Синтез белков.
Расщепление.
Расщепление в желудке (кислая среда).
Всасывание в тонком кишечнике.
На нужды организма: CO2, Н2О, NH3
-выведение.
(аминокислоты выстраиваются в
различные последовательности).
Жиры Углеводы.
белки
(алиментарная дистрофия – необратимая)
Весь синтез белков состоит из двух процессов: транскрипции и трансляции.
1. Транскрипция – процесс считывания, синтез РНК, осуществляемый РНК полимеразой. Процесс идёт с одной цепи ДНК. Транскрипция производится одним или несколькими генами, отвечающих за синтез определённого белка. У прокариотов этот участок называется опероном.
2. В начале каждого оперона находится площадка для РНК полимеразы – промотр – специальная последовательность нуклеотидов РНК, которую фермент определяет благодаря химическому средству. Присоединяется к просмотру и начинается синтез иРНК. Дойдя до конца оперона фермент встречает сигнал (определённую последовательность нуклеотидов), который означает конец считывания.
Стадии процесса:
1. Связывание РНК полимеразы с промотором.
2. Инициация – начало синтеза.
3. Элонгация – рост цепочки РНК. V=50 нуклеотидов/секунда.
4. Терминация – завершение синтеза.
Трансляция – происходит в ядре на рибосомах.
Этапы:
1. Аминокислоты доставляют тРНК к рибосомам. Кодоны шифруют аминокислоты.
На вершине тРНК имеется последовательность трёх нуклеотидов, компланарных нуклеотидам кодона в иРНК, - антикодон. Фермент определяет антикодон и присоединяет тРНК аминокислоту.
2. На рибосоме тРНК переводит с «языка» нуклеотидов на «язык» аминокислот. Далее аминокислоты отрываются от тРНК.
3. Фермент синтеза присоединяет аминокислоту к полипептидной цепи.
Синтез завершён и готовая цепь отходит от рибосом.
Строение белков.
Белки – это высокомолекулярные соединения, молекулы которых представлены
двадцатью альфа – аминокислотами, соединёнными пептидными связями – СО - NН
-
. Дипепетиды
. Полипептиды.
Мономерами белков являются аминокислоты.
Кислотные свойства аминокислот определятся карбоксильной группой (-СООН),
щелочные – аминогруппой (-NH2). Каждая из 20 аминокислот имеет одинаковую
часть, включающую обе эти группы (-CHNH2 – COOH), и отличается от любой
другой особой химической группировкой R – группой, или радикалом.
Существуют:
. Простые белки – состоящие из одних аминокислот. Например, растительные белки – проламины, белки кровяной плазмы – альбулины и глобулины.
. Сложные белки – помимо аминокислот имеют в своём составе другие органические соединения (нуклеиновые кислоты, липиды, углеводы), соединения фосфора, металлы. Имеют сложные названия нуклеопротеиды, шикопротеиды и т. д.
Простейшая аминокислота – глицерин NH2 – CH2 – COOH.
Но разные аминокислоты могут содержать различные радикалы CH3 – CHNH2 –
COOH
H – O - - CH2 – CHNH2 – COOH
Структура белков.
Образование линейных молекул белков происходит в результате соединения
аминокислот друг с другом. Карбоксильная группа одной аминокислоты
сближается с аминогруппой другой, и при отщеплении молекулы воды между
аминокислотными остатками возникает прочная ковалентная связь, называемая
пептидной.
Типы структур:
. Первичная – определяется последовательностью аминокислот. Из трёх аминокислот – 27 комбинаций, тогда из 20 аминокислот – 101300 длиной каждая не менее 100 остатков, следовательно, продолжается эволюционный процесс.
. Вторичная – спираль, полая внутри, которая удерживается водородными связями, при этом радикалы направлены наружу.
. Третичная – физиологически активная структура, спираль, закрученная в клубок. Отрицательно и положительно заряженные R – группы аминокислот притягиваются и сближают участки белковой цепи, так образуется клубок, поддерживаемый сульфидными мостками (- S – S -).
. Четвертичная структура – некоторые белки, например гемоглобин и инсулин, состоят из нескольких цепей, различающихся по первичной структуре.
В человеческом организме около 100000 белков, молекулярная масса которых
от нескольких тысяч до нескольких миллионов.
История вопроса.
В настоящее время строение и функции большинства белков известны. История
изучения белков началась с исследования Беккари (1878г), который впервые из
пшеничной муки выделил белковое вещество, названное им ''клековиной''.
В 1888 г. А. Я. Данилевский предположил существование в белках -N-S-
химических группировок.
В 1902 г. Э. Фишер предложил пептидную теорию строения белка.
В 1951 г. Л. Полинг разработал модель вторичной структуры белка.
