Чтение RSS
Рефераты:
 
Рефераты бесплатно
 

 

 

 

 

 

     
 
Билеты по физике
Билет №1

В основе МКТ строения лежат три утверждения: вещество состоит из частиц; эти частицы беспорядочно движутся; частицы взаимодействуют друг с другом.

Основные положения

1.Вещество состоит из атомов (молекул). Размеры атомов (молекул) очень малы. Число атомов содержащихся в одном моле – число Авагадро NА=6,022·1023. Моль – количество вещества, в котором содержится столько же атомов и молекул, сколько атомов содержится в углероде массой 0,012 кг.
Оценка размеров молекул: это можно сделать при наблюдении за расплывание капельки масла (оливкового) по поверхности воды. Масло никогда не займет всю поверхность, если сосуд велик. Можно предположить, что при растекании масла по максимальной площади оно образует слой толщиной всего лишь в одну молекулу. Толщину этого слоя нетрудно определить и тем самым оценить размеры молекулы оливкового масла. Массу можно узнать по формуле: m=m0N. Кол-во ве-ва
2.Атомы (молекулы) вещества находятся в непрерывном хаотическом тепловом движении. Наиболее яркое доказательство – броуновское движение (Р. Броун, 1827 г.) мелких частиц,
взвешенных в жидкости, происходящее из-за непрерывных беспорядочных соударений этих частиц с молекулами жидкости. Другой простой экспериментальный факт, доказывающий тепловое движение атомов вещества, это диффузия.
3.Между атомами (молекулами) вещества действуют силы притяжения и отталкивания, зависящие от расстояния между частицами. На далеких расстояниях (превышающих несколько
радиусов молекулы) взаимодействие слабо и носит характер притяжения. С уменьшением расстояния это притяжение сначала несколько возрастает, а затем стремится к нулю. В момент соприкосновения электронных оболочек молекул возникают быстро растущие с уменьшением расстояния силы электростатического отталкивания.
4. строение газов, жидкостей и твердых тел.
Газ: Расстояние между отдельными молекулами (атомами) в газах очень велико по сравнению с размерами самих молекул. Поэтому силы притяжения между молекулами в газе пренебрежимо малы. Следовательно, газы могут неограниченно расширяться, занимая любой предоставленный им объем, а значит и легко сжимается.
Жидкость: Молекулы в жидкости расположены достаточно близко друг к другу, так что при попытке сжатия жидкости возникают большие силы отталкивания. Отсюда малая сжимаемость жидкостей. Молекулы ведут оседлую жизнь, всреднем она равна 10-11с. Жидкости текучи, т.е. не сохраняют свою форму.
Твердые тела: В твердом теле атомы или молекулы могут лишь колебаться вокруг определенных положений равновесия. Поэтому твердые тела сохраняют и форму, и объем. У кристаллических твердых тел центры атомов (молекул) образуют пространственную решетку, в узлах которой находятся атомы вещества. Аморфные твердые тела не обладают жесткой структурой и скорее напоминают застывшие жидкости.

Билет №2

Модель идеального газа

У разреженного газа расстояние между молекулами во много раз превышает их размеры. В этом случае взаимодействие между молекулами пренебрежимо мало и кинетическая энергия молекул много больше потенциальной энергии взаимодействия. Молекулы газа можно рассматривать как очень маленькие твердые шарики. Вместо реального газа, между молекулами которого действуют сложные силы взаимодействия. Идеальный газ – это газ, взаимодействие между молекулами которого пренебрежимо мало. Принимается, что при соударениях между собой и со стенками сосуда молекулы такого газа ведут себя как абсолютно упругие шарики конечных, но весьма малых размеров. Эти соударения происходят по законам, справедливым для абсолютно упругого удара. Существующие в действительности газы при не слишком низких температурах и достаточно малых давлениях – разреженные газы – по своим свойствам близки к идеальному газу.
Средний квадрат скорости молекул. От этой величины зависит средняя кинетическая энергия молекул. Средняя кинетическая энергия молекул имеет очень большое значение во всей молекулярно- кинетической теории. Среднее значение квадрата скорости определяется следующей формулой :


