Чтение RSS
Рефераты:
 
Рефераты бесплатно
 

 

 

 

 

 

     
 
Современные дизельные, судовые и тяжелые моторные топлива

МИНИСТЕРСТВО ОБРАЗОВАНИЯ

РОССИЙСКОЙ ФЕДЕРАЦИИ

УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ

ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра технологии нефти и газа

РЕФЕРАТ

ПО ТЕМЕ:

СОВРЕМЕННЫЕ ДИЗЕЛЬНЫЕ, СУДОВЫЕ И

ТЯЖЕЛЫЕ МОТОРНЫЕ ТОПЛИВА

Студент: Пономарев П.С. ст.гр. ТП-98-01

Преподаватель: Кондрашева Н.К. профессор, д.т.н.

УФА 2003

СОДЕРЖАНИЕ

Глава 1 Дизельные топлива.

1. Свойства дизельных топлив для наземной техники:

1. Самовоспламеняемость (цетановое число)

2. Испаряемость (фракционный состав);

3. Вязкость;

4. Низкотемпературные свойства;

5. Смазывающие (противоизносные);

6. Химическая стабильность;

7. Коррозионная агрессивность;

8. Склонность к нагарообразованию (степень чистоты топлива).

2. Современные и перспективные требования к качеству дизельных топлив. Ассортимент, качество и состав дизельных топлив.

3. Присадки к современным дизельным топливам.

4. Улучшение смазочных свойств дизельных топлив.

5. Современные и перспективные требования к дизельным топливам.

6. Улучшение экологических и эксплуатационных характеристик дизельных топлив.

Глава 2 Судовое маловязкое и тяжелые моторные топлива.

1. Общие физико-химические свойства.

2. Эксплуатационные свойства судового маловязкого и тяжелых моторных топлив:

1. Склонность к образованию отложений;

2. Совместимость топлив;

3. Коррозионная активность;

4. Защитные свойства;

5. Стабильность топлив;

6. Прокачиваемость;

7. Низкотемпературные свойства;

8. Теплота сгорания.

2. Современные и перспективные требования к качеству тяжелых моторных и судового маловязкого топлива.

3. Ассортимент, качество и состав тяжелых видов моторных топлив.

ГЛАВА 1

Дизельные топлива

1. Свойства дизельных топлив для наземной техники

Дизельное топливо предназначено для быстроходных дизельных и газотурбинных двигателей наземной и судовой техники. Условия смесеобразования и воспламенения топлива в дизелях отличаются от таковых в карбюраторных двигателях. Преимуществом первых является возможность осуществления высокой степени сжатия (до 18 в быстроходных дизелях), вследствие чего удельный расход топлива в них на 25—30 % ниже, чем в карбюраторных двигателях. В то же время дизели отличаются большей сложностью в изготовлении, большими габаритами. По экономичности и надежности работы дизели успешно конкурируют с карбюраторными двигателями.

Основные эксплуатационные показатели дизельного топлива: цетановое число, определяющее высокие мощностные и экономические показатели работы двигателя; фракционный состав, определяющий полноту сгорания, дымность и токсичность отработавших газов двигателя; вязкость и плотность, обеспечивающие нормальную подачу топлива, распыливание в камере сгорания и работоспособность системы фильтрования; низкотемпературные свойства, определяющие функционирование системы питания при отрицательных температурах окружающей среды и условия хранения топлива степень чистоты, характеризующая надежность работы фильтров грубой и тонкой очистки и цилиндропоршневой группы двигателя; температура вспышки, определяющая условия безопасности применения топлива в дизелях; наличие сернистых соединений, непредельных углеводородов и металлов, характеризующее нагарообразование, коррозию и износ. [3]

1. Самовоспламеняемость (цетановое число)

Цетановое число — основной показатель воспламеняемости дизельного топлива. Оно определяет запуск двигателя, жесткость рабочего процесса
(скорость нарастания давления), расход топлива и дымность отработавших газов. Чем выше цетановое число топлива, тем ниже скорость нарастания давления и тем менее жестко работает двигатель. Однако с повышением цетанового числа топлива сверх оптимального, обеспечивающего работу двигателя с допустимой жесткостью (менее 0,5 МПа/°ПВК), ухудшается его экономичность в среднем на 0,2—0,3 % и дымность отработавших газов на единицу цетанового числа повышается на 1—1,5 единицы Хартриджа.

