Чтение RSS
Рефераты:
 
Рефераты бесплатно
 

 

 

 

 

 

     
 
Билеты по физике
Билет № 1
Механическое движение тела- изменение его положения в пространстве относительно других тел. Основная задача механики- определять положение тела в любой момент времени. Для этого надо найти математическое описание движения и установить связь между величинами, характеризующими движение. Движение тела, при котором все его точки движутся одинаково (то есть тело не вращается и не поворачивается), называется поступательным.. S=?t
Относительность механического движения.
Каждое тело в любой момент времени занимает определенное положение в пространстве относительно других тел. Если движение происходит относительно двух систем координат (неподвижной и подвижной), то скорость тела относительно неподвижной системы координат равна геометрической сумме скорости тела относительно подвижной системы координат и скорости подвижной системы координат относительно неподвижной
Материальная точка.
Материальная точка- тело, размерами которого в данных условиях движения можно пренебречь.
Система отсчета.
Положение тела можно задать только относительно какого-нибудь другого тела, которое называют телом отсчета. Его можно выбирать произвольно. Когда тело отсчета уже выбрано, через какую-нибудь его точку проводят оси координат, и положение любого объекта в пространстве описывают ее координатами. Система отсчета: тело отсчета, система координат, связанная с ним, и прибор для измерения времени.
Траектория.
Траектория- линия, описываемая телом при движении.
Вектор перемещения.
Перемещение- направленный отрезок прямой, соединяющий начальное положение тела с его последующим. Проекции вектора перемещения на оси координат равны изменениям координат тела.
Путь.
Путь- скалярная величина, равная расстоянию от начального пункта движения до конечного, измеренному вдоль траектории.
Закон сложения скоростей скорость лодки V относительно неподвижной системы координат мы получим, разделив перемещение S на время t: v=s/t=s1/t+s2/t или v=v1+v2, где V2=S2/t – скорость плота относительно берега(скорость берега) формула сложения скоростей. Скорость тела относительно неподвижной системы координат равна геометрической сумме скорости тела относительно подвижной системы координат и скорости подвижной системы относительно неподвижной. Сложение скоростей.
Скорость- векторная величина, и над ней можно производить действия сложения. Если движение происходит относительно двух систем координат (неподвижной и подвижной), то скорость тела относительно неподвижной системы координат равна геометрической сумме скорости тела относительно подвижной системы координат и скорости подвижной системы координат относительно неподвижной. Ускорение- это скорость изменения скорости. Оно равно отношению изменения скорости тела к промежутку времени, за которое это перемещение произошло.
Прямолинейное равномерное и равнопеременное движение.
Равномерное прямолинейное движение - движение, при котором тело (точка) за любые равные промежутки времени совершает одинаковое перемещение. При таком движении не изменяется ни модуль ни направление скорости. ?X =(x-x0)/t; x=x0+?Xt. Равнопеременное движение- движение с равномерно изменяющейся скоростью, то есть с постоянным по модулю ускорением. Ускорение- векторная величина, равная отношению изменения скорости тела к промежутку времени, за который это перемещение произошло. Движение с возрастающей по модулю скоростью называют равноускоренным, с убывающей- равнозамедленным. a=(?-?0)/t; ?=?0+at.
Зависимости скорости, координат и пути от времени.
Равномерное прямолинейное движение: ?=(x-x0)/t; x=x0+?t; S=x-x0. Прямолинейное равнопеременное движение: ?=?0+at; x=x0+?0t+at2/2; S=(?2-?02)/2a, S=?0t+at2/2.
2Магнитное поле.
Магнитное поле- неразрывно связанная с током материальная среда, через которую осуществляется взаимодействие на расстоянии проводников с током. Магнитное поле обладает энергией, которая непрерывно распределена в пространстве. Магнитное поле создается либо движущимися электрическими зарядами, либо переменным электрическим полем и действует только на движущиеся заряды. Магнитные поля токов одинакового направления усиливают друг друга, а токов противоположного направления ослабляют друг друга.
Магнитные свойства вещества.
Вещества бывают парамагнитными, ферромагнитные и диамагнитные. Парамагнитные- вещества, магнитная проницаемость которых немного больше, чем у вакуума. Попадая в магнитное поле, они немного усиливают его у конца стержня за счет своего магнетизма, и ослабляют его рядом со стержнем. Ферромагнитные- вещества, магнитная проницаемость которых во много раз больше, чем у вакуума. Попадая в магнитное поле, они намагничиваются и значительно усиливают его за счет своего магнетизма у полюсов. Диамагнитные- вещества, магнитная проницаемость которых меньше, чем у вакуума. Они ослабляют у концов магнитное поле, в которое попали. Магнитное поле внутри диамагнитного вещества меньше, чем снаружи.
Ферромагнетики.
Ферромагнетики- вещества, магнитная проницаемость которых во много раз больше, чем у вакуума. Их применяют для получения сильного магнитного поля. Попадая в магнитное поле, они намагничиваются и значительно усиливают его за счет своего магнетизма у полюсов. В их атомах есть электроны, которые, двигаясь по орбитам вокруг ядер, совершают вращение вокруг своей оси. Магнитные поля таких электронов очень сильные и так расположены в пространстве, что при наложении усиливают друг друга. Внешнее магнитное поле у полюсов ферромагнетиков велико, так как велико и внутреннее
Температура Кюри при температуре, большей некоторой определённой для данного ферромагнетика, ферромагнитные св-ва его исчезают. Эту температуру назыв. Температурой Кюри по имени открывшего это явление фран. Учёного. Если сильно нагреть намагниченный гвоздь, то он потеряет способность притягивать к себе железные предметы. Для железа-7530С, никель 3630С, кобальт 1000 0С. сущ-т ферромагнитные сплавы, у которых темп-а Кюри меньше 100 0C