Ур-е МКТ газа:
F- вектор силы, S-площадь, n-концентрация молекул,
v-вектор среднего квадрата скорости, m0 –масса одной молекулы

Билет № 3
Между тремя основными параметрами состояния тела существует связь, называемая – уравнением состояния идеального газа. Концентрация газа (1) NA-постоянная Авогадро, m- масса газа, M- молекулярная масса.
Если подставить (1) в произведение постоянной Больцмана на постоянную Авогадро – универсальная газовая постоянная R=8,31Дж/моль К
Оно записывается в форме зависимости p,V, T. - уравнение состояния идеального газа
R- универсальная газовая постоянная
Изопроцессы – Термодинамические процессы, протекающие в системе с неизменной массой при постоянном значении одного из параметров системы.
Изотермический процесс – Процесс изменения состояния термодинамической системы при постоянной температуре. Для поддержания температуры газа постоянно необходимо, чтобы он мог обмениваться теплотой с большой системой – термостатом.
Иначе при сжатии или расширении температура газа будет менятся. Термостатом может служить атмосферный воздух, если температура его заметно не меняется на протяжении всего процесса. Для газа данной массы произведение давления газа на его объем постоянно, если температура газа не меняется. PV=const при T=const – закон Бойля-Мариотта. В термодинамической диаграмме p-V – кривая линия (Изотерма).
Изобарный процесс - Процесс изменения состояния
термодинамической системы при постоянном давлении.
Для газа данной массы отношение объема к температуре
постоянно, если давление газа не меняется. при p=const, V=const·T –закон Гей-Люссака. Изображается на графике прямой (Изобара). Различным
давлениям соответствует разные изобары.
С ростом давления объем газа при постоянной температуре
согласно закону Бойля-Мариотта уменьшается. В области низких
температур все изобары идеального газа сходятся в точке Т=0.
Но это не означает, что объем реального газа действительно обращается в нуль. Все газы при сильном охлаждении превращаются в жидкости, а к жидкостям уравнение состояния идеального газа неприменимо. Изобарным можно считать расширение газа при нагревании его в цилиндре с подвижным поршнем. Постоянство давления в цилиндре обеспечивается атмосферным давлением на внешнюю поверхность поршня.
Изохронный процесс – процесс изменения состояния термодинамической системы при постоянном объеме. при V=const p=const·T – закон Шарля
Для газа данной массы отношение давления к температуре постоянно, если объем не меняется. В соответствии с уравнением p=const·T все изохоры начинаются в точке Т=0. Значит, давление идеального газа при абсолютном нуле равно нулю. Увеличение давления газа в любой емкости или в электрической лампочке при нагревании является изохорным процессом. Изохорный процесс используется в газовых термометрах постоянного объема. Изображается на графике прямой (Изохора).

Билет № 4

Пусть жидкость занимает часть объема замкнутого сосуда. При любой температуре существует некоторое количество достаточно энергичных молекул внутри жидкости, которые способны разорвать связи с соседними молекулами и вылететь из жидкости. Чем больше температура и при наличии ветра тем быстрее происходит испарение. В то же время в паре, занимающем остальной объем внутри сосуда, всегда найдутся молекулы, которые влетают обратно в жидкость и не могут вылететь обратно. Таким образом, в этом сосуде все время происходят два конкурирующих процесса – испарение и обратная конденсация. Когда число молекул, покидающих жидкость, становится равным числу молекул, возвращающихся обратно, то наступает динамическое равновесие между жидкой и газообразной фазой, говорят, что пар достиг насыщения.
Пар называется ненасыщенным, если его давление меньше давления насыщенного при данной температуре.
Давление насыщенного пара существенно зависит от температуры: чем она выше, тем
больше молекул имеют достаточную энергию, чтобы покинуть жидкость, следовательно, должна возрасти и плотность насыщенного пара.
р0 =nkT. Давление пара р0, при котором жидкость находится в равновесии со своим паром, называется давлением насыщенного пара. Давление насыщеного пара растет не только вследствие повышения температуры жидкости, но и вследствие увеличения концентрации молекул пара.
AB-от увеличение температуры давление возрастает
ВС-при испарении всей жидкости давление при постоянном объеме
возрастает прямо пропорционально абсолютной температуре