Чем выше цетановое число топлива, тем быстрее произойдут процессы предварительного окисления его в камере сгорания, тем скорее воспламенится смесь и запустится двигатель. Ниже приведены данные по влиянию цетанового числа на время запуска двигателя:

Цетановое число 53 38

Время запуска, с 3 45-50

Цетановое число топлив зависит от их углеводородного состава.
Наиболее высокими цетановыми числами обладают нормальные парафиновые углеводороды, причем с повышением их молекулярной массы оно повышается, а по мере разветвления — снижается. Самые низкие цетановые числа у ароматических углеводородов, не имеющих боковых цепей; ароматические углеводороды с боковыми цепями имеют более высокие цетановые числа и тем больше, чем длиннее боковая парафиновая цепь. Непредельные углеводороды характеризуются более низкими цетановыми числами, чем соответствующие им по строению парафиновые углеводороды. Нафтеновые углеводороды обладают невысокими цетановыми числами, но большими, чем ароматические углеводороды. Чем выше температура кипения топлива, тем выше цетановое число, и эта зависимость носит почти линейный характер; лишь для отдельных фракций цетановое число может снижаться, что объясняется их углеводородным составом. [3]

Цетановые числа дизельных топлив различных марок, вырабатываемых отечественной промышленностью, характеризуются следующими значениями:

Марка дизельного топлива Л 3(-35°С) 3(-45°С)
А

Метановое число 47-51 45-49 40-42 38-
40

Применение топлив с цетановым числом менее 40 приводит к жесткой работе двигателя, а более 50 — к увеличению удельного расхода топлива вследствие уменьшения полноты сгорания. Летом можно применять топлива с цетановым числом, равным 40, а зимой для обеспечения холодного пуска
Двигателя — с цетановым числом не менее 45. Цетановое число и низкотемпературные свойства топлива — это взаимосвязанные величины: чем лучше низкотемпературные свойства топлива, тем ниже его цетановое число.
Так, топлива с температурой застывания ниже -45 °С характеризуются цетановым числом около 40.

Хорошие низкотемпературные свойства достигаются несколькими способами: существенным облегчением фракционного состава (температура конца кипения 300—320 °С вместо 360 °С), проведением депарафинизации топлива (извлечение н-парафиновых углеводородов), переработкой нафтено- ароматических нефтей с малым содержанием н-парафиновых углеводородов. При этом во всех случаях снижается цетановое число. применению, но их вводят в крайне ограниченных количествах для повышения цетанового числа с 38 до 40, так как при этом понижается температура вспышки и повышается коксуемость топлива.

Установление оптимальных цетановых чисел имеет большое практическое значение, поскольку с углублением переработки нефти в состав дизельного топлива будут вовлекаться легкие газойли каталитического крекинга, коксования и фракции, обладающие относительно низкими цетановыми числами.
Бензиновые фракции также имеют низкие цетановые числа, и добавление их в дизельное топливо всегда заметно снижает цетановое число последнего.
Европейским стандартом на дизельное топливо установлен нижний предел цетанового числа — 48 единиц. [3]

1.2 Испаряемость (фракционный состав)

Характер процесса горения топлива в двигателе определяется двумя основными показателями — фракционным составом и цетановым числом. На сгорание топлива более легкого фракционного состава расходуется меньше воздуха, при этом благодаря уменьшению времени, необходимого для образования топливовоздушной смеси, процессы смесеобразования протекают более полно.

Облегчение фракционного состава топлива, например при добавке к нему бензиновой фракции, может привести к жесткой работе двигателя, определяемой скоростью нарастания давления на 1( поворота коленчатого вала. Это объясняется тем, что к моменту самовоспламенения рабочей смеси в цилиндре двигателя накапливается большое количество паров топлива, и горение сопровождается чрезмерным повышением давления и стуками в двигателе.

Влияние фракционного состава топлива для двигателей различных

типов неодинаково. Двигатели с предкамерным и вихрекамерньм смесеобразованием вследствие наличия разогретых до высокой температуры стенок предкамеры и более благоприятных условий сгорания менее чувствительны к фракционному составу топлива, чем двигатели с непосредственным впрыском. Наддув двигателя, создающий повышенный термический режим камеры сгорания, обеспечивает возможность нормальной работы на топливах утяжеленного фракционного состава.

Время прокручивания двигателя при запуске его на топливе со средней температурой кипения 200—225 °С в 9 раз меньше, чем на топливе со средней температурой кипения, равной 285 °С. [3]

При испытаниях дизельного топлива утяжеленного фракционного состава с температурой конца кипения на 30 °С выше, чем у стандартного летнего топлива, отмечен повышенный расход топлива в среднем на 3 % и увеличение дымности отработавших газов в среднем на 10 %. Одной из основных причин повышения расхода топлива является более высокая вязкость топлива утяжеленного фракционного состава.

Расход топлива зависит не только от температуры конца его кипения, но и от 50 %-ной точки перегонки.