Билет № 2

Зависимости скорости, координат и пути от времени.
Равномерное прямолинейное движение: ?=(x-x0)/t; x=x0+?t; S=x-x0. Прямолинейное равнопеременное движение: ?=?0+at; x=x0+?0t+at2/2; S=(?2-?02)/2a, S=?0t+at2/2. Неравномерное движение, при котором скорость тела за каждую единицу времени и вообще за любые равные промежутки времени изменяется одинаково – называется равноускоренным. Если в некоторый начальный момент времени скорость тела V0, а через промежуток времени t она оказывается равной V, то, для того чтобы узнать, на сколько скорость изменилась за единицу времени, нужно взять отношение изменения скорости V – V0 к промежутку времени t. Это отношение V – V0/t и есть быстрота изменения скорости. Её называют ускорением. Ускорение- это скорость изменения скорости. Так как ускорение равно произведению векторной величины V-V0 на скалярную величину 1/t, то ускорение величина векторная. Если скорость тела по модулю велико, это значит, что тело быстро набирает скорость (когда оно разгоняется) или быстро теряет скорость(при торможении). Зная начальную скорость V0 и его ускорение a, можно найти скорость тела V в любой момент времени. V=V0+at. Единица ускорения. Так как a=V-V0/t, то модуль ускорения равен единице, если равен единице модуль изменения скорости V-V0 и равен единице промежуток времени t. Поэтому за единицу ускорения в СИ принимается ускорение такого равноускоренного движения, при котором за 1 с скорость тела изменяется на 1 м/с. следовательно, в СИ ускорение выражается в метрах в секунду за секунду или в метрах на секунду в квадрате(м/с2). Vx=V0x+axl.. Vx2=2axSx.
2 Действие магнитного поля на рамку с током.
Магнитное поле оказывает ориентирующее действие на рамку с током. В качестве направления мы выбираем направление нормали рамки с током, свободно установленной в поле. Направление вектора В определяется правилом правого винта.
Индукция магнитного поля (магнитная индукция).
Магнитная индукция- вектор, величина его равна отношению силы F, приходящейся на единичный элемент тока (силовая характеристика поля в данной его точке). Она не зависит от вносимого в данную точку поля элемента тока. B=F/I2?l. 1 Тесла- такая магнитная индукция, которая возникает при действии на единичный элемент тока силой в 1 Ньютон. Направление магнитной индукции совпадает по направлению с силой, действующий на проводник.
Опыты Фарадея.
Электромагнитная индукция- явление возникновения в замкнутом проводнике электрического тока, обусловленного изменением магнитного поля. Явление электромагнитной индукции состоит в появлении ЭДС в контуре при изменении:1)магнитного потока через площадку, ограниченную контуром; 2)площади замкнутого контура, находящимся в магнитном поле; 3)угла наклона плоскости контура к нормали.
Явление электромагнитной индукции.
Электромагнитная индукция- явление возникновения в замкнутом проводнике электрического тока, обусловленного изменением магнитного поля. Создаваемый при этом источник тока стали называть ЭДС индукции, а возникающий ток- индукционным. Направление тока можно определить по правилу правой руки: В- входит в ладонь, ? (направление движения проводника)- большой палец, I- другие пальцы.
Закон электромагнитной индукции.
Индукционный ток создает собственное магнитное поле. Поле, вызвавшее появление тока, и поле, появившееся, взаимодействуют между собой.
Правило Ленца.
Правило Ленца: ЭДС индукции вызывает в замкнутом проводнике такой индукционный ток, который своим магнитным полем противодействует причине, возбуждающей ЭДС. Величина ЭДС индукции прямо пропорциональна скорости изменения магнитного потока, проходящего внутри рамки. ?ин=-?Ф/?t.
Самоиндукция.
При замыкании цепи: самоиндукция- явление, при котором переменное магнитное поле, созданное током в какой-либо цепи, возбуждает ЭДС индукции в той же самой цепи. Ток направлен противоположно первичному току. При размыкании цепи: запасенная в магнитном поле этой цепи энергия превращается в энергию самоиндукции. Ток направлен одинаково с первичным током.
ЭДС самоиндукции. I(R+r)+UC=EL=-LI?=-L?I/?t; R+r?0 ==> I(R+r)?0; -LI?=UC=q/C; I?=q/LC.
Это явления не прекращения тока в замкнутых контурах не мгновенно при отключении источника.
Индуктивность.
L- коэффициент, зависящий только от свойств контура. Ф=LI. Индуктивность контура численно равна потоку напряженности магнитного поля, пронизывающему этот контур и созданному током силой в 1 А, протекающим по этому контуру. Единица индуктивности- Генри. ?Гн?=?Вб А?. 1 Генри- такая индуктивность контура, при которой при силе тока в нем в 1 Ампер возникает магнитный поток в 1 Вебер.
Энергия магнитного поля катушки с током для создания тока необходимо затратить энергию, т.е. необходимо совершить работу. Объясняется это тем, что при замыкании цепи, когда ток начинает нарастать, в проводнике появляется вихревое электрическое поле, действующее против того электрического поля, которое создаётся в проводнике благодаря источнику тока. Для того, чтобы сила тока стала равной I, источник тока должен совершить работу против сил вихревого поля. Эта работа идёт на увеличение энергии магнитного поля тока. При размыкании цепи ток исчезает и вихревое поле совершает положительную работу. Запасённая током энергия выделяется. Это обнаруживается по мощной искре, возникающей при размыкании цепи с большой индуктивностью.W=LI2/2.