Кипение. По мере увеличения температуры жидкости интенсивность испарения увеличивается, жидкость начинает кипеть. При кипении по всему объему жидкости образуются быстро растущие пузырьки пара, которые всплывают на поверхность. Температура кипения жидкости остается постоянной. Это происходит потому, что вся подводимая к жидкости энергия расходуется на превращение ее в пар.
В жидкости всегда присутствуют растворенные газы, которые выделяются на дне и стенках сосуда, а также на взвешенных в жидкости пылинках. Пары жидкости, которые находятся внутри пузырьков, являются насыщенными. С увеличением температуры давление насыщенных паров возрастает и пузырьки увеличиваются в размерах. Под действием выталкивающей силы они всплывают вверх. Если верхние слои жидкости имеют более низкую температуру, то в этих слоях происходит конденсация пара в пузырьках. Давление стремительно падает, и пузырьки захлопываются. Захлопывание происходит настолько быстро, что стенки пузырька, сталкиваясь, производят нечто вроде взрыва. Множество таких микровзрывов создает характерный шум. Когда жидкость достаточно прогреется, пузырьки перестанут захлопываться и всплывут на поверхность. Жидкость закипит. Перед закипанием чайник почти перестает шуметь.
Зависимость давления насыщенного пара от температуры объясняет, почему температура кипения жидкости зависит от давления на ее поверхность. Пузырек пара может расти, когда давления насыщенного пара внутри его немного превосходит давление в жидкости, которое складывается из давления воздуха на поверхность жидкости (внешнее давление) и гидростатического давления столба жидкости. Кипение начинается при температуре, при которой давление насыщенного пара в пузырьках сравнивается с давлением в жидкости. Чем больше внешнее давление, тем выше температура кипения, и наоборот, уменьшая внешнее давление- понижается температура кипения.
У каждой жидкости своя температура кипения, которая зависит от давления насыщенного пара. Чем выше давление насыщенного пара, тем ниже температура кипения соответствующей жидкости, т.к.. при меньших температурах давление насыщенного пара становится равным атмосферному.
Критическая температура- это температура, при которой исчезают различия в физических свойствах между жидкостью и ее насыщенным паром. Представление о критической температуре ввел Д. И. Менделеев. При критической температуре плотность и давление насыщенного пара становятся максимальными, а плотность жидкости, находящейся в равновесии с паром, - минимальной. Особое значение критической температуры состоит в том, что при температуре выше критической ни при каких давлениях газ нельзя обратить в жидкость. Газ, имеющий температуру ниже критической, представляет собой ненасыщенный пар.

Влажность воздуха
Содержание водяного пара в воздухе, т.е. его влажность, можно характеризовать несколькими величинами.
Парциальное давление водяного пара. Атмосферный воздух представляет собой смесь различных газов и водяного пара. Каждый из газов вносит свой вклад в суммарное давление, производимое воздухом на находящиеся в нем тела. Давление, которое производил бы водяной пар, если бы все остальные газы отсутствовали, называют парциальным давлением водяного пара. Парциальное давление водяного пара принимают за один из показателей влажности воздуха. Его выражают в единицах давления – паскалях или в миллиметрах ртутного столба.
Относительная влажность. По парциальному давлению водяного пара еще нельзя судить о том, насколько водяной пар в данных условиях близок к насыщению. Относительная влажность – величина, показывающая, насколько водяной пар при данной температуре близок к насыщению.
Относительной влажностью воздуха называют отношение парциального давления p водяного пара, содержащегося в воздухе при данной температуре, к давлению p0 насыщенного пара при той же температуре, выраженной в процентах:
Психрометр – прибор, с помощью которого измеряют влажность воздуха. Он состоит из двух термометров.