Для летних дизельных топлив, полученных перегонкой нефти, 50 %-ная точка выкипания находится в пределах 260-280 °С (наиболее типичные значения 270—280 °С), для зимних марок дизельных топлив она составляет
240-260 °С. [3]

1.3 Вязкость

Определяют процессы испарения и смесеобразования в дизеле, так как от них зависит форма и строение топливного факела, размеры образующихся капель, дальность проникновения капель топлива в камеру сгорания. Более низкая плотность и вязкость обеспечивают лучшее распиливание топлива; с повышением указанных показателей качества увеличивается диаметр капель и уменьшается полное их сгорание, в результате увеличивается удельный расход топлива, растет дымность отработавших газов. Вязкость топлива влияет на наполнение насоса и на утечку топлива через зазоры плунжерных пар. С увеличением вязкости топлива возрастает сопротивление топливной системы, уменьшается напол-

нение насоса, что может привести к перебоям в его работе. Ниже приведена зависимость подачи топлива насосом от температуры топлива: [3]

Температура топлива, °С +10 -30 -40 -50

Подача насоса, кг/ч 850 830 810 300

При уменьшении вязкости количество дизельного топлива, просачивающегося между плунжером и втулкой, возрастает, в результате снижается подача насоса. Перевод двигателя на топливо с меньшей плотностью и вязкостью может привести к прогару головок поршня, в связи с чем требуется регулировка топливной аппаратуры. При работе топливной аппаратуры на газоконденсатном дизельном топливе без регулировки топливной аппаратуры происходит уменьшение цикловой подачи топлива до 1 % и снижение максимального давления топлива в трубопроводе высокого давления на 10—15 %. Период задержки впрыска увеличивается на 2—4° поворота коленчатого вала.

Понижение цикловой подачи связано с уменьшением подачи топливного насоса высокого давления вследствие уменьшения плотности и увеличения утечки менее вязкого газоконденсатного топлива.

Увеличение задержки впрыска топлива вызвано его большой сжимаемостью; чтобы получить цикловую подачу газоконденсатного топлива, достаточно увеличить ход рейки топливного насоса высокого давления.

От вязкости зависит износ плунжерных пар. Нижний предел вязкости топлива, при котором обеспечивается его высокая смазывающая способность, зависит от конструктивных особенностей топливной аппаратуры и условий ее эксплуатации. Вязкость топлива в пределах 1,8—7,0 мм2/с практически не влияет на износ плунжеров топливной аппаратуры современных быстроходных дизелей.

Вязкость топлива зависит от его углеводородного состава. Летнее дизельное топливо, получаемое из западносибирской нефти, в котором преобладают парафино-нафтеновые углеводороды, имеет вязкость при 20 °С
3,5—4,0 мм2/с; такое же по фракционному составу топливо из сахалинских нефтей, в котором преобладают нафтено-ароматические углеводороды, —
5,5—6,0 мм2/с. Стандартом на дизельное топливо вязкость нормируется в достаточно широких пределах, что обусловлено различием углеводородного состава перерабатываемых нефтей. Попытки ограничить вязкость топлива в узких пределах приведут к сокращению ресурсов его производства, так как потребуется снизить температуру конца кипения топлива. В зарубежных стандартах кинематическая вязкость нормируется обычно при 40 °С, в то время как отечественные ГОСТ и ТУ регламентируют вязкость при 20 °С.

Ниже приведена кинематическая вязкость (, мм2/с, среднедистиллятных топлив при 20 и 40 °С: [3]

|При 20 °С |При 40 °С |При 20 °С |При 40 °С |
|2,8 |2,0 |9,2 |5,5 |
|3,7 |2,5 |10,5 |6,0 |
|4,6 |3,0 |11,6 |6,5 |
|5,5 |3,5 |12,4 |7.0 |
|6,4 |4,0 |13,4 |7.5 |
|7,3 |4,5 |14,4 |8,0 |
|8,2 |5,0 |— |— |

Из всех классов углеводородов наименьшая вязкость у алифатических.
Эти же углеводороды в меньшей степени изменяют свою вязкость при охлаждении, т.е. имеют наиболее пологую вязкостно-температурную кривую.
Алифатические углеводороды разветвленного строения, имеющие в боковых цепях два-три атома углерода, обладают более высокой вязкостью и при охлаждении она изменяется более резко, чем у углеводородов нормального строения. Присутствие двойной связи снижает вязкость алифатического углеводорода. Ароматические и нафтеновые кольца в молекуле углеводорода повышают вязкость и ухудшают вязкостно-температурную зависимость.
Бициклические углеводороды при одинаковой молекулярной массе с моноциклическими имеют не только более высокую вязкость, но и более крутую кривую зависимости вязкости от температуры.

Хотя вязкость дизельных топлив при понижении температуры и повышается, поведение топлива, как правило, продолжает подчиняться закону
Ньютона (вязкость не зависит от градиента сдвига) вплоть до выпадения кристаллов твердых углеводородов.

1.4 Низкотемпературные свойства

Низкотемпературные свойства характеризуются такими показателями, как температура помутнения, предельная температура фильтруемости и температура застывания последняя определяет условия складского хранения топлива — условия применения топлива, хотя в практике известны случаи использования топлив при температурах, приближающихся к температуре застывания. Для большинства дизельных топлив разница между Tп и Tз составляет 5—7 °С. В том случае, если дизельное топливо не содержит депрессорных присадок, равна или на 1—2 °С ниже Tп. Для топлив, содержащих депрессорные присадки на 10 °С и более ниже Tп. [3]

В дизельных топливах содержится довольно много углеводородов с высокой температурой плавления. Для всех классов углеводородов справедлива закономерность: с ростом молекулярной массы, а следовательно, и температуры кипения повышается температура плавления углеводородов.
Однако весьма сильное влияние на температуру плавления оказывает строение углеводорода. Углеводороды одинаковой молекулярной массы, но различного строения могут иметь значения температур плавления в широких пределах.
Наиболее высокие температуры плавления имеют парафиновые углеводороды с длинной неразветвленной цепью углеводородных атомов. Ароматические и нафтеновые углеводороды плавятся при низких температурах (кроме бензола, п-ксилола), однако эти углеводороды, но с длинной неразветвленной боковой цепью, плавятся при более высоких температурах. По мере разветвления цепи парафинового углеводорода или боковой парафиновой цепи, присоединенной к ароматическим или нафтеновым кольцам, температура плавления углеводородов снижается.