Билет № 3
1Равномерное движение по окружности.
Движение тела по окружности- криволинейное, при нем изменяется две координаты и направление движения. Мгновенная скорость тела в любой точке криволинейной траектории направлена по касательной к траектории в этой точке. Движение по любой криволинейной траектории можно представить как движение по дугам некоторых окружностей. Равномерное движение по окружности- движение с ускорением, хотя по модулю скорость не изменяется. Равномерное движение по окружности- периодическое движение.
Линейная и угловая скорости.
Линейная скорость- величина, измеряемая отношением длины дуги окружности ко времени, за которое эта дуга пройдена. Она направлена в любой момент времени по касательной к окружности, в данной ее точке. ?=2?R/T. Угловая скорость- величина, измеряемая отношением угла поворота тела ко времени, за которое произошел этот поворот. ?=2?/R ==> ?=?R.
Период и частота обращения.
Период обращения- величина, равная промежутку времени, за который тело совершило полный оборот при равномерном движении по окружности. v=2?R/T. Частота обращения- число оборотов по окружности в единицу времени. n=1/T. v=2?Rn. a=4?2n2R.
Ускорение при равномерном движении тела по окружности.
Ускорение тела центростремительно, то есть направлено по радиусу окружности к ее центру. Модуль ускорения зависит от квадрата скорости тела и от радиуса соответствующей окружности. a=?2/r. T=?r; ?=1/T ==> v=2?r/T=2?r? ==> a=4?2r2/T2=4?2r2?2
2 Электрический ток в металлах.
Электрический ток- упорядоченное движение свободных электронов. Если внутри металла нет электрического поля, то движение электронов хаотично и в каждый момент скорости различных электронов имеют разную величину и направление. Как только оно появляется, на каждый электрон начинает действовать сила, направленная в сторону, противоположную полю. Двигаясь под действием сил электрического поля, электроны приобретают некоторую кинетическую энергию. При соударениях она частично передается атомам и ионам решетки. Из-за этого происходит более интенсивное выделение тепла. При наличии тока происходит переход энергии упорядоченного движения электронов в энергию хаотического движения атомов, ионов и электронов (то есть во внутреннюю энергию тела). При наличии тока внутренняя энергия тока увеличивается.
Сверхпроводимость- явление исчезновения сопротивления некоторых веществ (металлов, растворов солей) при понижении температуры почти до абсолютного нуля. Сверхпроводимость
В 1911 г. нидерландский ученый Камерлинг-Оннес обнаружил, что при понижении температуры ртути до 4,1 К ее удельное сопротивление скачком уменьшается до нуля. Явление уменьшения удельного сопротивления до нуля при температуре, отличной от абсолютного нуля, называется сверхпроводимостью. Материалы, обнаруживающие способность переходить при некоторых температурах, отличных от абсолютного нуля, в сверхпроводящее состояние, называются сверхпроводниками.
Прохождение тока в сверхпроводнике происходит без потерь энергии, поэтому однажды возбужденный в сверхпроводящем кольце электрический ток может существовать неограниченно долго без изменения.
Сверхпроводящие вещества уже используются в электромагнитах. Однако получить сколь угодно сильное магнитное поле с помощью сверхпроводящего магнита нельзя, т. к. очень сильное магнитное поле разрушает сверхпроводящее состояние. Поэтому для каждого проводника в сверхпроводящем состоянии существует критическое значение силы тока, превзойти которое, не нарушая сверхпроводящего состояния, нельзя.
Объяснение сверхпроводимости возможно только на основе квантовой теории. Оно было дано лишь в 1957 г.
В 1986 г. была открыта высокотемпературная сверхпроводимость керамик – соединений лантана, бария, меди и кислорода. Сверхпроводимость таких керамик сохраняется до температур около 100 К.
Закон Ома для участка цепи
Рассмотрим простейшую электрическую цепь постоянного тока, составленную из одного гальванического элемента и проводника. На внешнем участке цепи электрические заряды движутся под действием сил электрического поля. Перемещение зарядов внутри проводника не приводит к выравниванию потенциалов всех точек проводника, т. к. в каждый момент времени источник тока доставляет к одному концу цепи точно такое же количество заряженных частиц, какое из него перешло к другому концу внешней электрической цепи. Поэтому сохраняется неизменным напряжение между началом и концом внешнего участка электрической цепи; напряженность электрического поля внутри проводников такой цепи отлична от нуля и постоянна во времени.
Немецкий физик Георг Ом в 1826 г. обнаружил, что отношение напряжение между концами металлического проводника, являющегося участком электрической цепи, к силе тока в цепи есть величина постоянная. Эту величину называют электрическим сопротивлением проводника.
Экспериментально установленную зависимость силы тока от напряжения и электрического сопротивления участка цепи называют законом Ома для участка цепи:
I=?q/?t ;I=[S под I(t)]Сила тока прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению участка цепи.
Зависимость сопротивления проводника от температуры.
Если пропустить ток от аккумулятора через стальную спираль, то амперметр покажет уменьшение силы тока. Это означает, что с сопротивлением температуры сопротивление проводника меняется.
Если при температуре, равной 0?С, сопротивление проводника равно R0, а при температуре t оно равно R, то относительное изменение сопротивления, как показывает опыт, прямо пропорционально изменению температуры t: (1)
Коэффициент называется температурным коэффициентом сопротивления. Он характеризует зависимость сопротивления вещества от температуры.
Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при повышении температура на 1 К.
Для всех металлов >0 и незначительно меняется с изменением температуры. У растворов электролитов сопротивление с ростом температуры не уменьшается, а увеличивается. Для них
С приближением температуры к абсолютному нулю удельное сопротивление монокристаллов становится очень малым. Этот факт свидетельствует о том, что в идеальной кристаллической решетке металла электроны перемещаются под действием электрического поля, не взаимодействуя с ионами решетки. Электроны взаимодействуют лишь с ионами, не находящимися в узлах кристаллической решетки.
При повышении температуры возрастает число дефектов кристаллической решетки из-за тепловых колебаний ионов, – и это приводит к возрастанию удельного сопротивления кристалла.



