Чтение RSS
Рефераты:
 
Рефераты бесплатно
 

 

 

 

 

 

     
 
Лекции по физике В.И.Бабецкого
Электромагнитное взаимодействие

Мир состоит из взаимодействующих частиц. Всё, что мы видим, построено из элементарных частиц, есть такие кирпичики мироздания. На макроскопическом уровне много взаимодействий, на самом деле, в основании всего лежит четыре типа фундаментальных взаимодействий. Они называются:
1) сильное,
2) электромагнитное,
3) слабое,
4) гравитационное.
Они перечислены в порядке убывания силы взаимодействия.
Сильное взаимодействие определяет структуру атомных ядер и более глубокие структуры. Следующее - электромагнитное взаимодействие. Оно послабее на два порядка сильного. Сильное взаимодействие проявляется на малых расстояниях, см, электромагнитное взаимодействие проявляется на любых расстояниях. Далее идёт слабое взаимодействие, вообще, играющее незаметную роль на макроскопическом уровне. И, наконец, самое слабое гравитационное взаимодействие, примерно на сорок порядков слабее электромагнитного. Но почему именно гравитационное взаимодействие мы ощущаем более часто, например, вы хотите подпрыгнуть, а вас тянет вниз. Это происходит за счёт того, что в нём участвуют все частицы.

Эти взаимодействия характерны тем, что в них участвуют определённые частицы, частицы, обладающие определёнными свойствами.

На макроскопическом уровне электромагнитное взаимодействие самое важное, вот то, что мы видим на Земле - это всё электромагнитное взаимодействие.

Электрический заряд

Частицы, участвующие в электромагнитном взаимодействии, обладают специальным свойством - электрическим зарядом. Что такое электрический заряд? Первичное понятие. Нельзя его описать в других более понятных терминах. Электрический заряд - неотъемлемое свойство элементарной частицы. Если есть частица, обладающая электрическим зарядом, например, электрон, всем вам известный электрон, лишить его этого свойства невозможно. Электрон обладает и другими свойствами: массой, спином, магнитным моментом. Имеются частицы и не обладающие этим свойством. Если частица не участвует в электромагнитном взаимодействии (а как это определить? берём частицу, находим действующую на неё силу, есть книжки, в которых дано руководство для дальнейших действий), итак, если частица не участвует в электромагнитном взаимодействии, то она не обладает электрическим зарядом.
Заряды всех тел кратны величине Кл, это заряд электрона. Это означает, что в природе встречается минимальный заряд, равный е. Можно было бы принять е=1, но в силу ряда причин, в частности, по исторической причине, е выражается таким числом.
Есть такие частицы - кварки, заряд которых дробный: , и т.д. То, что их заряд дробный не противоречит тому, что я сказал, так как кварки самостоятельно не наблюдаются. Считается, что нельзя выделить кварки индивидуально, чтобы получить частицу с дробным зарядом. Чтобы было более понятно, я приведу такой пример. Имеем намагниченную спицу с южным и северным полюсом, они ведут себя, как точечные источники тока, но, сломав спицу пополам, на одном конце остаётся южный полюс, а на другом выскакивает северный. Так и при делении кварков, они делятся, но появляются новые кварки, а не их половинки.
Заряды бывают двух знаков: “+” и “–“. Как понимать отрицательный и положительный знак? Можно было бы назвать их другими символами, но которые входят в математические понятия, потому что математика - базовая наука.