Билет №5
Кристаллы – это твердые тела, атомы или молекулы которых занимают определенные, упорядоченные положения в пространстве. Кристаллы по - разному проводят теплоту и ток в различных направлениях. От направления зависят и оптические свойства кристаллов. Анизотропия – зависимость физических свойств от направления внутри кристалла. Различаются четыре типа кристаллической решетки: 1). Ионные кристаллы – большинство неорганических соединений, например соли, окиси металлов; 2). Атомные кристаллы – кристаллические решетки полупроводников, многие органические твердые тела; 3). Молекулярные кристаллы – бром, метан, нафталин, парафин, многие твердые органические соединения; 4). Металлические кристаллы – металлы. Твердое тело, состоящее из большого числа маленьких кристаллов, называют поликристаллическими. Одиночные кристаллы называют монокристаллами. Аморфные тела не имеют определенной формы в своей структуре строения атома или молекулы, не имеют кристаллической решетки, обладают свойством изотропии. Изотропия – это свойство одинаково передавать тепло, электрический ток по всем направлениям одинаково. Определенной температуры плавления у аморфных тел нет.
Деформацией – наз. изменение формы или объема тела.
Растяните резиновый шнур за концы. Очевидно, участки шнура сместятся друг относительно друга; шнур окажется деформированным — станет длиннее и тоньше. Деформация возникает всегда, когда различные части тела под действием сил перемещаются неодинаково.
Шнур после прекращения действия на него сил возвращается в исходное состояние. Деформации, которые полностью исчезают после прекращения действия внешних сил, называются упругими. Кроме резинового шнура, упругие деформации испытывают пружина, стальные шарики при столкновении и т. д.
Теперь сожмите кусочек пластилина. В ваших руках он легко примет любую форму. Первоначальная форма пластилина не восстановится сама собой. Деформации, которые не исчезают после прекращения действия внешних сил, называются пластическими.
Деформация растяжения (сжатия). Если к однородному стержню, закрепленному одним концом, приложить силу F вдоль оси стержня в направлении от этого конца, то стержень подвергнется деформации растяжения. Деформацию растяжения характеризуют абсолютным удлинением ?l=l-l0 и относительным удлинением
где l0—начальная длина, а l— конечная длина стержня.
Деформацию растяжения испытывают тросы, канаты, цепи в подъемных устройствах, стяжки между вагонами и т.д.
Если на стержень подействовать силой F, направленной к закрепленному концу, то стержень подвергнется деформации сжатия. В этом случае относительная деформация отрицательна: ?
Деформацию сжатия испытывают столбы, колонны и др.
При растяжении или сжатии изменяется площадь поперечного сечения тела.
Деформация сдвига.
Деформацию, при которой происходит смещение слоев тела друг относительно друга, называют деформацией сдвига.
Если силу F увеличить в 2 раза, то и угол увеличится в 2 раза. Опыты показывают, что при упругих деформациях угол сдвига прямо пропорционален модулю F приложенной силы.
Деформациям сдвига подвержены все балки в местах опор, заклепки и болты, скрепляющие детали, и т.д
Изгиб и кручение. Более сложными видами деформаций являются изгиб и кручение. Деформацию изгиба испытывает, например, нагруженная балка. Кручение происходит при завертывании болтов, вращении валов машин, сверл и т. д. Эти деформации сводятся к неоднородному растяжению или сжатию и неоднородному сдвигу.

