место в сложившихся математических теориях. Тем самым факт существо-
вания математики был поставлен под сомнение. Какими же путями разре-
шались противоречия, выявленные Зеноном ?
Простейшим выходом из создавшегося положения бал отказ от абс-
тракций в пользу того, что можно непосредственно проверить с помощью
ощущений. Такую позицию занял софист Протагор. Он считал, что "мы не
можем представить себе ничего прямого или круглого в том смысле, как
представляет эти термины геометрия; в самом деле, круг касается пря-
мой не в одной точке". Таким образом, из математики следует убрать
как ирреальные: представления о бесконечном числе вещей, так как
никто не может считать до бесконечности;бесконечную делимость, пос-
кольку она неосуществима практически и т.д. Таким путем математику
можно сделать неуязвимой для рассуждений Зенона, но при этом практи-
чески упраздняется теоретическая математика. Значительно сложнее бы-
ло построить систему фундаментальных положений математики, в которой
бы выявленные Зеноном противоречия не имели бы места. Эту задачу ре-
шил Демокрит, разработав концепцию математического атомизма.
Демокрит бал, по мнению Маркса, "первым энциклопедическим умом
среди греков". Диоген Лаерций (III в. н.э.) называет 7О его сочине-
ний, в которых были освещены вопросы философии, логики, математики,
космологии, физики, биологии, общественной жизни, психологии, этики,
педагогики, филологии, искусства, техники и другие. Аристотель писал
о нем: "Вообще, кроме поверхностных изысканий, никто ничего не уста-
новил, исключая Демокрита. Что же касается его, то получается такое
впечатление, что он предусмотрел все, да и в методе вычислений он
выгодно отличается от других".
Вводной частью научной системы Демокрита была "каноника", в ко-
торой формулировались и обосновывались принципы атомистической фило-
софии. Затем следовала физика, как наука о различных проявлениях бы-
тия, и этика. Каноника входила в физику в качестве исходного разде-
ла, этика же строилась как порождение физики. В философии Демокрита
прежде всего устанавливается различие между "подлинно сущим" и тем,
что существует только в "общем мнении". Подлинно сущими считались
лишь атомы и пустота. Как подлинно сущее, пустота (небытие) есть та-
кая же реальность, как атомы (бытие). "Великая пустота" безгранична
и заключает в себе все существующее, в ней нет ни верха, ни низа, ни
края, ни центра, она делает прерывной материю и возможным ее движе-
ние. Бытие образуют бесчисленные мельчайшие качественно однородные
первотельца, различающиеся между собой по внешним формам, размеру,
положению и порядку, они далее неделимы вследствие абсолютной твер-
дости и отсутствия в них пустоты и "по величине неделимы". Атомам
самим по себе свойственно непрестанное движение, разнообразие кото-
рого определяется бесконечным разнообразием форм атомов. Движение
атомов вечно и в конечном итоге является причиной всех изменений в
мире.
Задача научного познания, согласно Демокриту, чтобы наблюдаемые
явления свести к области "истинного сущего" и дать им объяснение ис-
ходя из общих принципов атомистики. Это может быть достигнуто пос-
редством совместной деятельности ощущений и разума. Гносеологическую
позицию Демокрита Маркс сформулировал следующим образом: "Демокрит
не только не удалялся от мира, а, наоборот, был эмпирическим естест-
воиспытателем". Содержание исходных философских принципов и гносео-
логические установки определили основные черты научного метода Де-
мокрита:
а) В познании исходить от единичного;
б) Любые предмет и явление разложимы до простейших элементов
(анализ) и объяснимы исходя из них (синтез);
в) Различать существование "по истине" и "согласно мнению";
г) Явления действительности - это отдельные фрагменты упорядо-
ченного космоса, который возник и функционирует в результате дейс-
твий чисто механической причинности.
Математика по праву должна считаться у Демокрита первым разде-
лом собственно физики и следовать непосредственно за каноникой. В
самом деле, атомы качественно однородны и их первичные свойства име-
ют количественный характер. Однако было бы неправильно трактовать
учение Демокрита как разновидность пифагореизма, поскольку Демокрит
хотя и сохраняет идею господства в мире математической закономернос-
ти, но выступает с критикой априорных математических построений пи-
фагорейцев, считая, что число должно выступать не законодателем при-
роды, а извлекаться из нее. Математическая закономерность выявляется
Демокритом из явлений действительности, и в этом смысле он предвос-
хищает идеи математического естествознания. Исходные начала матери-
ального бытия выступают у Демокрита в значительной степени как мате-
матические объекты, и в соответствии с этим математике отводится
видное место в системе мировоззрения как науке о первичных свойствах
вещей. Однако включение математики в основание мировоззренческой
системы потребовало ее перестройки, приведения математики в соот-
ветствие с исходными философскими положениями, с логикой, гносеоло-
гией, методологией научного исследования. Созданная таким образом
концепция математики, называемая концепцией математического атомиз-
ма, оказалась существенно отличной от предыдущих.
У Демокрита все математические объекты (тела, плоскости, линии,
точки) выступают в определенных материальных образах. Идеальные
плоскости, линии, точки в его учении отсутствуют. Основной процеду-
рой математического атомизма является разложение геометрических тел
на тончайшие листики (плоскости), плоскостей - на тончайшие нитки
(линии), линий - на мельчайшие зернышки (атомы). Каждый атом имеет
малую, но ненулевую величину и далее неделим. Теперь длина линии оп-
ределяется как сумма содержащихся в ней неделимых частиц. Аналогично
решается вопрос о взаимосвязи линий на плоскости и плоскостей в те-
ле. Число атомов в конечном объеме пространства не бесконечно, хотя
и настолько велико, что недоступно чувствам. Итак, главным отличием
учения Демокрита от рассмотренных ранее является отрицание им беско-
нечной делимости. Таким образом он решает проблему правомерности те-
оретических построений математики, не сводя их к чувственно воспри-
нимаемым образам, как это делал Протагор. Так, на рассуждения Прота-
гора о касании окружности и прямой Демокрит мог бы ответить, что
чувства, являющиеся отправным критерием Протагора, показывают ему,
что чем точнее чертеж, тем меньше участок касания; в действительнос-
ти же этот участок настолько мал, что не поддается чувственному ана-
лизу, а относится к области истинного познания.
Руководствуясь положениями математического атомизма, Демокрит
проводит ряд конкретных математических исследований и достигает вы-
дающихся результатов (например, теория математической перспективы и
проекции). Кроме того, он сыграл, по свидетельству Архимеда, немало-
важную роль в доказательстве Эвдоксом теорем об объеме конуса и пи-
рамиды. Нельзя с уверенностью сказать, пользовался ли он при решении
этой задачи методами анализа бесконечно малых. А.О.Маковельский пи-
шет: "Демокрит вступил на путь, по которому дальше пошли Архимед и
Кавальери. Однако, подойдя вплотную к понятию бесконечно малого, Де-
мокрит не сделал последнего решительного шага. Он не допускает безг-
раничного увеличения числа слагаемых, образующих в своей сумме дан-
ный объем. Он принимает лишь чрезвычайно большое, не поддающееся ис-
числению вследствие своей огромности число этих слагаемых".
Выдающимся достижением Демокрита в математике явилась также его
идея о построении теоретической математики как системы. В зародыше-
вой форме она представляет собой идею аксиоматического построения
математики, которая затем была развита в методологическом плане Пла-
тоном и получила логически развернутое положение у Аристотеля.