Таблица 1 — Плотность отечественных дизельных топлив

| |Марка топлива |
|Плотность при 20 °С, кг/м3| |
| |летнее |зимнее |арктическо|
| | | |е |
|Фактические значения |802-875 |792-847 |790-830 |
|Наиболее типичные значения|830-850 |800-830 |800-820 |

Исследования показали, что при охлаждении дизельных топлив в первую очередь выпадают парафиновые углеводороды нормального строения. При этом температура помутнения топлива не зависит от суммарного содержания в нем н-парафиновых углеводородов.

Для обеспечения требуемых температур помутнения и застывания зимние топлива получают облегчением фракционного состава. Так, для получения дизельного топлива с t3 = –35 °С и tп = –25 °С требуется понизить температуру конца кипения топлива с 360 до 320 °С, а для топлива с t3 =
–45 °С и tn = –35 °С — до 280 °С, что приводит к снижению отбора дизельного топлива от нефти с 42 до 30,5 и 22,4 % соответственно. [3]

Сократить потери при производстве зимнего дизельного топлива можно введением в топливо депрессорных присадок (в сотых долях процента).
Добавка депрессорных присадок позволяет снизить предельную температуру фильтруемости на 10—15 °С и температуру застывания на 15—20 °С. Введение присадок не влияет на ta топлива. Это связано с механизмом действия депрессорных присадок, заключающемся в модификации структуры кристаллизующихся парафинов, уменьшении их размеров. При этом общее количество н-парафиновых углеводородов не снижается. Последнего можно достичь лишь в результате депарафинизации (цеолитной, карбамидной, каталитической) топлива.

Таблица 2 — Характеристики дизельных топлив с различными низкотемпературными свойствами* [3]

|Показатели |Фракции, °С |

Низкотемпературные свойства дизельных топлив с депрессорными присадками спецификациями всех стран оцениваются по ГОСТ 305-82 для топлива без депрессора низкотемпературные свойства регламентируют по tЗ и tП. Разность не должна превышать 10 °С.

5. Смазывающие (противоизносные)

Топлива являются смазочным материалом для движущихся деталей топливной аппаратуры быстроходных дизелей, пар трения плунжерных топливных насосов, запорных игл, штифтов и других деталей.

Смазывающие свойства топлив значительно хуже, чем у масел, так как и вязкость, и содержание поверхностно-активных веществ (ПАВ) в топливах меньше, чем их содержание в маслах. Противоизносные свойства топлив улучшаются с увеличением содержания ПАВ, вязкости и температуры выкипания.

В связи с ужесточением требований к качеству дизельных топлив по содержанию серы и переходом на выработку экологически чистых топлив, гидроочистку их проводят в жестких условиях. При этом из дизельных топлив удаляются соединения, содержащие серу, кислород и азот, что негативно влияет на их смазывающую способность. Наиболее реальным способом улучшения смазывающих свойств дизельного топлива является применение противоизносных присадок.

1.6 Химическая стабильность.

Химическая стабильность дизельного топлива — способность противостоять окислительным процессам, протекающим при хранении. Эта проблема возникла с углублением переработки нефти и вовлечением в состав товарного дизельного топлива среднедистиллятных фракций вторичной переработки нефти, таких, как легкого газойля каталитического крекинга, висбрекинга, коксования. Последние обогащены ненасыщенными углеводородами, включая диолефины и дициклоолефины, а также содержат значительное количество сернистых, азотистых и смолистых соединений.
Наличие гетероатомных соединений, особенно в сочетании с ненасыщенными углеводородами, способствует их окислительной полимеризации и поликонденсации, тем самым влияя на образование смол и осадков. Самыми сильными промоторами смоло- и осадкообразования являются азотистые и сернистые соединения.

Химическая стабильность оценивается по количеству образовавшегося в топливе осадка (мг/100 мл) по ASTM D 2274. Легкий газойль каталитического крекинга (ЛГКК) по химической стабильности существенно уступает прямогонным или гидроочищенным дистиллятным фракциям: [3]

Содержание ЛГКК 43/107 в топливе, %. 0 10 20 30

40 100 Норма

Осадок, мг/100 мл 1,2 5,5 7,2

8,9 10,3 21,5 < 0,2

7. Коррозионная агрессивность

Стандартами на дизельные топлива регламентируются следующие показатели качества, характеризующие их коррозионную агрессивность: содержание общей серы, содержание меркаптановой серы и сероводорода, водорасворимых кислот и щелочей, испытание на медной пластинке.