Электромагнитное поле

Ещё раз повторю, мир состоит из взаимодействующих частиц, но частицы не взаимодействуют друг с другом. Этот вопрос занимал ещё Ньютона. Он считал, что сама идея взаимодействия через пустое пространство это абсурд. Нынешняя физика так же отвергает взаимодействие через пустое пространство. Например, откуда Земля "знает", что где-то от неё на расстоянии 150 млн. км находится Солнце, к которому она должна притягиваться? Поле является переносчиком взаимодействия, в частности, переносчиком электромагнитных взаимодействий является электромагнитное поле. Что такое поле? опять таки первичное понятие, невозможно его выразить более простыми словами. Надо понимать так: имеем частицу заряженную, одну единственную, и то, что создаёт частица в пространстве, это и есть электромагнитное поле. Некоторые формы этого электромагнитного поля мы видим, свет есть проявление электромагнитного поля. Другая заряженная частица погружена в это поле и взаимодействует с этим полем там, где она находится. Таким образом, решена проблема взаимодействия. Электромагнитное поле - это переносчик электромагнитного взаимодействия.
Опять таки, поле мы не можем описать обычными словами. Вот стол, он деревянный, коричневый и т.д., его можно описать бесконечно большим набором свойств. Электромагнитное поле гораздо более простая вещь. Движение частицы, находящейся в электромагнитном поле, описывается следующим уравнением.
Второй закон Ньютона:
Заряженная частица, обладающая зарядом q, движется в электромагнитном поле согласно этому уравнению. Видим, что сила, действующая на частицу со стороны электромагнитного поля, определяется двумя векторными полями: , то есть в каждой точке пространства задан вектор , который может меняться со временем (математик может сказать, если в каждой точке пространства задана скалярная функция, что задано скалярное поле, если задана векторная функция - задано векторное поле), поле называется напряжённостью электрического поля, поле - индукция магнитного поля. Почему они так называются, нам сейчас неважно, это термины. Почему они разделены? Потому что влияние их на частицу различны. Поле не содержит никаких характеристик частицы кроме заряда. Если v = 0, то второе слагаемое вылетает. Это означает, что магнитное поле действует только на движущиеся частицы. Неподвижные заряды не чувствуют магнитного поля.
Когда говорится о функциях координат, имеется в виду, что мы находимся в некоторой инерциальной системе. Если заряд движется, то в другой инерциальной системе он будет покоиться. Это означает, что, если в одной инерциальной системе отсчёта существует только , то в другой появится и . Вот эти два векторных поля полностью описывают электромагнитное поле. Задать электромагнитное поле означает задать шесть функций от координат и времени.
Как задать поле в этом помещении? Помещаем пробный заряд, измеряем силу, делим на q, получаем . Чуть сложнее измерить . Есть более изящные методы измерения, основанные на этом уравнении. И получим исчерпывающее описание этой вещи. Это описание на много проще описания этого стола.

Уравнения поля

Могу ли я конкретно, физически соорудить поле? Ответ, вообще говоря, нет. Не всякое векторное поле может представлять реальное электрическое поле , и не всякое векторное поле представляет магнитное поле . Реальное электромагнитное поле обладает структурой, и эта структура и выражается полевыми уравнениями, которые выступают в роли фильтров.
Электромагнитное поле создаётся заряженными частицами, или, иначе говоря, заряженные частицы являются источниками электромагнитного поля.

Основная задача теории:

предъявлено распределение заряженных частиц, и мы должны найти поле, которое создаётся этими частицами.
Вопрос: как можно описать распределение частиц, как предъявить распределение зарядов? Кстати, никакие другие свойства кроме заряда не важны. Можно взять какую-то частицу, измерить её заряд и повесить на неё бирку, и так со всеми частицами. Но технически это сделать невозможно.
Вот имеем некоторую систему координат. В точке с радиус-вектором выбираем некоторый элемент объёма ?Vi, определяем заряд этого элемента объёма. Пусть внутри этого элемента объёма находится заряд ?qi. Теперь определяем такую величину: . Будем уменьшать объём, при этом окажется, что отношение стремится к некоторому пределу. Считается, что элемент объёма очень мал, но число частиц в нём велико, такова реальность.



Определённая выше функция , называется плотностью заряда. Понятно, что всё распределение заряда описывается функцией . Если имеются отдельные точечные заряды, то они подпадают под эту функцию. И она такова, что, если в точке находится точечный заряд, то тогда = . Скалярная функция позволяет полностью описать мир с точки зрения электродинамики. Но не только она, скорость заряда тоже влияет на электромагнитное поле. Так как магнитное поле создаётся движущимися зарядами, нам нужно учесть ещё движение, и для этого нужна ещё одна характеристика. Берём в нашей системе координат точку и вычисляем такую величину: . Формулы надо научиться читать повествовательно! В этом случае: ловите все частицы этого объёма, заряд частицы умножаем на её скорость, делим на объём, а потом переходим к пределу, получаем некоторый вектор и этот вектор приписываем точке, в окрестности которой производили измерения... Получаем векторное поле. - плотность тока. Кстати, в механике аналогичная величина - плотность импульса. Вместо заряда возьмём массу, получим суммарный импульс, если разделить его на объём, получим плотность импульса.
Источники электромагнитного поля полностью характеризуются скалярной функцией и векторной функцией . Вот я уже говорил там о цветочках в саду, птички летают… с точки зрения электродинамики система должна быть описана функциями ? и . Действительно, если дать эти функции, то по ним можно было бы дать цветную картинку, кстати, телевизор это и делает, а частью этого электромагнитного поля являются волны, которые попадают вам в глаз. Задание этих функций задаёт поле, потому что, если известны источники, то известно и поле.