Билет № 4
Первый закон Ньютона.
Существуют такие системы отсчёта, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела(или действия других компенсируются)
Всякое тело продолжает оставаться в своем состоянии покоя или равномерного прямолинейного движения, пока приложенные силы не заставят его изменить это состояние. Само явление сохранения скорости постоянной называется инерцией.
Понятие об инерциальных и неинерциальных системах отсчета.
Инерциальная система отсчета- система, в которой всякое тело бесконечно удалено от других тел и не испытывает ускорения. Она должна быть условно неподвижной или движущейся равномерно и прямолинейно. Неинерциальная система отсчета- система отсчета, которая движется ускоренно относительно какой-то другой, инерциальной системы.
2Электрический ток в электролитах.
Электролитами являются растворы солей, кислот и щелочей. Заряженные частицы образуются в результате электролитической диссоциации. Молекулы растворяемых веществ распадаются на ионы. В отсутствии внешнего электрического поля все частицы находятся в хаотическом тепловом движении. Если ионы находятся во внешнем поле, то начинается их упорядоченное движение двумя встречными потоками: положительные ионы устремляются к катоду, отрицательные- к аноду. Суммарный ток через раствор складывается из обоих потоков.
Закон электролиза (закон Фарадея).
Электролиз- процесс выделения вещества на электродах и его перехода с одного на другой. Первый закон Фарадея: масса вещества, выделившегося при электролизе, пропорциональна суммарному заряду всех ионов, прошедших через электролит. m=k?q=kI?t, где k- электрохимический эквивалент вещества. Второй закон Фарадея устанавливает связь между химическим и электрохимическим эквивалентами вещества: k=M/FZ, где M- молярная масса вещества, Z- валентность вещества, F- постоянная Фарадея. F=9,65 104 Кл/моль.
Определение заряда электрона формулу m=M/neNa*I?t можно использовать для определения заряда e. e=M/mn*I ?t.
Принцип относительности Тело находиться в состоянии покоя (отностительно Земли), если действие на него других тел скомпенсированы. В классической механике ?, путь, движение относительны. Если по отношению к одной системе отсчёта тело покоится, то относительно других тел С.О. тело может двигаться это приводит к одному из основных законов механики 1 закону Ньютона.
Инерция- это явление сохранения ? тела, если на него не действуют другие тела или действия этих тел скомпенсированы.
ИСО- это С.О., которые либо покоится либо движется прямолинейно и равномерно(Земля вокруг Солнца).
НИСО-это С.О., кот. Движется с ускорением.
Классическая механика справедлива для ? законы Фарадея не выполняются, закон Ома не выполняется при протекании тока по газу.
Самостоятельный и несамостоятельный разряды.
Если постепенно увеличивать напряжение на электродах, то сила тока вначале растет до определенного момента, а затем ток остается постоянным. Такой ток называется током насыщения. На этом участке существует несамостоятельный разряд (так как при отключении ионизатора ток прекращается). Но начиная с некоторого напряжения сила тока снова начинает расти, в газе появляются сильно выраженные световые и тепловые эффекты. Ионы создаются самим разрядом, который уже будет самостоятельным.