Билет 6.
Внутренняя энергия - это энергия движения и взаимодействия частиц, из которых состоит тело.Внутренняя энергия зависит от температуры тела, его агрегатного состояния, от химических, атомных и ядерных реакций. Она не зависит ни от механического движения тела, ни от положения этого тела относительно других тел. Внутреннюю энергию можно изменить путем совершения работы и теплопередачи. Если над телом совершается работа, то внутренняя энергия тела увеличивается, если же это тело совершает работу, то его внутренняя энергия уменьшается. Виды теплопередачи: теплопроводность, конвекция и излучение.
Первый закон термодинамики.
Закон сохранения и превращения энергии, распространенный на тепловые явления, носит название первого закона термодинамики.
Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:
?U=А+Q
Если система изолирована, то над ней не совершается работа (A==0) и она не обменивается теплотой с окружающими телами (Q==0). В этом случае согласно первому закону термодинамики ?U=U2— U1 или U2=U1. Внутренняя энергия изолированной системы остается неизменной (сохраняется).
Часто вместо работы А внешних тел над системой рассматривают работу A' системы над внешними телами. Учитывая, что A'= -A первый закон термодинамики в форме можно записать так:Q=?U+A’
Количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на совершение системной работы над внешними телами.
Изохорный процесс. При изо хор-ном процессе объем газа не меняется и поэтому работа газа равна нулю. Изменение внутренней энергии согласно уравнению Q=?U+A’ равно количеству переданной теплоты:
?U =Q. Если газ нагревается, то Q>0 и ?U >0, его внутренняя энергия увеличивается. При охлаждении газа Q0), то он совершает положительную работу (А'>0). Если, напротив, газ отдает теплоту окружающей среде (термостату), то Q0, если направление тока совпадает с условно выбранным положительным направлением вдоль проводника. В противном случае I
Сила тока зависит от заряда, переносимого каждой частицей, концентрации частиц, скорости их направленного движения и площади поперечного сечения проводника. Измеряется в (А).
Для возникновения и существования постоянного электрического тока в веществе необходимо, во-первых, наличие свободных заряженых частиц. Если положительные и отрицательные заряды связаны друг с другом в атомах или молекулах, то их перемещение не приведет к появлению электрического тока.
Для создания и поддержания упорядоченного движения заряженных частиц необходима, во-вторых, сила, действующая на них в определенном направлении. Если эта сила перестанет действовать, то упорядоченное движение заряженных частиц прекратится из-за сопротивления, оказываемого их движению ионами кристаллической решетки металлов или нейтральными молекулами электролитов.
На заряженные частицы, как мы знаем, действует электрическое поле с силой F=qE. Обычно именно электрическое поле внутри проводника служит причиной, вызывающей и поддерживающей упорядоченное движение заряженных частиц. Только в статическом случае, когда заряды покоятся, электрическое поле внутри проводника равно нулю.
Если внутри проводника имеется электрическое поле, то между концами проводника существует разность потенциалов. Когда разность потенциалов не меняется во времени, то в проводнике устанавливается постоянный электрический ток

Закон Ома. Наиболее простой вид имеет вольт-амперная характеристика металлических проводников и растворов электролитов. Впервые (для металлов) ее установил немецкий ученый Георг Ом, поэтому зависимость силы тока от напряжения носит название закона Ома.
Закон Ома для участка цепи: сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению:
Доказать экспериментально справедливость закона Ома трудно.
Сопротивление. Основная электрическая характеристика проводника — сопротивление. От этой величины зависит сила тока в проводнике при заданном напряжении. Сопротивление проводника представляет собой как бы меру противодействия проводника установлению в нем электрического тока. С помощью закона Ома можно определить сопротивление проводника:
Для этого нужно измерить напряжение и силу тока.
Сопротивление зависит от материала проводника и его геометрических размеров. Сопротивление проводника длиной l с постоянной площадью поперечного сечения S равно:
где р — величина, зависящая от рода вещества и его состояния (от температуры в первую очередь). Величину р называют удельным сопротивлением проводника. Удельное сопротивление численно равно сопротивлению проводника, имеющего форму куба с ребром 1 м, если ток направлен вдоль нормали к двум противоположным граням куба.
Проводник имеет сопротивление 1 Ом, если при разности потенциалов 1 В сила тока в нем 1 А.
Единицей удельного сопротивления является 1 Ом-м.
Последовательное соединение проводников. При последовательном соединении электрическая цепь не имеет разветвлений. Все проводники включают в цепь поочередно друг за другом.
Сила тока в обоих проводниках одинакова, т.е. I1=I2=I так как в проводниках электрический заряд в случае постоянного тока не накапливается и через любое поперечное сечение проводника за определенное время проходит один итот же заряд.
Напряжение на концах рассматриваемого участка цепи складывается из напряжений на первом и втором проводниках: U=U1+U2
Полное сопротивление всего участка цепи при последовательном соединении равно: R=R1+ R1
Работа тока.
эта работа равна: A=IU?t
Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого совершалась работа.
Нагревание происходит, если сопротивление провода высокое
Мощность тока. Любой электрический прибор (лампа, электродвигатель) рассчитан на потребление определенной энергии в единицу времени. Мощность тока равна отношению работы тока за время ?t к этому интервалу времени. Согласно этому определению

Билет №13
Электродвижущая сила
Электродвижущая сила в замкнутом контуре представляет собой отношение работы сторонних сил при перемещении заряда вдоль контура к заряду:
Электродвижущую силу выражают в вольтах.
Электродвижущая сила гальванического элемента есть работа сторонних
сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому.