Полевые уравнения






Всё электричество сидит в этих уравнениях. Они, на самом деле, симметричны и красивы. Эти уравнения постулируются, они лежат в основе теории. Это фундаментальные уравнения теории. Вот, кстати, интересно. Теория существует неизменно с семидесятых годов XIX века по сей день, и никаких поправок! Ньютоновская теория не выдержала, а электродинамика стоит около 1,5 века, работает на расстоянии м и никаких отклонений.

Для расшифровки этих уравнений потребуются некоторые математические конструкции.

2

Поток вектора.
Задано некоторое поле , в какой-то точке пространства задан вектор . В окрестности этой точки выбираем площадку dS, площадку ориентированную, её ориентация характеризуется вектором . Тогда конструкция называется поток вектора через площадку dS. При этом площадка настолько мала, что вектор может считаться в пределах этой площадки постоянным.

Теперь ситуация другая. Рассмотрим некоторый кусок поверхности. Эту поверхность разбиваем на элементы. Вот, например, выделенный элемент под номером i, его площадь ?Si, его нормаль . Где-то в пределах элемента выбираем вектор , сам элемент задаётся радиус-вектором , то есть какая-то точка внутри элемента имеет радиус-вектор . Сумма по всем элементам поверхности образует такую сумму: , а теперь предел обозначается так: .
Ну, это стандартный опять приём: интеграл есть предел суммы по определению, предел этой суммы называется поток вектора через поверхность S.

Так, если дует ветер, в каждой точке некоторой поверхности определён вектор скорости, тогда поток вектора скорости по этой поверхности - будет объём воздуха, проходящего через поверхность за единицу времени. Если векторное поле не поле скоростей, а нечто другое, то ничего там не течёт. Это есть некий термин, и не надо понимать его буквально.

Если поверхность замкнута, то разобьём её на маленькие элементы. Но берётся ограничение: вектор нормали выбирается наружу (выбор нормали влияет на знак). Если поверхность замкнута, то нормаль берётся наружу, а соответствующий интеграл снабжается кружочком. Это, что касается термина поток.
Если - поле скоростей, то скалярное произведение отрицательно (см. рис.2.2 цифра 1), это газ или воздух, втекающий в поверхность. А берём площадку 2, здесь поток положительный, это воздух, вытекающий из поверхности. Если мы вычислим такую штуку для потока скорости ветра через замкнутую поверхность, (это будет разность воздуха втекающего и вытекающего) и, если течение стационарное, то есть скорость со временем не меняется, то такой интеграл будет равен нулю, хотя и не всегда.
Если взять , то такая штука означает, что масса втекающего воздуха равна массе вытекающего.

Циркуляция потока.

Линии, вдоль которых направлено поле, называются силовыми линиями, а для любого векторного поля они носят название интегральных кривых. Рассмотрим некоторую кривую . Последовательно разбиваем кривую на элементы, вот один элемент, я выделяю его, маленький вектор . В пределах этого элемента определяем значение вектора , берём скалярное произведение , получаем число и суммируем по всем элементам1. В пределе получаем некоторое число: , которое обозначаем .
Берём замкнутую кривую (интеграл тогда будет снабжён кружочком), задаём произвольно направление, - это некоторое число, зависящее от вектора и , называется циркуляцией вектора по замкнутому контуру.

Если дует ветер, то циркуляция по замкнутому контуру, не всегда правда, равна нулю. А если возьмём вихрь, то циркуляция заведомо не равна нулю.

Статическое электромагнитное поле (электростатика)

В прошлый раз я нарисовал четыре уравнения. Начнём их жевать потихоньку. И сделаем упрощения. Прежде всего, положим . от чего? От всего, то есть ничего со временем не меняется.
Особенность физики в чём состоит? Не в предмете! Все науки имеют свой предмет рассмотрения, биология - наука изучающая жизнь на Земле и т.д. Физика отличается взглядом на мир. С точки зрения электричества он характеризуется двумя векторными полями, кстати, если задать эти штуки, например, дать описание зарядов в этой аудитории, то мы сможем восстановить всю ту картинку, которую вы сейчас наблюдаете.
Итак, . И второе .
В каждой точке пространства ничего не меняется, и все заряды неподвижны, то есть все заряды прибиты просто гвоздями. Тогда уравнения принимают вид:






Вот при такой подстановке и наши четыре фундаментальные уравнения принимают такой вид.
Третье уравнение означает, что поток вектора через любую замкнутую поверхность равен нулю, четвёртое - циркуляция вектора по любому замкнутому контуру равна нолю. Из этих двух уравнений следует, что . Это не очевидно, но мы ещё до этого доберёмся. Магнитное поле отсутствует. В статическом электромагнитном поле отсутствует магнитное поле, а электрическое описывается двумя уравнениями. В этих уравнениях сидят все свойства электростатического поля, то есть ничего больше не надо. И мы эти свойства сейчас извлечём.