Билет № 6
Третий закон Ньютона. Действия тел друг на друга всегда имеют хр-р взаимодействия. Каждое из тел действует на другое и сообщает силу а. Отношение модулей ускорений взаимодействующих тел равно обратному отношению их масс: а1/a2=m2/m1, или m1a1=m2a2. ускорения обоих тел направлены в противоположные стороны. Получаем: F1=-F2. тела действуют друг на друга с силами, равными по модулю и противоположными по направлению. Из-за взаимодействия тел друг на друга силы всегда появляются парами. Так же первый, второй и третий законы Ньютона справедливы, когда движение рассматривается относительно ИСО. Эти силы, кот. появляются одновременно всегда одной и той же природы, но они приложены к разным телам. Поэтому нельзя сказать, что сумма сил, приложенных к каждому телу, равна 0, что эти силы уравновешиваются. Уравновешиваться могут лишь силы, приложенные к одному и тому же телу. Третий закон Ньютона объясняет, как вообще возникает сила. Согласно этому закону, сила возникает при взаимодействии тел. При этом на каждое из взаимодействующих тел действует сила, и каждое получает ускорение. Действия двух тел друг на друга равны, но противоположны по направлению. Этот закон показывает, что из-за взаимодействия тел силы всегда появляются парами. ==>Сила возникает при взаимодействии тел. Возьмём две одинаковые тележки, к одной из которых прикреплена упругая стальная пластина. Согнём пластинку и свяжем её ниткой, а второю тележку приставим к первой так, чтобы она плотно соприкасалась с другим концом пластинки. Перережем теперь нить, удерживающую пластинку в согнутом виде. Пластинка начнёт выпрямляться, и мы увидим, что обе тележки придут в движение. Это значит, что обе они получили ускорение. Так как масса тележек одинаковы, то одинаковы по модулю их ускорения, а следовательно и скорости, о чём можно судить по одинаковой длине перемещений тележек за одинаковое время. Если на одну из тележек положить какой-нибудь груз, то мы увидим, что перемещение тележек будут неодинаковы. Это значит, что и ускорение их неодинаковы: ускорение нагруженной тележки меньше, но её масса больше. Произведение же массы на ускорение т.е. сила, действующая на каждую из тележек по модулю одинаково. В этом примере как и в любых других можно отметить ещё одну особенность тех двух сил, которые, согласно третьему закону Ньютона, появляются одновременно, при взаимодействии: силы эти всегда одной и той же природы. Если, например, как и в нашем примере, на одно из тел со стороны другого действует сила упругости то оно отвечает это другому телу тоже силой упругости.
2 Ток в вакууме. Термолектронная эмиссия Откачивая газ их сосуда, можно достичь такой его концентрации, при которой молекулы успевают пролететь от одной стенки сосуда до другой, ни разу не испытав соударений друг с другом. Такое состояние газа в трубке называют вакуумом. Для существования электрического тока необходимо наличие свободных заряженных частиц. В вакууме таких частиц нет, следовательно, чтобы электрический ток существовал в вакууме, необходимо внести в трубку источник заряженных частиц. Действие такого источника основано на свойстве тел, нагретых до высокой температуры, испускать электроны. Это процесс называется термоэлектронной эмиссией. Его можно рассматривать как испарение электронов с поверхности металла. У многих твердых веществ термоэлектронная эмиссия начинается при температурах, при которых испарение самого вещества не происходит. Такие вещества используются для изготовления катодов. Явление термоэлектронной эмиссии приводит к тому, что нагретый металлический электрод в отличие от холодного непрерывно испускает электроны, которые образуют вокруг проводника электронное облако. При этом электрод заряжается положительно, и под влиянием электрического поля заряженного облака электроны частично возвращаются на электрод. В равновесном состоянии число электронов, покинувших электрод, равно числу электронов, вернувшихся на электрод. При подключении нагретого и холодного электродов к источнику тока между ними устанавливается электрическое поле. Если положительный