Теоретическая часть.
Электростатическое поле - поле, создаваемое покоящимися электрическими зарядами.
Характеристиками этого поля являются напряженность и потенциал ?, которые связаны между собой следующим соотношением: .
В декартовой системе координат: , где единичные орты.
Удобной моделью электрического поля является его изображение в виде силовых и эквипотенциальных линий.
Силовая линия - линия, в любой точке которой направление касательной совпадает с направлением вектора напряженности
Эквипотенциальная поверхность - поверхность равного потенциала.
На практике электростатические поля в свободном пространстве создаются заданием на проводниках - электродах электрических потенциалов.
Потенциал в пространстве между проводниками удовлетворяет уравнению Лапласа:.
В декартовой системе координат оператор Лапласа: .
Решение уравнения Лапласа с граничными условиями на проводниках единственно и дает полную информацию о структуре поля.
Экспериментальная часть.
Схема экспериментальной установки.
Методика эксперимента:
В эксперименте используются следующие приборы: генератор сигналов Г3 (I), вольтметр универсальный B7 (2) c зондом (3), электролитическая ванна (4) с набором электродов различной формы (5).
Устанавливаем в ванну с дистилированной водой электроды. Собираем схему, изображенную на РИС. 1. Ставим переключатель П в положение “U”. Подготавливаем к работе и включаем приборы. Подаем с генератора сигнал частоты f=5 кГц и напряжением U=5 В, затем ставим переключатель П в положение “S”. Далее, помещаем в ванну электроды различной формы ( в зависимости от задания ) и затем, водя по ванне зондом, определяем 4 - эквипотенциальные линии: 1B, 2B, 3B, 4B. И так далее для каждого задания.
Задание №1. Исследование электростатического поля плоского конденсатора.
Таблица 1. Зависимость потенциала ? от расстояния.
? = ? (x),В x y ? = ? (x),В x y ? = ? (x),В x y ? = ? (x),В x y
0 -11 0 1,38 -5 0 2,88 1 0 4,34 7 0
0,14 -10 0 1,62 -4 0 3,13 2 0 4,57 8 0
0,37 -9 0 1,88 -3 0 3,40 3 0 4,8 9 0
0,62 -8 0 2,14 -2 0 3,65 4 0 4,99 10 0
0,82 -7 0 2,37 -1 0 3,88 5 0 4,99 11 0
0,1 -6 0 2,64 0 0 4,10 6 0
Таблица 2. Эквипотенциальные линии.
? = ? (x),В x y ? = ? (x),В x y ? = ? (x),В x y ? = ? (x),В x y
1 -5,7 9 2 -1,6 9 3 2,6 9 4 6,6 9
1 -5,8 6 2 -1,5 6 3 2,5 6 4 6,4 6
1 -5,7 3 2 -1,5 2 3 2,5 3 4 6,5 3
1 -5,7 0 2 -1,5 0 3 2,5 0 4 6,5 0
1 -5,7 -3 2 -1,5 -3 3 2,6 -3 4 6,5 -3
1 -5,7 -6 2 -1,5 -6 3 2,6 -6 4 6,5 -6
1 -5,8 -9 2 -1,5 -9 3 2,6 -9 4 6,5 -9
Обработка результатов измерений.
1). График зависимости .
2). Зависимость .
при x
при
при x>x2
3). Погрешность измерения Е:
.
Е = (Е ? ?Е) = (25 ? 0,15)
4). Силовые и эквипотенциальные линии электростатического поля плоского конденсатора
5). Задача №1.
6). Задача №2.
;
Задание №2. Исследование электростатического поля цилиндрического конденсатора.
Радиусы цилиндров A =3,5 см, В=8,8см
Таблица 3. Зависимость
????r),В r,см ????r),В r,см
0,06 0 2,84 6
0,05 1 3,65 7
0,05 2 4,32 8
0,05 3 4,85 9
0,82 4 4,86 10
1,96 5
Таблица 4. Эквипотенциальные линии.