Современная технология получения дизельных топлив практически исключает возможность присутствия в них элементной серы и сероводорода в количествах, вызывающих коррозионное воздействие на металлы. Отсутствие эле-

ментной серы и сероводорода надежно контролируется испытанием на медной пластинке. Топливо выдерживает эти испытания, если содержание свободной серы не выше 0,0015 %, сероводорода не более 0,0003 %.

Общее содержание серы мало характеризует коррозионную агрессивность топлива по отношению к металлам. При увеличении содержания серы с 0,18 до
1,0 %, но незначительном повышении содержания меркаптановой серы с 0,005 до 0,009 %, коррозионная агрессивность топлива почти не изменяется.

Большое влияние на коррозионную агрессивность дизельных топлив оказывает глубина их гидроочистки, так как при этом вместе с сернистыми и ароматическими соединениями удаляются поверхностно-активные вещества, в результате чего ухудшаются защитные свойства топлив. Удаление поверхностно-активных веществ приводит к снижению способности топлива вытеснять влагу с поверхности металлов и образовывать защитную пленку.

Коррозионная агрессивность дизельных топлив, в основном, зависит от содержания меркаптановой серы. Так, повышение содержания меркаптановой серы с 0,01 % (норма ГОСТ) до 0,06 % увеличивает коррозию более чем в 2 раза.

Коррозионная активность меркаптановой серы в дизельном топливе существенно зависит от присутствия в нем свободной воды и растворенного кислорода, которые ускоряют процесс образования меркаптидов.

Прямогонные дизельные топлива обладают более высокими защитными свойствами по сравнению с гидроочищенными. Сравнительно низкими защитными свойствами обладает газойль каталитического крекинга.

Защитные свойства мало зависят от фракционного состава. Зимнее и летнее топлива, полученные по одинаковой технологии, обладают примерно одинаковым защитными свойствами.

Причиной повышенной коррозии и износа является присутствие в топливе металлов. [3]

Содержание металлов в дизельных топливах (х10-4 %), полученных на различных предприятиях:

| |Л |3 |А |
|Цетановое число, не менее |45 |45 |45 |
|Фракционный состав: | | | |
|50 % перегоняется при температуре, °С, не|280 |280 |255 |
|выше | | | |
|90 % перегоняется при температуре (конец | | | |
|перегонки), | | | |
|°С, не выше |360 |340 |330 |
|Кинематическая вязкость при 20 °С, ммг/с |3,0-6,0|1,8-5,0 |1,5-4,0|
|Температура застывания, °С, не выше, для | | | |
|климатической | | | |
|зоны: | | | |
|умеренной |-10 |-35 |- |
|холодной |- |-45 |-55 |
|Температура помутнения, °С, не выше, для | | | |
|климатической | | | |
|зоны: | | | |
|умеренной |-5 |-25 |- |
|холодной |- |-35 |- |
|Температура вспышки в закрытом тигле, °С,| | | |
|не ниже: | | | |
|для тепловозных и судовых дизелей и |62 |40 |35 |
|пазовых турбин | | | |
|для дизелей общего назначения |40 |35 |30 |
|Массовая доля серы, %, не более, в | | | |
|топливе: | | | |
|Вида I |0,20 |0,20 |0,20 |
|вида II |0,50 |0,50 |0,40 |
|Массовая доля меркаптановой серы, %, не |0,01 |0,01 |0,01 |
|более | | | |
|Содержание фактических смол, мг/100 см3 |40 |30 |30 |
|топлива, | | | |
|не более | | | |
|Кислотность, мг КОН/100 см3 топлива, не |5 |5 |5 |
|более | | | |
|Йодное число, г I2/100 г топлива, не |6 |6 |6 |
|более | | | |
|Зольность, %, не более |0,01 |0,01 |0,01 |
|Коксуемость 10 %-ного остатка, %, не |0,20 |0,30 |0,30 |
|более | | | |
|Коэффициент фильтруемости, не более |3 |3 |3 |
|Плотность при 20 °С, кг/м3, не более |860 |840 |830 |
|Примечание. Для топлив марок Л, 3, А: содержание сероводорода, |
|водорасворимых кислот и щелочей, механических примесей и воды — |
|отсутствие, испытание на медной пластинке— выдерживают. |