Сопротивление источника часто называют внутренним сопротивлением в отличие от внешнего сопротивления R цепи. В генераторе r — это сопротивление обмоток, а в гальваническом элементе — сопротивление раствора электролита и электродов. Закон Ома для замкнутой цепи связывает силу тока в цепи, ЭДС и полное сопротивление R+r цепи.
Произведение силы тока и сопротивления участка цепи часто называют падением напряжения на этом участке. Таким образом, ЭДС равна сумме падений напряжений на внутреннем и внешнем участках замкнутой цепи.
Обычно закон Ома для замкнутой цепи записывают в форме
Сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.
Сила тока зависит от трех величин: ЭДС ?, сопротивлений R и r внешнего и внутреннего участков цепи. Внутреннее сопротивление источника тока не оказывает заметного влияния на силу тока, если оно мало по сравнению с сопротивлением внешней части цепи (R>>r). При этом напряжение на зажимах источника приблизительно равно ЭДС:
U=IR??.
При коротком замыкании, когда R?0, сила тока в цепи определяется именно внутренним сопротивлением источника и при электродвижущей силе в несколько вольт может оказаться очень большой, если r мало (например, у аккумулятора r?0,1—0,001 Ом). Провода могут расплавиться, а сам источник выйти из строя.
Если цепь содержит несколько
последовательно соединенных элементов с ЭДС ?1, ?2, ?3 и т.д., то полная ЭДС цепи равна алгебраической сумме ЭДС отдельных элементов.
Если при обходе цепи переходят от отрицательного полюса источника к положительному, то ЭДС >0.
Билет № 13
Взаимодействия между проводниками с током, т. е. взаимодействия между движущимися электрическими зарядами, называют магнитными. Силы, с которыми проводники с током действуют друг на друга, называют магнитными силами.
Магнитное поле. Согласно теории близкодействия ток в одном из проводников не может непосредственно действовать на ток в другом проводнике.
В пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле, в пространстве, окружающем токи, возникает поле, называемое магнитным.
Электрический ток в одном из проводников создает вокруг себя магнитное поле, которое действует на ток во втором проводнике. А поле, созданное электрическим током второго проводника, действует на первый.
Магнитное поле представляет собой особую форму материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.
Свойства магнитного поля:
1. Магнитное поле порождается электрическим током (движущимися зарядами).
2. Магнитное поле обнаруживается по действию на электрический ток (движущиеся заряды).
Подобно электрическому полю, магнитное поле существует реально, независимо от нас, от наших знаний о нем.
Магнитная индукция – способность магнитного поля оказывать силовое действие на проводник с током (векторная величина). Измеряется в Тл.
За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле. Это направление совпадает с направлением положительной нормали к замкнутому контуру с током.
Направление вектора магнитной индукции устанавливают с помощью правиле буравчика:
если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции.
Линии магнитной индукции.
Линия, в любой точке которой вектор магнитной индукции направлен по касательной – линии магнитной индукции. Однородное поле – параллельные линии, неоднородное поле – кривыми линиями. Чем больше линий, тем больше сила этого поля. Поля с замкнутыми силовыми линиями называют вихревыми. Магнитное поле - вихревое поле.
Магнитный поток. –величина равная произведению модуля вектора магнитной индукции на площадь и на косинус угла между вектором и нормалью к поверхности.
Сила Ампера равна произведения вектора магнитной индукции на силу тока, длину участка проводника и на синус угла между магнитной индукцией и участком проводника.
Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называю силой Лоренца. Эту силу можно найти с помощью закона Ампера.
Модуль силы Лоренца равен отношению модуля силы F, действующей на участок проводника длиной (l, к числу N заряженных частиц, упорядочение движущихся на этом участке проводника:
Направление с помощью правила левой руки: Если левую руку расположить так, чтобы составляющая магнитной индукции В, перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90° большой палец покажет направление действующей на заряд силы Лоренца.
Так как сила Лоренца перпендикулярна скорости частицы, то. она не совершает работу.
Силу Ампера применяют в громкоговарителях, динамиках.
Принцип работы: По катушке протекает переменный электрический ток с частотой, равной звуковой частоте от микрофона или с выхода радиоприемника. Под действием силы Ампера катушка колеблется вдоль оси громкоговорителя в такт с колебаниями тока. Эти колебания передаются диафрагме, и поверхность диафрагмы излучает звуковые волны.
Силу Лоренца применяют в телевизорах, масс-спектограф.
Принцип работы: Вакуумная камера прибора помещена в магнитное поле. Ускоренные электрическим полем заряженные частицы (электроны или ионы), описав дугу, попадают на фотопластинку, где оставляют след, позволяющий с большой точностью измерить радиус траектории. По этому радиусу определяется удельный заряд иона. Зная же заряд иона, легко определить его массу.

