения состоящие из
молекул мономеров. Мономеры- низкомалеккулярные соединения. Регулярные
полимеры- молекула состоит из мономеров одного вида. Нерегулярные полимеры-
молекула состоит из мономеров нескольких видов. Белки- это нерегулярные
полимеры, мономерами которых являются аминокислоты. Аминокислот – 20 видов
из них 8 незаменимые, не синтезируются в организме человека, а поступают в
него вместе с пищей.
Нуклеиновые кислоты . Различают два типа нуклеиновых кислот —
дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Эти биополимеры
состоят из мономеров, называемых нуклеотидами. Мономеры-нуклеотиды ДНК и
РНК сходны в основных чертах строения. Каждый нуклеотид состоит из трех
компонентов, соединенных прочными химическими связями.
Нуклеотиды, входящие в состав РНК, содержат пяти-углеродный сахар — рибозу, одно из четырех органических соединений, которые называют азотистыми основаниями: аденин, гуанин, цитозин, урацил (А, Г, Ц, У) — и остаток фосфорной кислоты.
Нуклеотиды, входящие в состав ДНК, содержат пяти-углеродный сахар — дезоксирибозу, одно из четырех азотистых оснований: аденин, гуанин, цитозин, тимин (А, Г, Ц, Т)—и остаток фосфорной кислоты.
В составе нуклеотидов к молекуле рибозы (или дезокси-рибозы) с одной стороны присоединено азотистое основание, а с другой — остаток фосфорной кислоты. Нуклеотиды соединяются между собой в длинные цепи. Остов такой цепи образуют регулярно чередующиеся остатки сахара и органических фосфатов, а боковые группы этой цепи — четыре типа нерегулярно чередующихся азотистых оснований.
Молекула ДНК представляет собой структуру, состоящую из двух нитей,
которые по всей длине соединены друг с другом водородными связями. Такую
структуру, свойственную только молекулам ДНК, называют двойной спиралью.
Особенностью структуры ДНК является то, что против азотистого основания А в
одной цепи лежит азотистое основание Т в другой цепи, а против азотистого
основания Г всегда расположено азотистое основаниеЦ.
А (аденин) — Т (тимин) Т (тимин) — А (аденин) Г (гуанин) — Ц (цитозин)
Ц (цитозин) -Г (гуанин)
Эти пары оснований называют комплиментарными основаниями (дополняющими друг друга). Нити ДНК, в которых основания расположены комплементарно друг другу» называют комплиментарными нитями.
Расположение четырех типов нуклеотидов в цепях ДНК несет важную информацию. Порядок расположения нуклеотидов в молекулах ДНК определяет порядок расположения аминокислот в линейных молекулах белков, т.е. их первичную структуру. Набор белков (ферментов, гормонов и др.) определяет свойства клетки и организма. Молекулы ДНК хранят сведения об этих свойствах и передают их в поколения потомков. Другими словами, ДНК является носителем наследственной информации. Молекулы ДНК в основном находятся в ядрах клеток. Однако небольшое их количество содержится в митохондриях и хлоропластах.
Основные виды РНК. Наследственная информация, хранящаяся в молекулах ДНК, реализуется через молекулы белков. Информация о строении белка считывается с ДНК и передается особыми молекулами РНК, которые называются информационными (и-РНК). Информационная РНК переносится в цитоплазму, где с помощью специальных органоидов — рибосом — идет синтез белка. Именно информационная РНК, которая строится комплементарно одной из нитей ДНК, определяет порядок расположения аминокислот в белковых молекулах. В синтезе белка принимает участие другой вид РНК — транспортная (т-РНК), которая подносит аминокислоты к рибосомам. В состав рибосом входит третий вид РНК, так называемая рибосомная РНК (р-РНК), которая определяет структуру рибосом. Молекула РНК в отличие от молекулы ДНК представлена одной нитью; вместо дезоксирибозы — рибоза и вместо тимина — урацил. Значение РНК определяется тем, что они обеспечивают синтез в клетке специфических для нее белков.
Удвоение ДНК. Перед каждым клеточным делением при абсолютно точном
соблюдении нуклеотидной последовательности происходит самоудвоение
(редупликация) молекулы ДНК. Редупликация начинается с того, что двойная
спираль ДНК временно раскручивается. Это происходит под действием фермента
ДНК-полимеразы в среде, в которой содержатся свободные нуклеотиды. Каждая
одинарная цепь по принципу химического сродства (А-Т, Г-Ц) притягивает к
своим нуклеотидным остаткам и закрепляет водородными связями свободные
нуклеотиды, находящиеся в клетке. Таким образом, каждая полинуклеотидная
цепь выполняет роль матрицы для новой комплиментарной цепи. В результате
получаются две молекулы ДНК, у каждой из них одна половина происходит от
родительской молекулы, а другая является вновь синтезированной, т.е. две
новые молекулы ДНК представляют собой точную копию исходной молекулы.
ВОПРОС 2.
Несоответствие между возможностью видов к беспредельному размножению и
ограниченностью ресурсов – главная причина борьбы за существование.
Виды борьбы за существование.
Внутривидовая борьба. Ч. Дарвин указывал, что борьба за жизнь особенно
упорна между организмами в пределах одного вида, и обосновывал свое
утверждение тем, что они обладают сходными признаками и испытывают
одинаковые потребности. Широкое распространение в природе конкуренции
организмов за ограниченные ресурсы — типичный способ естественного отбора,
благоприятствующего победителям в конкуренции. Кроме того, естественный
отбор может осуществляться и без непосредственной конкуренции, например
вследствие действия неблагоприятных факторов среды. Способность переносить
низкие и высокие температуры, воздействие других параметров среды также
приводит к выживанию более приспособленных или к их более успешному
размножению. Иногда косвенные формы борьбы за существование дополняются
прямой борьбой. Примером могут служить турнирные бои самцов за право
обладать гаремом. Взаимоотношения особей в пределах вида не ограничиваются
борьбой и конкуренцией, существует также и взаимопомощь.
Межвидовая борьба. Под межвидовой борьбой следует понимать конкуренцию особей разных видов. Особой остроты межвидовая борьба достигает в тех случаях, когда противоборствуют виды, обитающие в сходных экологических условиях и использующие одинаковые источники питания. В результате межвидовой конкуренции происходит либо вытеснение одного из противоборствующих