Общие свойства электростатического поля

Прежде всего, что означают эти уравнения? Первое уравнение утверждает, что, если мы возьмём некоторую замкнутую поверхность S, V - объём этой поверхности, разбиваем поверхность на элементы, определяем в пределах каждого элемента напряжённость поля и вычисляем такую вещь , суммируем, никто нам не запрещает это сделать, это математическая вещь, физика сидит в равенстве:
(поток вектора напряжённости через замкнутую поверхность) =
Таким образом, поток вектора через любую замкнутую поверхность равен заряду внутри этой поверхности.

Например, стены, пол, потолок - это замкнутая поверхность. Можем сосчитать поток через эту замкнутую поверхность и получим число, и, если это число отлично от нуля, то это означает, что здесь находится заряд. Электромагнитное взаимодействие очень сильное, и в силу этого мы имеем нейтральное вещество. Ноль получим. Это не означает, что здесь нет электрических полей, но заряда нет.

Берём замкнутый контур, вычисляем циркуляцию. Второе уравнение утверждает, что, какой бы контур мы не взяли, циркуляция равна нулю. Отсюда следует, что силовые линии электромагнитного поля не могут быть замкнутыми. Мы могли бы взять контур, совпадающий с этой линией, скалярное произведение не меняет знак, следовательно, интеграл не равен нулю. Силовые линии не могут быть замкнуты, но тогда что с ними?
Имеется некоторая область, из которой силовые линии выходят, тогда берём замкнутую поверхность S и по этой замкнутой поверхности . Это означает, что q>0.
Если наоборот, силовые линии входят в область, эту область окружаем поверхностью, тогда интеграл отрицательный. Нормаль направлена наружу, в первом случае произведение положительно, а здесь отрицательно.
Можно сказать, что силовые линии электростатического поля начинаются на положительных зарядах и заканчиваются на отрицательных или уходят в бесконечность, но не может быть так, чтобы линия замкнулась на себя. Для магнитного поля, мы увидим дальше, что силовые линии всегда замкнуты, в отличие от электростатических, которые никогда не замкнуты.

Потенциал

Вот такое математическое утверждение: .
Вы, вот, словами должны читать сами формулы. Кстати, физику можно излагать без слов, так же, как математику. Из того, что циркуляция для любого контура равна нулю, следует, что векторное поле может быть выражено через некоторую функцию от , называемую градиентом скалярного поля : . Любому скалярному полю ??можно поставить в соответствие векторное поле вот по такому рецепту. Это векторное поле называется градиентом скалярного поля ?.
Смысл векторного поля. - это вектор, направление вектора это направление, в котором функция ??меняется наиболее быстро. Направление вектора это направление быстрейшего изменения функции ?, а величина вектора характеризует скорость изменения функции ??в этом направлении. Ну, скорость по отношению к пространственному перемещению.

Температура, заведомо скалярная величина. В данной точке сунули термометр, он что-то показал, сунули в другую, он покажет другую температуру. А теперь, градиент от этого скалярного поля. Температура в данной точке такая, сместились в эту сторону на метр - другая температура, и так во все стороны, где температура выше, туда будет направлен её градиент , а величина этого вектора .
Другой пример - плотность. Имеем стационарную атмосферу. Направление градиента плотности воздуха будет по вертикали и именно сверху вниз (вниз плотность будет возрастать).

Вот смысл градиента.

Это следствие чисто математическое, это можно доказать. Что физически означает уравнение ? Какую физическую интерпретацию можем ему дать?
Рассмотрим некоторую кривую с направлением. Вот имеем электрическое поле:

Возьмём точечный заряд q и будем перемещать заряд по заданной кривой из точки (1) в точку (2). Поскольку на заряд действует сила со стороны электрического поля, работа электрического поля при перемещении заряда вдоль кривой равна: . Работа, которая совершается электрическим полем при перемещении заряда, если я взял и принёс заряд из точки (1) в точку (2), а потом принёс его обратно (контур замкнулся!). То тогда следует, что .