Билет № 15
Экспериментальное доказательство существования свободных электронов в металлах. Экспериментальное доказательство того, что проводимость металлов обусловлена движением свободных электронов, было дано в опытах Л. И. Мандельштама и Н. Д. Папалекси.
На катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам, изолированным друг от друга. К концам дисков при помощи скользящих контактов присоединяют гальванометр.
Катушку приводят в быстрое движение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы некоторое время движутся относительно проводника по инерции, и, следовательно, в катушке возникнет электрический ток. Ток существует незначительное время, так как из-за сопротивления проводника заряженные частицы тормозятся и упорядоченное движение частиц, образующее ток, прекращается.
Направление тока говорит о том, что он создается движением отрицательно заряженных частиц.
Если пропустить ток от аккумулятора через стальную спираль, а затем начать нагревать ее в пламени горелки, то амперметр покажет уменьшение силы тока. Это означает, что с изменением температуры сопротивление проводника меняется.
Если при температуре, равной 0° С, сопротивление проводника равно Ro, а при температуре t оно равно R, то относительное изменение сопротивления, как показывает опыт, прямо пропорционально изменению температуры t:

Коэффициент пропорциональности ? называют температурным коэффициентом сопротивления. Он характеризует зависимость сопротивления вещества от температуры. Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при нагревании на 1 К. Для всех металлических проводников ?>0 и незначительно меняется с изменением температуры. У чистых металлов.

У растворов электролитов сопротивление с ростом температуры не увеличивается, а уменьшается. Зависимость удельного сопротивления от от температуры:
В 1911 г. голландский физик Камерлинг-Оннес открыл замечательное явление — сверхпроводимость. Он обнаружил, что при охлаждении ртути в жидком гелии ее сопротивление сначала меняется постепенно, а затем при температуре 4,1 К очень резко падает до нуля. Это явление было названо сверхпроводимостью.
Сверхпроводимость наблюдается при очень низких температурах — около 25 К.
Если в кольцевом проводнике, находящемся в сверхпроводящем состоянии, создать ток, а затем устранить источник электрического тока, то сила этого тока не меняется сколь угодно долго. В обычном же несверхпроводящем проводнике электрический ток в этом случае прекращается.
Сверхпроводники находят широкое применение. Так, сооружают мощные электромагниты со сверхпроводящей обмоткой, которые создают магнитное поле на протяжении длительных интервалов времени без затрат энергии. Ведь выделения теплоты в сверхпроводящей обмотке не происходит.
Однако получить сколь угодно сильное магнитное поле с помощью сверхпроводящего магнита нельзя. Очень сильное магнитное поле разрушает сверхпроводящее состояние. Такое поле может быть создано током в самом сверхпроводнике. Поэтому для каждого проводника в сверхпроводящем состоянии существует критическое значение силы тока, превзойти которое, не нарушая сверхпроводящего состояния, нельзя.