Таблица 4 — Характеристики дизельного экспортного топлива (ТУ 38.401-58-
110-94)

|Показатели |Норма для марок |
| |ДЛЭ |ДЭЗ |
|Дизельный индекс, не менее |53 |53 |
|Фракционный состав: перегоняется при |280 |280 |
|температуре, °С, не выше: |340 |330 |
|50% |360 |360 |
|90% | | |
|96% | | |
|Кинематическая вязкость при 20 °С, мм2/с |3,0-6,0 |2,7-6,0|
|Температура, °С: |-10 |-35 |
|застывания, не выше |-5 |-25 |
|предельной фильтруемое, не выше |65 |60 |
|вспышки в закрытом тигле, не ниже | | |
|Массовая доля серы, %, не более, в топливе: | | |
|вида I |0,2 |0,2 |
|вида II |0,3 |- |
|Испытание на медной пластинке |Выдерживает |
|Кислотность, мгКОН/100 см3 топлива, не более |3,0 |3,0 |
|Зольность, %, не более |0.01 |0,01 |
|Коксуемость 10 %-ного остатка, %, не более |0,2 |0,2 |
|Цвет, ед. ЦНТ, не более |2,0 |2,0 |
|Содержание механических примесей |Отсутствие |
|Прозрачность при температуре 10 °С |Прозрачно |
|Плотность при 20 °С, кг/м3, не более |860 |845 |


3. Присадки к современным дизельным топливам.

Зимние дизельные топлива с депрессорными присадками. С 1981 г. вырабатывают зимнее дизельное топливо марки ДЗп по ТУ 38.101889— 81.
Получают его на базе летнего дизельного топлива с tп = -5 °С. Добавка сотых долей присадки обеспечивает снижение предельной температуры фильтруемости до -15 °С, температуры застывания до -30 °С и позволяет использовать летнее дизельное топливо в зимний период времени при температуре до -15 °С. [3]

Для применения в районах с холодным климатом при температурах -25 и
-45 °С вырабатывают топлива по ТУ 38.401-58-36-92. Согласно техническим условиям получают две марки топлива: ДЗп-15/-25 (базовое дизельное топливо с температурой помутнения -15 °С, товарное — с предельной температурой фильтруемости -25 °С) и арктическое дизельное топливо ДАп-
35/-45 (базовое топливо с температурой помутнения -35 °С, товарное — с предельной температурой фильтруемости -45 °С). [3]

Таблица 5 — Характеристики зимних дизельных топлив с депрессорными присадками

|Показатели |Нормы для марок |
| |ДЗп |ДЗП-15/-25|ДАП-35/-4|
| | | |5 |
| |ТУ |ТУ 38.401-58-36-92 |
| |38.101889 | |
| | | |
| |-81 | |
|Цетановое число, не менее |45 |45 |40 |
|Фракционный состав: | | | |
|перегоняется при температуре, °С, не | | | |
|выше: | | | |
|50% |280 |280 |280 |
|90% (конец перегонки) |360 |360 |340 |
|Кинематическая вязкость для дизелей |3,0-6,0 |1,8-6,0 |1,5-5,0 |
|общего | | | |
|назначения при 20 °С, мм7с | | | |
|Температура, °С, не выше: | | | |
|застывания |-30 |-35 |-55 |
|помутнения |-5 |-15 |-35 |
|предельной фильтруемое |-15 |-25 |-45 |
|Температура вспышки в закрытом тигле, °С,| | | |
|не ниже: | | | |
|для дизелей общего назначения |40 |40 |35 |
|для тепловозных и судовых дизелей |62 |35 |30 |
|Массовая доля серы, %, не более, в | | | |
|топливе: | | | |
|вида I |0,2 |0,2 |0,2 |
|вида II |0,5 |0,5 |0,4 |
|Массовая доля меркаптановой серы, %, не |0,01 |0,01 |0,01 |
|более | | | |
|Концентрация фактических смол, мг/100 см3|40 |- |- |
|базового | | | |
|топлива, не более | | | |
|Кислотность, мг КОН/100 см3 топлива, не |5 |5 |5 |
|более | | | |
|Йодное число, г у 100 г топлива, не более|6 |5 |5 |
|Зольность, %, не более |0,01 |0,01 |0,01 |
|Коксуемость 10 %-ного остатка, %, не |0,3 |0,2 |0,2 |
|более | | | |
|Коэффициент фильтруемое, не более: | | | |
|для базового топлива |2,0 |- |- |
|для топлива с присадкой |3,0 |3,0 |3,0 |
|Плотность при 20 °С, кг/м3, не более |860 |860 |840 |
|Цвет, ед. ЦНТ, не более |2,0 |2,0 |2,0 |
|Примечание. Для топлив всех марок: содержание сероводорода, водорасворимых|
|кислот |
|и щелочей, механических примесей и воды — отсутствие; испытание на медной |
|пластинке — выдерживают. |

4. Улучшение смазочных свойств дизельных топлив
Топлива в дизельных двигателях являются смазочным материалом для движущихся деталей топливной аппаратуры, трущихся пар плунжерных топливных насосов. В связи с этим они должны обладать хорошими противоизносными свойствами. Оценку противоизносных свойств дизельных топлив проводили в результате измерения износа плунжеров полноразмерной топливной аппаратуры после проведения длительных испытаний. Так, установлено, что при снижении содержания серы в дизельном топливе с 1,0 до 0,03% уменьшается износ плунжеров в 2 раза, при этом особенно сильно влияют на износ меркаптаны. По аналогии с топливами для реактивных двигателей можно было полагать, что кроме сернистых соединений на противоизносные свойства дизельных топлив может влиять вязкость, кислотность и присутствие воды.