Работа по перемещению заряда по замкнутому контуру равна нулю.
Это означает другое: что работа по перемещению заряда из точки (1) в точку (2) не зависит от пути перемещения.
Это, может быть, не очень очевидно. Вот я перешёл по некоторому пути из (1) в (2), поле совершило некоторую работу, кстати, эта работа положительна. Положу рельсы из точки (1) в точку (2). Поставлю на них вагончик от игрушечной железной дороги, помещу в вагончик заряд, и этот вагончик поедет, (избыток кинетической энергии перейдёт во внутреннюю). В точке (2) перевожу стрелки и пускаю вагончик по другому пути. Так вагончик будет ездить, к нему можно приделать вертушку... но известно, что циркуляция ноль, и построить вечного двигателя нельзя.
А теперь мы имеем такой математический результат: . Электростатическое поле – это градиентное поле. Эта скалярная функция , градиентом которой является напряжённость электрического поля, называется потенциалом электрического поля.
Не всякое векторное поле можно получить как градиент потенциала. Электростатическое поле представляется одной скалярной функцией координат, а не тремя, как можно было бы думать по его векторному характеру. Задать одну функцию координат – и получим картину электрического поля.

Какой физический смысл этого скалярного поля?

(*)
А теперь займёмся тем, что у нас стоит под интегралом. , вектор - это есть: , а вся подынтегральная конструкция есть полный дифференциал.

Тогда, возвращаясь к формуле (*), мы пишем:
Мы придём из точки (1) в точку (2), суммируя изменение потенциала. Мораль такая: вот у нас начальная точка , заряд переносим в точку , здесь значение потенциала ?(), и работа равна . Работа по перемещению заряда из одной точки в другую равна величине заряда, умноженной на разность потенциалов.
Теперь мы имеем два описания электростатического поля. Либо мы задаём напряжённость , либо мы задаём в каждой точке потенциал ?. Слова «разность потенциалов» вы должны понимать буквально – это разность. Вот синоним разности потенциалов, который употребляется в электротехнике, - напряжение. Это означает, что многие из вас склонные употреблять слова «напряжение в цепи» не знали их значения. Это синоним разности потенциалов.

Что означают слова, что напряжение городской сети 220 вольт? Вот есть две дырки (разность потенциалов между дырками 220V), если вы вырвете заряд из одной и будете с ним ходить, а потом вернёте его в другую дырку, то работа поля будет равна V. Нагляднее пример с аккумулятором: вы взяли металлический шарик с клеммы аккумулятора, положили его в карман, ходили где-то с ним и потом приложили его ко второй клемме, то работа будет такая: V.

3
Там, где у нас было напряжение и разность потенциалов, добавьте такую формулу: .
Вот точка , вот точка , эта кривая , и смысл такой: вот эта формула – универсальный железный рецепт для нахождения разности потенциалов. Если вы когда-нибудь сталкиваетесь с требованием или потребностью найти разность потенциалов между двумя точками, значит, рука должна автоматически писать эту формулу, а когда мы её напишем, потом можно думать. Слова «разность потенциалов» должны просто рефлекторно вызывать вот эту формулу.
О чём речь? В чём рецепт? Если вам надо найти разность потенциалов между одной точкой и другой, когда напряжённость поля во всём пространстве задана (вектор напряжённости поля), рецепт: соедините точку 1 с точкой 2 кривой и вычислите вот такой интеграл . Результат не зависит от выбора пути, ну, и поэтому его можно всегда выбирать наиболее разумным способом.

Ну, к примеру, что значит разумная выборка? Вот допустим у вас силовые линии поля вот такие радиальные кривые:

И вам надо найти потенциал вот точка 1 ну, а, допустим, вот точка 2. Как выбрать кривую, идущую из 1 в 2? Первая мысль, конечно, взять её вот так: провести по линейке, по ней вычислять. Мысль, конечно, быстрая, но не очень правильная, потому что во всех точках этой кривой вектор переменный и направлен ещё под углом к прямой, и угол ещё меняется – взять интеграл сложно. Зато, через точку 2 проведёте сферу и путь такой: вдоль радиуса – раз, и потом вот по этой дуге – два. Вот разумный выбор кривой. Почему? Потому что вот на этой ветке вектор всюду параллелен прямой, интеграл немедленно сводится просто к обыкновенному интегралу, а вот на этой ветке вектор всюду перпендикулярен кривой, и она никакого вклада не делает. Вот разумный выбор кривой для нахождения разности потенциалов.

