Ионно-сорбционная откачка .
При ионно-сорбционной откачке используют два способа поглощения газа
: внедрение ионов в объем твердого тела под действием электрического поля и
химическое взаимодействие откачиваемых газов с тонкими пленками активных
металлов .
Высокоэнергетические ионы или нейтральные частицы , бомбардируя
твердое тело , проникают в него на глубину , достаточную для их растворения
.Этот способ удаления газа является разновидностью ионной откачки . На
рис. 1 показано равновесное распределение концентрации при ионной откачке в
объеме неограниченной пластины толщиной , рассоложенной внутри
вакуумной камеры .
Максимальную удельную геометрическую быстроту ионной откачки можно
рассчитать по формуле (1) , где – коэффициент внедрения ионов ;
= – удельная частота бомбардировки ; – плотность ионного
тока ; – элементарный электрический заряд ; – молекулярная
концентрация газа .
Коэффициент внедрения учитывает частичное отражение и рассеивание ,
возникающее при ионной бомбардировке . Коэффициент внедрения сильно зависит
от температуры тела и слабо – от плотности тока и ускоряющего напряжения .
Значение наблюдается для Ti , Zn при 300 … 500 К .
Максимальное значение концентрации растворенного газа при ионной
откачке можно определить из условия равновесия газовых потоков : (2)
( D – коэффициент диффузии газа в твердом теле ) . Градиенты концентраций
определяются следующими отношениями : здесь – глубина внедрения
ионов ( – ускоряющее напряжение ) ; и – максимальная и
начальная концентрация плотности поглощенного газа .
Так как величина мала по сравнению с ( константа
даже для легких газов не превышает 1.0 нм./кВ ) , то величиной в
уравнение (2) можно пренебречь : .
Отсюда следует выражение для максимальной концентрации растворенного газа : .
Если величина , рассчитанная по приведенной формуле превышает максимально возможную в данных условиях растворимость газа в металле , то поглощенный газ начинает объединяться в газовые пузырьки , вызывая разрыв металла . Это явление получило название блистер-эффекта .
В нержавеющей стали водородный блистер-эффект наблюдается при поглощение м3*Па/см2 , что соответствует при быстроте откачки м3/(с*см2) и давление Па приблизительно 300 часов непрерывной работы .
По известному значению можно подсчитать общее количество газа , которое будет поглощено единицей поверхности .
Во время ионной бомбардировки наблюдается распыление материала ,
сопровождающееся нанесением тонких пленок на электроды и корпус насоса .
Сорбционная активность этих пленок используется для хемосорбционной откачки
.
Распыление активного материала может осуществляться независимо от
процесса откачки , например с помощью регулирования температуры нагревателя
. Расход активного материала в таких насосах осуществляется независимо от
потока откачиваемого газа .
Более экономно расходуется активный металл в насосах с саморегулированием распыления . В этих насосах распыление производится ионами откачиваемого газа , бомбардирующими катод , изготовленный из активного материала . Распыляемый материал осаждается на корпус и анод , где осуществляется хемосорбционная откачка .
Рис1. Установившееся распределение концентрации в неограниченной пластине , бомбардируемой высокоэнергетическими ионами .
Оглавление
Ионно-сорбционная откачка . 1
Рис1. Установившееся распределение концентрации в неограниченной пластине ,
бомбардируемой высокоэнергетическими ионами . 3
Оглавление 4
Используемая литература : 5
Используемая литература :
Л.Н. Розанов . Вакуумная техника .
Москва « Высшая школа » 1990 .
{ Slava KPSS }
-----------------------
2R
S0
Smax
S
X
h