Билет №16
Жидкости, как и твердые тела, могут быть диэлектриками, проводниками и полупроводниками. К числу диэлектриков относится дистиллированная вода, к проводникам — растворы и расплавы электролитов: кислот, щелочей и солей. Жидкими полупроводниками являются расплавленный селен, расплавы сульфидов и др.
Электролитическая диссоциация.
При растворении электролитов под влиянием электрического поля полярных молекул воды происходит распад молекул электролитов на ионы. Этот процесс называется электролитической диссоциацией.
Степень диссоциации, т. е. доля молекул в растворенном веществе, распавшихся на ионы, зависит от температуры, концентрации раствора и диэлектрической проницаемости е растворителя. С увеличением температуры степень диссоциации возрастает и, следовательно, увеличивается концентрация положительно и отрицательно заряженных ионов.
Ионы разных знаков при встрече могут снова объединиться в нейтральные молекулы — рекомбинировать. При неизменных условиях в растворе устанавливается динамическое равновесие, при котором число молекул, распадающихся за секунду на ионы, равно числу пар ионов, которые за то же время вновь объединяются в нейтральные молекулы.
Ионная проводимость. Носителями заряда в водных растворах или расплавах электролитов являются положительно и отрицательно заряженные ионы.
Если сосуд с раствором электролита включить в электрическую цепь, то отрицательные ионы начнут двигаться к положительному электроду — аноду, а положительные — к отрицательному — катоду. В результате установится электрический ток. Поскольку перенос заряда в водных растворах или расплавах электролитов осуществляется ионами, такую проводимость называют ионной.
Электролиз. При ионной проводимости прохождение тока связано с переносом вещества. На электродах происходит выделение веществ, входящих в состав электролитов. На аноде отрицательно заряженные ионы отдают свои лишние электроны, а на катоде положительные ионы получают недостающие электроны. Процесс выделения на электроде вещества, связанный с окислительно-восстановительными реакциями, называют электролизом.
Очевидно, что масса выделившегося вещества равна произведению массы одного иона m0j на число ионов Nj, достигших электрода за время ?t: m= m0j Nj. Масса иона
где М — молярная (или атомная) масса вещества, а
Число ионов, достигших электрода, равно:
Закона электролиза Фарадея. масса вещества выделившегося на электроде за.время ?t при прохождении электрического тока, пропорциональна силе тока и времени.
Применения электролиза.
Электролитическим путем покрывают поверхность одного металла тонким слоем другого {никелирование, хромирование, омеднение и т. п.). Это прочное покрытие защищает поверхность от коррозии.
В полиграфической промышленности такие копии (стереотипы) получают с матриц (оттиск набора на пластичном материале), для чего осаждают на матрицах толстый слои железа или другого материала. Это позволяет воспроизвести набор в нужном количестве экземпляров.
При помощи электролиза осуществляют очистку металлов от примесей. Так, полученную из руды неочищенную медь отливают в форме толстых листов, которые затем помещают в ванну в качестве анодов. При электролизе медь анода растворяется, примеси, содержащие ценные и редкие металлы, выпадают на дно, а на катоде оседает чистая медь.

Билет№17
Наиболее отчетливо полупроводники отличаются от проводников характером зависимости электропроводимости от температуры. Измерения показывают, что у ряда элементов (кремний, германий, селен и др.) удельное сопротивление с увеличением температуры не растет, как у мета
 
     
Бесплатные рефераты
 
Банк рефератов
 
Бесплатные рефераты скачать
| мероприятия при чрезвычайной ситуации | Чрезвычайная ситуация | аварийно-восстановительные работы при ЧС | аварийно-восстановительные мероприятия при ЧС | Интенсификация изучения иностранного языка с использованием компьютерных технологий | Лыжный спорт | САИД Ахмад | экономическая дипломатия | Влияние экономической войны на глобальную экономику | экономическая война | экономическая война и дипломатия | Экономический шпионаж | АК Моор рефераты | АК Моор реферат | ноосфера ба забони точики | чесменское сражение | Закон всемирного тяготения | рефераты темы | иохан себастиян бах маълумот | Тарых | шерхо дар борат биология | скачать еротик китоб | Семетей | Караш | Influence of English in mass culture дипломная | Количественные отношения в английском языках | 6466 | чистонхои химия | Гунны | Чистон
 
Рефераты Онлайн
 
Скачать реферат
 
 
 
 
  Все права защищены. Бесплатные рефераты и сочинения. Коллекция бесплатных рефератов! Коллекция рефератов!