Ну, это в качестве примера. Если представлять себе конкретный вид поля, то такая кривая легко находиться, учитывая, что у вас поля произвольной конфигурации, сложной, не будут попадаться, ну, вот здесь у нас в процессе занятия электродинамикой. Ну, конечно, если задано какое-нибудь такое, очень произвольное, поле, то там нет возможности выбирать кривую специальным образом, ну и тогда надо там линейку приложить, но это математическая проблема, можно посчитать. Так, ладно, всё. Следующий пункт.

Поля, создаваемые распределениями зарядов с хорошей симметрией

Ну и сразу такое определение: при достаточно хорошей симметрии напряжённость поля может быть найдена из уравнения . Значит, при достаточно хорошей симметрии поле всегда может быть найдено вот из этой интегральной теоремы. Ну, у нас это первое уравнение Максвелла. А теперь частные случаи.

1) Центральная (сферическая) симметрия. Пусть плотность заряда есть . Значит, плотность, которая, вообще, функция координат точки , зависит только от , то есть только от расстояния до начала координат, это означает, что начало координат – центр симметрии. Вот эта формулка = означает, что плотность на любой сфере радиуса r – константа, какая-то там плотность, ну, и отличная от нуля, на любой сфере она постоянна. Это означает, что распределение обладает сферической симметрией, и создаваемое им поле будет также обладать сферической симметрией. Отсюда следует, что (потенциал как функция точки) это есть . Отсюда эквипотенциальные поверхности – сферы с центром в начале координат, то есть вот на любой сфере потенциал – константа. Отсюда далее следует, что силовые линии поля, которые являются всегда ортогональными к эквипотенциальным поверхностям, силовые линии поля – вот такие радиальные лучи:

Конструкция электрического поля может быть только такая. А теперь заметьте, здесь никакой специфики электричества не было, все эти выводы получены только из соображений симметрии. Любое векторное поле имело бы такую структуру, какая бы физическая природа у него ни была. Только сила соображения симметрии очень часто позволяет делать выводы безотносительно к конкретному предмету разговора.
=, отсюда дальше следует, что напряжённость поля на любой сфере может быть представлен так: . Вот это , радиус-вектор, делённый на собственный модуль, есть единичный вектор в направлении радиус-вектора. Всё. Пишем дальше эту формулу . В качестве замкнутой поверхности, которая фигурирует в интеграле (поток вычисляется по замкнутой поверхности), выбираем сферу . Мы её (поверхность) можем брать любой, равенство от этого не зависит, но удобно взять . Пишем: . Это равенство вследствие того, что , - единичный вектор в направлении радиус-вектора (это вектор нормали к сфере, но нормаль к сфере в данной точке совпадает по направлению с радиус-вектором данной точки, эти векторы параллельны), а проекция радиус-вектора на самого себя – это его модуль, конечно, . Дальше, во всех точках сферы одно и тоже, выносим за знак интеграла: (вот это всё была математика, она к физике никакого отношения пока не имела, а физика – это следующее равенство), эта величина должна равняться интегралу от плотности заряда по объёму сферы, по которой вычисляется поток (интеграл от плотности по объёму это есть полный заряд внутри сферы): , где – заряд внутри сферы радиуса . И это утверждение верно для сферы любого радиуса. Отсюда вывод – при центральной симметрии напряжённость поля во всех точках сферы радиуса равна:
,
где - единичный вектор нормали к сфере. Эта формула, одна единственная, добивает все задачи центральной симметрии. Проблема одна – найти заряд, который находится внутри данной сферы, ну, это не очень тяжёлая проблема.
Можем немножко продолжить это дело. Вследствие того, что на любой сфере , интеграл по объёму можно свести, в принципе, к однократному интегралу, интегрируя по шаровым слоям, ну, напишу тут без подробных комментариев . Вот это объём шарового слоя радиуса толщиной . Почему я тут штрихи поставил, понятно. стоит в верхнем пределе интеграла, ну тогда, чтоб не путать переменную интегрирования с верхним пределом, там я вместо пишу . Значит, если вот эта функция предъявлена, то такой интеграл вычисляется. Так, всё, с центральной симметрией конец. Второй случай.