полюс источника тока соединен с холодным электродом (анодом), а отрицательный – с нагретым (катодом), то напряженность электрического поля направлена к нагретому электроду. Следовательно, электроны под действием этого поля движутся к холодному электроду, устанавливается электрический ток. При противоположном включении источника тока, напряженность поля направлена к холодному электроду, электроны отталкиваются от холодного электрода, и электрический ток не устанавливается, т. к. вокруг холодного электрода электронного облака не существует. Следовательно, устанавливается одностороння проводимость электрического тока между электродами.
Диод
Свойства односторонней проводимости используется в электронных приборах с двумя электродами – вакуумных диодах. Вакуумный диод (электронная лампа) состоит из баллона из стекла или металлокерамики, из которого откачан воздух до давления 10-6 – 10-7 мм рт. ст., внутри которого размещены два электрода. Катод имеет вид вертикального металлического цилиндра, покрываемого обычно слоем оксидов щелочноземельных металлов (оксидный катод испускает больше электронов, чем из чистого металла). Внутри катода расположен изолированный проводник, нагреваемый переменным током. Нагретый катод испускает электроны, достигающие анод, если потенциал анода больше, чем потенциал катода. Анод лампы представляет собой круглый или овальный цилиндр, имеющий общую ось с катодом.
Вольтамперная характеристика диода
Свойства любого электронного устройства отражает его вольтамперная характеристика, т. е. зависимость силы тока через это устройства от напряжения на его выводах.
Получить вольтамперную характеристику диода можно с помощью цепи, изображенной на рисунке. В отличие от характеристики металлического проводника эта характеристика нелинейная. Основная причина нелинейности вольтамперной характеристики вакуумного диода в том, что электроны испускаются катодом в ограниченном количестве. Кроме того, на движение электронов наряду с полем, созданным зарядами на электродах, существенное влияние оказывает поле пространственного заряда электронного облака у катода. Чем выше напряжение между катодом и анодом, тем большее количество электронов достигает анода, следовательно тем больше сила тока в лампе. При некотором напряжении все электроны, испускаемые катодом, попадут на анод, и при дальнейшем увеличении напряжения сила тока не меняется, ток достигает насыщения. Если повысить температуру катода (это можно сделать, изменив сопротивление в цепи накала), то катод начнет испускать больше электронов, и ток насыщения наступит при большем напряжении.
Электронно-лучевая трубка
Если в аноде вакуумного диода сделать отверстие, то часть электронов, испущенных катодом, пролетит сквозь отверстие и образует в пространстве за анодом поток параллельно летящих электронов – электронный луч. Электровакуумный прибор, в котором используется такой поток электронов, называется электронно-лучевой трубкой. Внутренняя поверхность стеклянного баллона электронно-лучевой трубки против анода покрыта тонким слоем кристаллов, способных светиться при бомбардировке электронами (люминофоров). Эту часть трубки называют экраном. В узком конце трубки помещен источник быстрых электронов – электронная пушка. Она состоит из катода, управляющего электрода и анода. На пути к экрану пучок последовательно проходит между двумя парами управляющих пластин, подобным пластинам плоского конденсатора. Если электрического поля между пластинами нет, то луч не отклоняется и светящаяся точка располагается в центре экрана. При сообщении разности потенциалов пластинам, луч отклоняется. Таким образом можно заставить электронный луч «рисовать» любую картинку на экране. Эта способность электронного луча используется для создания изображений на экране электронно-лучевой трубки телевизора, называемой кинескопом. Изменение яркости свечения пятна на экране достигается путем управления интенсивностью пучка электронов с помощью дополнительного электрода, расположенного между катодом и анодом и работающего по принципу управляющей сетки электровакуумного