???(x,y) x y ???(x,y) x y ???(x,y) x y ???(x,y) x y
1 4 0 2 4,9 0 3 6,2 0 4 7,4 0
1 3,5 2 2 4,6 2 3 5,5 3 4 6,9 3
1 2,6 3 2 3 4 3 3,6 5 4 4,5 6
1 0 3,9 2 0 5 3 0 6,2 4 0 7,6
1 -2,6 3 2 -3,1 4 3 -3,7 5 4 -7 3
1 -3,6 2 2 -4,7 2 3 -5,5 3 4 -4,7 6
1 -4,2 0 2 -5,1 0 3 -6,3 0 4 -7,6 0
1 -3,7 -2 2 -4,8 -2 3 -5,3 -3 4 -6,8 -3
1 -2,9 -3 2 -3,2 -4 3 -3,6 -5 4 -4 -6
1 0 -4 2 0 -5,1 3 0 -6,2 4 0 -7,5
1 2,8 -3 2 -3 -4 3 3,6 -5 4 4,1 -6
1 3,6 -2 2 -4,7 -2 3 5,5 -3 4 7 -3
1). График зависимости ????r)
2). График зависимости ????ln r)
3). График зависимости E = E (r).
4). График зависимости E = E (1/r).
5). Эквипотенциальные линии.
6). Расчет линейной плотности ? на электроде.
7). Задача №1.
L = 1м
8). Задача №2.
r1 = 5см, r2 = 8см, l = 0,1м
Задание №3. Исследование электростатического поля вокруг проводников.
Таблица №5.
???(x,y) x y ???(x,y) x y ???(x,y) x y ???(x,y) x y
1 -3,6 8 2 0,8 8 3 5,9 9 4 7,2 3
1 -3,7 7 2 0,7 7 3 5,7 8 4 5,9 2
1 -3,7 6 2 0,5 6 3 5,2 7 4 5,4 1
1 -4 5 2 0,3 5 3 4,7 6 4 5,2 0
1 -4,7 4 2 0,2 4 3 4,4 5 4 5,4 -1
1 -5 3 2 0,1 3 3 4,1 4 4 6,2 -2
1 -5,2 2 2 0,6 -3 3 3,9 3 4 7,6 -3
1 -5,2 1 2 0,7 -4 3 3,8 2
1 -5 0 2 1 -5 3 4,1 -2
1 -4,9 -1 2 1,2 -6 3 4,4 -3
1 -4,7 -2 2 1,4 -7 3 4,8 -4
1 -4,4 -3 2 1,5 -8 3 5,5 -5
1 -4,2 -4 2 1,6 -9 3 6 -6
1 -4 -5 3 6,7 -7
1 -3,7 -6 3 7,3 -8
1 -3,6 -7 3 7,7 -9
1). Потенциал на электродах: пластинке и втулке постоянен, то есть они являются эквипотенциальными поверхностями. Внутри полости потенциал также постоянен.
Таблица 6.
???(x,y) x y
1,97 -3 0
1,95 3 0
1,96 2 -1
1,95 -3 -2
1,95 0 0
1,96 -1 0
2). Распределение потенциала вдоль линии, охватывающей пластинку и расположенной на расстоянии
L = 3 мм от её края.
Таблица 7.
???(x,y) x y
3,05 4 0
1,2 -4,2 0
1,92 0 -2,5
1,99 0 2
1,5 -3 2,1
1,31 -3 -3
2,23 2 -2
2,3 2 15
3). Эквипотенциальные линии.
4). Определение средней напряженности поля в нескольких точках вдоль силовой линии.
.
а).
б).
в).
5). , .
Таблица 8.
X, см y, см ?, Кл/м2 E, В/м ?, Дж/м3
4 0 3,24?10-9 366,6 5,95?10-7
-4,2 0 2,21?10-9 250 2,77?10-7
0 -5 8,85?10-11 10 4,43?10-10
0 2 1,18?10-10 13,3 7,82?10-10
-3 2,7 1,33?10-9 150 9,96?10-8
-3 -3 1,9?10-9 213 2,00?10-7
2 -2 8,23?10-10 93 3,80?10-8
2 1,5 1,02?10-9 116 5,95?10-8
Вывод. В ходе работы получены картины силовых и эквипотенциальных линий плоском и цилиндрическом конденсаторах, а также вокруг проводника, помещенного в электростатическое поле. Установлено, что проводники и полости внутри них в электростатическом поле являются эквипотенциальными поверхностями.
В плоском конденсаторе поле сосредоточено между пластинами, оно является однородным, а потенциал изменяется линейно.
В цилиндрическом конденсаторе поле также сосредоточено между пластинами, его напряженность обратно пропорциональна расстоянию от оси конденсатора до точки измерения. Потенциал изменяется логарифмически.
Поток вектора напряженности поля через коаксиальные с электродами цилиндрические поверхности постоянен, что совпадает с теоретическими предположениями (теорема Гаусса).
НГТУ
5