2) Цилиндрическая симметрия. Вводим цилиндрические координаты , переходит в . Вот у нас в цилиндрических координатах плотность есть только функция от , то есть не зависит от и не зависит от . Это означает, что имеется бесконечный цилиндр, и на поверхности цилиндра любого радиуса плотность заряда постоянна, и всё это дело продолжается до бесконечности по , вот такая ситуация. Сразу, конечно ясно, что физически это не реализуется, но в качестве некоторой идеализации это разумно. Напишем снова , значит, эквипотенциальные поверхности – это цилиндры с осью, совпадающей с осью симметрии, то есть с осью . А силовые линии лежат в плоскостях ортогональных оси . Так. В качестве замкнутой поверхности выбираем цилиндрическую поверхность радиуса и высотой , цилиндрическая поверхность, закрытая двумя крышками для того, чтобы она была замкнутой. Нормаль всегда берётся наружу. Из соображений симметрии ясно (напряжённость поля в любой точке цилиндрической поверхности направлена вдоль вектора , а величина зависит только от расстояния до оси симметрии). Поскольку у нас поверхность теперь задана в виде нескольких кусков, интеграл представится как сумма интегралов по этим кускам: .
Интеграл по крышкам равен нулю, потому что вектор скользит по крышкам, скалярное произведение с нормалью – ноль. .
Внутренняя начинка этого цилиндра , это интеграл по . , где - это заряд на единицу длины цилиндра радиуса , то есть это заряд лепёшки радиуса единичной толщины. Отсюда мы получаем результат:

напряжённость поля во всех точках цилиндрической поверхности радиуса .
Эта формула убивает все проблемы, связанные с цилиндрической симметрией. И, наконец, третий пункт.

3) Поле, создаваемое равномерно заряженной плоскостью. Вот мы имеем плоскость YZ, заряженную до бесконечности. Эта плоскость заряжена с постоянной плотностью ?. ? называется поверхностная плотность заряда. Если взять элемент поверхности , то в нём будет заряд . Значит, симметрия такова, что при сдвигах вдоль y и z ничего не меняется, это означает, что производные по y и z от чего угодно должны равняться нулю: . Это означает, что потенциал есть функция x только: . Вот такое следствие. Это означает, что любая плоскость ортогональная оси x является эквипотенциальной поверхностью. На любой такой плоскости ?=const. Силовые линии ортогональны этим плоскостям, значит силовые линии – прямые параллельные оси x. Из соображений симметрии следует, что, если здесь они идут вправо от плоскости, то слева они должны идти влево от плоскости (ожидается, что имеется зеркальная симметрия).
Вопрос, на самом деле, с зеркальной симметрией не такой простой. Вот ещё до не очень давнего времени, ещё на моей памяти, считалось, что зеркальная симметрия, конечно, имеет место в природе, что нет отличия между левым и правым. Но обнаружили в 60-х гг., что на самом деле такая симметрия не выполняется, природа отличает правое от левого. Будет ещё повод об этом поговорить. Но здесь это для нас выполняется.
Пусть – единичный вектор вдоль оси x. В качестве замкнутой поверхности берём цилиндр, прорезающий плоскость с двумя крышками. Напряжённости поля показаны на рисунке.
Интеграл по боковой поверхности ноль, потому что силовые линии скользят по боковой поверхности. Но как площади оснований цилиндра . Если крышки взяты на одинаковых расстояниях от плоскости, то опять вследствие симметрии - функция расстояния до плоскости, тогда мы напишем так: . Тогда мы имеем: , а это заряд, который сидит внутри нашей поверхности.
Отсюда получается: . Что мы видим, что длина цилиндра, ну, расстояние от крышек до плоскости, выпало из формулы, то есть на любом расстоянии от плоскости напряжённость поля одна и та же. Значит поле однородное. Напишем окончательно:


Эта формула автоматически учитывает и знак заряда: если. Вот эта формула даёт исчерпывающее описание поля заряженной плоскости. Если там не плоскость, а площадь конечной толщины, то поле надо разбить на тонкие пластины и вычислять.
Вот заметьте, для точечного заряда напряжённость поля убывает с расстоянием как , для цилиндра – как и для плоскости вообще не убывает.
Два последние случая практически нереализуемые. Тогда какой смысл в этих формулах? Такой: например, эта формула справедлива вблизи середины плоского заряженного куска. Строго такая формула (однородное поле заполняет всё пространство) ни в какой физической ситуации не реализуется.
Поле, создаваемое произвольным распределением заряда.

Поле точечного заряда.