Билет № 7
Импульс (количество движения) материальной точки.
Импульс материальной точки- величина, равная произведению массы тела на его скорость. p=m?.
Импульс силы.
Импульс силы- изменение импульса тела. Направление его вектора всегда совпадает с направлением вектора приложенной силы. Ft=m?-m?0, где Ft- импульс силы.
Связь между приращением импульса материальной точки и импульсом силы.
F=ma=m??/?t
F?t=m?? ==> pC=p.
Импульс тела.
Импульс тела- величина, равная произведению массы тела на его скорость. p=m???. Одна и та же сила за одно и то же время вызывает у любого тела одно и то же изменение импульса. Вектор импульса тела направлен так же, как вектор скорости. F=ma=m(v-v0)/t ==> Ft=mv-mv0. Ft- импульс силы. Его направление такое же, как и у вектора силы.
Закон сохранения импульса.
Геометрическая сумма импульсов тел, составляющих замкнутую систему, остается постоянной при любых движениях и взаимодействиях тел системы. Замкнутая система тел- совокупность тел, взаимодействующих между собой, но не взаимодействующих с другими телами. Импульс- одна из немногих сохраняющихся величин.
Реактивное движение- движение, которое возникает, когда от тела отделяется и движется с некоторой скоростью какая-то его часть. Типичным примером реактивного движения может служить движение ракет. Пример – движение ракет. В головной части ракеты помещается полезный груз. В след. части нах. Запас топлива и разл. сис-мы управления. Топливо подаётся в камеру сгорания, где оно сгорает и превращается в газ высокой t и высокой p. Через реактивные сопла газ вырывается наружу и образует реактивную струю. Газ – это и есть отделяющаяся часть ракеты. Перед стартом ракеты её импульс отн- но Земли = 0. вырывающийся газ получает некот. импульс. Ракета представляет собой замкнутую систему, и общий её импульс должен оставаться = 0. Поэтому ракета получает импульс, равный по модулю импульсу газа, но противоположен по направлению. mг ?г - m р ?р = 0. или
mг ?г= m р ?р. ?р= mг/ m р*?г.
mг/ m р – было получено по формуле Циолковского.
2 Полупроводники
Многие вещества в кристаллическом состоянии не являются такими хорошими проводниками электрического тока, как металлы, но не могут быть отнесены и к диэлектрикам, т. к. не являются хорошими изоляторами. Такие вещества называются полупроводниками. Они долгое время не привлекали к себе внимания. Одним из первых начал исследования полупроводников выдающийся советский физик Абрам Федорович Иоффе. Полупроводники оказались не просто «плохими проводниками», а особым классом со многими замечательными физическими свойствами, отличающими их как от металлов, так и от диэлектриков. Чтобы понять свойства полупроводников, необходимо разобраться в их строении. Рассмотрим природу связей, удерживающих атомы полупроводникового кристалла друг возле друга на примере кристалла кремния. Кремний – четырехвалентный элемент, следовательно, во внешней оболочке атома имеются четыре электрона, сравнительно слабо связанные с ядром. Число ближайших соседей каждого атома кремния также равно четырем. Взаимодействие пары соседних атомов осуществляется с помощью парноэлектронной (ковалентной) связи. В образовании этой связи от каждого атома участвуют по одному валентному электрону, которые отщепляются от атомов (коллективизируются кристаллом) и при своем движении большую часть времени проводят в пространстве между соседними атомами. Их отрицательный заряд удерживает положительные ионы кремния друг возле друга. Коллективизированная пара электронов не принадлежит лишь двум атомам. Каждый атом образует четыре связи с соседними, и любой валентный электрон может двигаться по одной из них. Дойдя до соседнего, он может перейти к следующему атому, а затем дальше вдоль всего кристалла. Валентные электроны принадлежат всему кристаллу. Аналогичное строение имеют другие полупроводниковые кристаллы, например германий.