В 1953 г. Сэнгер расшифровал аминокислотную последовательность в инсулине
(гормон поджелудочной железы), а через 10 лет уже тот же инсулин был
получен путем искусственного синтеза из аминокислот. Совершенствование
методов исследования достигло такого уровня, что в настоящее время изучение
структуры белковой молекулы является относительно простым делом и для
большего количества белков установлено их строение (аминокислотный состав и
аминокислотное строение).
Перспективы.
У белков очень сложное строение и на данном этапе развития науки очень
сложно выявить структуру молекул белков.
Первый белок, у которого была расшифрована первичная структура, был
инсулин. Это случилось в 1954 году. Для этого понадобилось около 10 лет.
Синтез белков - очень сложная задача, и если ее решить, то возрастет
количество ресурсов для дальнейшего использования их в технике, медицине
и т.д., а также уже возможен биохимический и синтетический способы
получения пищи.
А.Н. Несмеянов провел широкие исследования в области создания
микробиологической промышленности по производству искусственных продуктов
питания. Практическое осуществление путей получения такой пищи ведется в
двух основных направлениях. Одно из них основано на использовании белков
растений, например сои, а второе - на использовании белков продуктов,
полученных микробиологическим путем из нефти.
В природе широко представлена автоматическая самосборка надмолекулярных
структур и инициатором ее являются белковые молекулы. Это дает надежду
выяснить закономерности формообразования у растений и животных и понять
молекулярные механизмы, обеспечивающие сходство родителей и детей.
Чем глубже химики познают природу и строение белковых молекул, тем более
они убеждаются в исключительном значении получаемых данных для раскрытия
тайны жизни. Раскрытие связи между структурой и функцией в белковых
веществах - вот краеугольный камень, на котором покоится проникновение в
самую глубокую сущность жизненных процессов, вот та основа, которая
послужит в будущем исходным рубежом для нового качественного скачка в
развитии биологии и медицины.
Биологическое значение.
Белки входят в состав живых организмов и являются основными материальными
агентами, управляющими всеми химическими реакциями, протекающими в
организме.
Одной из важнейших функций белков является их способность выступать в
качестве специфических катализаторов (ферментов), обладающих исключительно
высокой каталитической активностью. Без участия ферментов не проходит почти
ни одна химическая реакция в живом организме.
Вторая важнейшая функция белков состоит в том, что они определяют механо - химические процессы в живых организмах, в результате которых поступающая с
пищей химическая энергия непосредственно превращается в необходимую для
движения организма механическую энергию.
Третьей важной функцией белков является их использование в качестве
материала для построения важных составных частей организма, обладающих
достаточной механической прочностью, начиная с полупроницаемых перегородок
внутри клеток, оболочек клеток и их ядер и заканчивая тканями мышц и
различных органов, кожи, ногтей, волос и т.д.
Белки являются необходимой составной частью продуктов питания. Отсутствие
или недостаточное количество их в пище вызывает серьезные заболевания.
Важную роль в жизнедеятельности играют комплексы белков с нуклеиновыми
кислотами - нуклеопротеиды. Из нуклеопротеидов состоят, в частности,
хромосомы, важнейшие составные части ядра клетки, ответственные за хранение
наследственной информации, а также рибосомы - мельчайшие частицы
протоплазмы, в которых происходит синтез белковых молекул.
Белки
(реферат по химии)
Санкт-Петербург, 2003 год
Список литературы:
1. Энциклопедия для детей “Аванта+”. Том 17. Химия. Москва 2000.
2. Ю.А. Овчинников, А.Н. Шамин, «Строение и функции белков», Москва, 1983.
3. В.Г. Жиряков, «Органическая химия», Москва, 1968.
4. Общая биология, учебник для 10-11 класса, Москва, 1999.
Это интересно!
1) Цветные реакции на белки (качественные реакции)
(белок куриного яйца в 100 г воды)
а) ксантопротеиновая: 1 мл раствора + 5-6 капель концентрированной НNO3
ярко - желтый цвет
б) блуретовая: 1-2 мл раствора + щелочь + 2-3 капли CuSO4
красно - фиолетовый цвет.
2) Почему белки боятся тепла.
Связи, поддерживающие пространственную структуру белка, довольно легко
разрушаются. Мы знаем, что при варке яиц прозрачный яичный белок
превращается в упругую белую массу, а молоко при скисании загустевает.
Происходит это из-за разрушения пространственной структуры белков альбумина
в яичном белке и казеина (от лат. caseus — «сыр») в молоке. Такой процесс
называется денатурацией. В первом случае её вызывает нагревание, а во
втором — значительное увеличение кислотности (в результате
жизнедеятельности обитающих в молоке бактерий). При денатурации белок
теряет способность выполнять присущие ему в организме функции (отсюда и
название процесса: от лат. denaturare — «лишать природных свойств»).
Денатурированные белки легче усваиваются организмом, поэтому одной из целей
термической обработки пищевых продуктов является денатурация белков.
-----------------------
Ученик:
Учитель:
Класс:
Школа
????????????????