5. Современные и перспективные требования к дизельным топливам

В таблице 6 приведены требования к качеству дизельных топлив по стандарту
EN 590. Приведена тенденция снижения серы, увеличения ЦЧ с 1993 по 2000 гг.

Таблица 6 — Требования к качеству дизельных топлив по EN 590

|Показатели |EN590 |
| |1993-1996 |1996-1999 |Действующий|
| |гг. |гг. |с 2000 г. |
|Массовая доля серы, %, |0,5 |0,3 |0,035 |
|не более | | | |
|Цетановое число, не |45 |49 |51 |
|менее | | | |
|Плотность при 1 5°С, |820-860 |820-860 |820-845 |
|кг/м' | | | |
|Кинематическая вязкость |2,0-4,5 |2,0-4,5 |2,0-4,0 |
|при 40°С, мм2/с | | | |
|Фракционный состав: 95% |370 |370 |360 |
|перегоняется до, °С | | | |
|Содержание |Не норм. |Не норм. |II |
|полициклических | | | |
|ароматических | | | |
|углеводородов, %, не | | | |
|более | | | |
|Смазывающая способность,|Не норм. |Не норм. |460 |
|мкм, не более | | | |
|Окислительная |Не норм. |Не норм. |25 |
|стабильность, г/м3, не | | | |
|более | | | |

Таблица 7 — Требования к качеству дизельного топлива за рубежом

|Регион |США |Калифор|Европейский Союз |Швеци|Катег|
| | |ния | |я |ория |
| | |(Техас)| | |IV |
| | |минимум |максимум |
|1. Цетановое число | |51,0 |- |
|2. Цетановый индекс | |46,0 |- |
|3. Плотность при 150 °С |кг/м3 |820 |845 |
|4. Полициклические ароматические |% масс. | |11 |
|углеводороды | | | |
|5. Содержание серы |мг/кг |- |350 |
|6. Температура вспышки |°С |Выше 55 |- |
|7. Коксовый остаток (10%-го | | | |
|остатка разгонки) | | | |
| |% масс. | |0 30 |
|8. Зольность |% масс. |- |0,01 |
|9. Содержание воды |мг/кг |- |200 |
|10. Общее загрязнение. |мг/кг |- |24 |
|11. Коррозионная агрессивность |Оценка |Класс 1 |
|меди (3 ч при 50°С) | | |
|12. Окислительная стабильность |г/м3 |- |25 |
|13. Смазывающая способность, | | | |
|скорректированный диаметр пятна |мкм |- |460 |
|износа (WS 1,4) при 60 °С | | | |
|14. Вязкость при 40 °С |мм2/с |2,00 |4,50 |
|15. Фракционный состав |%об. | | |
|% об. перегоняется до 250 °С | | |75—80 °С), для котельных топлив — в открытом тигле (90—100 °С); эти нормы обеспечивают безопасную работу судовых энергетических и котельных установок. Разница между температурами вспышки в открытом и закрытом тиглях составляет примерно 30 °С: [3]

Температура вспышки, °С: Мазут марки 40 Мазут марки 100 в открытом тигле 92 120 в закрытом тигле 61 93

Содержание воды, механических примесей и зольность. Эти компоненты являются нежелательными составляющими котельных топлив, так как присутствие их ухудшает экономические показатели работы котельного агрегата, увеличивает коррозию хвостовых поверхностей его нагрева. При использовании обводненного котельного топлива в судовых энергетических установках в результате попадания глобул воды на поверхности трения деталей, прецизионных пар и нарушение таким образом условий смазывающей способности топлива возможно зависание плунжеров или форсуночных игл. Как правило, вода образует с котельным топливом очень стойкие эмульсии.
Большая стойкость эмульсий обусловлена высокой вязкостью мазута и наличием в нем поверхностно-активных асфальтено-смолистых стабилизаторов.
С повышением температуры эмульсии разрушаются вследствие уменьшения поверхностного натяжения и вязкости.

В то же время наличие воды, равномерно распределенной по всему объему, оказывает положительное влияние на эксплуатационные свойства топлив. Испарение мелкодисперсных частиц воды происходит мгновенно в виде
«микровзрыва», процесс сгорания протекает плавно и с достаточной полнотой, что приводит к снижению удельного расхода топлива и дымности отработавших газов. Равномерное распределение и образование воды в виде мелкодисперсных частиц обеспечивается с помощью специальных устройств: кавитаторов, смесителей.

Механические примеси засоряют фильтры и форсунки, нарушая процесс распыливания топлива. Установлены требования к содержанию механических примесей: для мазута марки 40 — не более 0,5 %, марки 100 — не более 1,0
%. Фактически топочные мазуты вырабатывают с более низким содержанием механических примесей — до 0,2 % и лишь на отдельных нефтеперерабатывающих предприятиях эти значения приближаются к установленным по ГОСТ 10585-75.