Электропроводность, собственная проводимость полупроводников
Парноэлектронные связи кремния достаточно прочны и при низких температурах не разрываются. Поэтому кремний при низкой температуре не проводит электрический ток. Участвующие в связи атомов электроны прочно привязаны к кристаллической решетке, и внешнее электрическое поле не оказывает существенного влияния на их движение.
При нагревании кремния кинетическая энергия валентных электронов повышается, и наступает разрыв отдельных связей. Некоторые электроны покидают связи и становятся свободными, подобно электронам в металле. В электрическом поле они перемещаются между узлами решетки, образую электрический ток. Проводимость полупроводников, обусловленную наличием у них свободных электронов, называют электронной проводимостью. При повышении температуры число разорванных связей, а значит, и свободных электронов увеличивается. Это приводит к уменьшению сопротивления.
При разрыве связи образуется вакантное место с недостающим электроном. Его называют дыркой. В дырке имеется избыточный положительный заряд по сравнению с другими, нормальными, связями. Положение дырки в кристалле не фиксировано. Непрерывно происходит процесс перескакивания электронов, образующих связь атомов, на место дырок, восстанавливая связь, и образуя дырку на исходном месте. Таким образом дырка может перемещаться по всему кристаллу. Если электрического поля в кристалле нет, то перемещение дырок происходит беспорядочно, электрический ток не создается. Если же возникает электрическое поле, то возникает упорядоченное движение дырок, и, таким образом, к электрическому току свободных электронов добавляется электрический ток, связанный с перемещением дырок. Направление движения дырок противоположно движению электронов. Проводимость полупроводников, обусловленную наличием дырок, называют дырочной проводимостью. Мы рассмотрели механизм проводимости идеальных полупроводников. Проводимость при этих условиях называют собственной проводимостью полупроводников.
Примесная проводимость полупроводников
Собственная проводимость полупроводников обычно невелика из-за малого числа свободных электронов. Но проводимость полупроводников очень сильно зависит от примесей. Именно это свойство сделало проводники тем, чем они являются в современной технике. При наличие примесей в полупроводнике наряду с собственной
 
     
Бесплатные рефераты
 
Банк рефератов
 
Бесплатные рефераты скачать
| мероприятия при чрезвычайной ситуации | Чрезвычайная ситуация | аварийно-восстановительные работы при ЧС | аварийно-восстановительные мероприятия при ЧС | Интенсификация изучения иностранного языка с использованием компьютерных технологий | Лыжный спорт | САИД Ахмад | экономическая дипломатия | Влияние экономической войны на глобальную экономику | экономическая война | экономическая война и дипломатия | Экономический шпионаж | АК Моор рефераты | АК Моор реферат | ноосфера ба забони точики | чесменское сражение | Закон всемирного тяготения | рефераты темы | иохан себастиян бах маълумот | Тарых | шерхо дар борат биология | скачать еротик китоб | Семетей | Караш | Influence of English in mass culture дипломная | Количественные отношения в английском языках | 6466 | чистонхои химия | Гунны | Чистон
 
Рефераты Онлайн
 
Скачать реферат
 
 
 
 
  Все права защищены. Бесплатные рефераты и сочинения. Коллекция бесплатных рефератов! Коллекция рефератов!