Пусть имеется один точечный заряд q. Это частный случай сферической симметрии. У нас есть формула: , где – заряд внутри сферы радиуса r, но если заряд точки, то для точечного заряда , при любом r. Понятно почему, на любом радиусе внутри сферы точка остаётся точкой. И для точечного заряда . Это поле точечного заряда. Потенциал поля точечного заряда: .

Поле системы точечных зарядов. Принцип суперпозиции.

Пусть мы имеем систему зарядов , тогда напряжённость поля, создаваемая системой точечных зарядов, в любой точке равна сумме напряжённостей, создаваемых каждым из зарядов. Я мог бы сразу написать , если бы вы свободно читали формулы. Учитесь читать формулы повествовательно. Заряд умножьте на вектор , и разделите на модуль этого вектора, а что такое модуль вектора это длина. Эта вся штука даёт вектор, направленный вдоль вектора .
То, что поля складываются это совершенно не очевидно. Это следствие линейности уравнений Максвелла. Уравнения линейны по . Это означает, что, если вы нашли два решения, то они складываются. Бывают ли поля, для которых не выполняется принцип суперпозиции? Бывают. Гравитационное поле не в ньютоновской теории, а в правильной, не удовлетворяет принципу суперпозиции. Земля создаёт в некоторой точке определённую напряжённость. Луна тоже. Поставили Землю и Луну, напряжённость в точке не равна сумме напряжённостей. Уравнение поля не линейно, физически это означат, что гравитационное поле является само себе источником. Так. Всё, конец.

4

В прошлый раз мы остановились на обсуждении поля, создаваемом системой зарядов. И мы видели, что поля, создаваемые каждым зарядом в отдельности в данной точке, складываются. При этом я подчеркнул, что это не самая очевидная вещь, - это свойство электромагнитного взаимодействия. Физически оно связано с тем, что поле само для себя не является источником, формально это следствие того, что уравнения линейны. Есть примеры физических полей, которые сами для себя являются источником. То есть, если в каком-то объёме это поле есть, так оно создаёт само поле в окружающем пространстве, формально это проявляется в том, что уравнения не линейны. Я там написал формулу для напряжённости , напишем ещё формулу для потенциала.

Потенциал системы точечных зарядов.

Имеется система зарядов и т.д. И тогда для некоторой точки мы напишем такую формулу: . Значит, вот такой рецепт для потенциала. Напряжённость равна сумме напряжённостей, потенциал равен сумме потенциалов.

Замечание. Практически всегда удобнее вычислять потенциал, а не напряжённость, по понятным причинам: напряжённость – это вектор, и векторы надо складывать по правилу сложения векторов, ну, правилу параллелограмма, это занятие, конечно, более скучное, чем складывать числа, потенциал – это скалярная величина. Поэтому, практически всегда, когда мы имеем достаточно плотное распределение заряда, ищем потенциал, напряжённость поля потом находим по формуле: .1)
Поле, создаваемое произвольным ограниченным распределением заряда1).

Ну, что тут означает эпитет «ограниченный»? То, что заряд локализован в конечной области пространства, то есть мы можем охватить этот заряд замкнутой поверхностью такой, что вне этой поверхности заряда нет. Понятно, что с точки зрения физики это не ограничение, ну, и, действительно, мы имеем дело практически всегда только с ограниченными распределениями, нет такой ситуации, чтобы заряд был размазан по всей вселенной, он концентрируется в определённых областях.

Вот такая
 
     
Бесплатные рефераты
 
Банк рефератов
 
Бесплатные рефераты скачать
| Интенсификация изучения иностранного языка с использованием компьютерных технологий | Лыжный спорт | САИД Ахмад | экономическая дипломатия | Влияние экономической войны на глобальную экономику | экономическая война | экономическая война и дипломатия | Экономический шпионаж | АК Моор рефераты | АК Моор реферат | ноосфера ба забони точики | чесменское сражение | Закон всемирного тяготения | рефераты темы | иохан себастиян бах маълумот | Тарых | шерхо дар борат биология | скачать еротик китоб | Семетей | Караш | Influence of English in mass culture дипломная | Количественные отношения в английском языках | 6466 | чистонхои химия | Гунны | Чистон | Кус | кмс купить диплом о language:RU | купить диплом ргсу цена language:RU | куплю копии дипломов для сро language:RU
 
Рефераты Онлайн
 
Скачать реферат
 
 
 
 
  Все права защищены. Бесплатные рефераты и сочинения. Коллекция бесплатных рефератов! Коллекция рефератов!