Таблица 13 — Состав золы остаточных топлив. [3]

|Топливо |Содержание |Содержание в золе, % |
| |в топливе, % | |
|1 |Вязкость при 20°С, не более: | | |
| |- условная, °ВУ |2,0 |ГОСТ 6258 |
| |- соответствующая ей кинематическая, |11,4 |ГОСТ 33 |
| |мм2/с | | |
|2 |Цетановое число, не менее |40 |ГОСТ 3122 |
|3 |Температура вспышки, определяемая в |62 |ГОСТ 6356 или |
| |закрытом тигле, °С, не ниже | |ASTM Д 93 |
|4 |Температура застывания, °С, |Минус 10 |ГОСТ 20287 |
|5 |Массовая доля серы, %, не более | |ГОСТ I9I2I или |
| |I вид |0,5 |ГОСТ Р 50442 или |
| |II вид |1,0 |ASTM Д 12 66 или |
| |III вид |1,5 |ASTM Д 4294 |
|6 |Массовая доля меркаптановой серы, %,|0,025 |ГОСТ 17323 |
| |не более | | |

|7 |Содержание воды |Следы |ГОСТ 2477 |
|8 |Коксуемость, % не более |0,2 |ГОСТ 19932 или |
| | | |ASTV Д 189 |
|9 |Содержание механические примесей, %,|0,02 |ГОСТ 6370 |
| |не более | | |
|10|Зольность, %, не более |0,01 |ГОСТ 1461 или |
| | | |ASTM Д 482 |
|11| Содержание водорастворимых кислот и |отсутствие|ГОСТ 6307 |
| |щелочей | | |

Судовое маловязкое топливо по ТУ 38.101567-87 — это среднедистиллятное топливо, в отличие от моторного ДТ и судового высоковязкого топлива, получаемых смешением остаточных и среднедистиллятных фракций. Предназначено для применения в судовых энергетических установках вместо дизельного топлива. Компонентами маловязкого судового топлива являются негидроочищенные прямогонные атмосферные и вакуумные дистилляты, продукты вторичного происхождения — легкие и тяжелые газойли каталитического и термического крекинга, коксования.

Таблица 15 — Характеристики моторного топлива для среднеоборотных и малооборотных дизелей (ГОСТ 1667-68)

|Показатели |Марка топлива |
| |ДТ |ДМ |
|Плотность при 20 °С, г/см3, не более |0,930 |0,970 |
|Фракционный состав: |15 |15 |
|до 250 °С перегоняется, %, не более | | |
|Вязкость при 50 °С: |36 |130 |
|кинематическая, мм2/с, не более |2,95 |17,4 |
|соответствующая ей условная, °ВУ, не более | | |
|Коксуемость, %, не более |3,0 |9,0 |
|Зольность, % не более |0,04 |0,06 |
|Массовая доля серы, %, не более: |0,5 |2,0 |
|в малосернистом топливе |1,5 |2,0 |
|в сернистом топливе | | |
|Массовая доля, %, не более: |0,05 |0,1 |
|механических примесей |0,5 |0,5 |
|воды |0,015 |0,01 |
|ванадия | | |
|Температура, °С: |65 |85 |
|вспышки в закрытом тигле, не ниже |-5 |10 |
|застывания, не выше | | |
|Примечание. Для марок ДТ и ДМ содержание сероводорода, |
|водорастворимых кислот и щелочей— отсутствие. |


Таблица 16 — Характеристики маловязкого судового топлива (ТУ 38.101567-
87)

|Показатели |Значение |
|Вязкость: |2,0 |
|условная при 20 'С, 'ВУ, не более |11,4 |
|соответствующая ей кинематическая, мм2/с, не более|40 |
| |62 |
|Цетановое число, не менее |-10 |
|Температура, °'С: |1,5 |
|вспышки в закрытом тигле °С, не ниже |0,025 |
|застывания, не выше |Следы |
|Массовая доля, %, не более: |0,02 |
|серы |0,2 |
|меркаптановой серы |0,01 |
|воды |Отсутствие |
|механических примесей |890 |
|Коксуемость, %, не более |20 |
|Зольность, %, не более | |
|Содержание водорастворимых кислот и щелочей | |
|Плотность при 20 °С, г/м3, не более | |
|Йодное число, г йода на 100 г топлива, не более | |

4. Ассортимент, качество и состав тяжелых видов моторных топлив

Стандарт на котельное топливо — ГОСТ 10585—75 предусматривает выпуск четырех его марок: флотских мазутов Ф-5 и Ф-12, которые по вязкости классифицируются как легкие топлива, топочных мазутов марки 40 — как среднее и марки 100 — тяжелое топливо. Цифры указывают ориентировочную вязкость (ответствующих марок мазутов при 50 °С. В зависимости от содержания серы топочные мазуты подразделяют на низкосернистые — до 0,5
%, малосернистые — от 0,5 % до 1,0 %, сернистые — от 1,0 до 2,0 % и высоко-сернистые от 2,0 до 3,5 %. [3]

Топочные мазуты марок 40 и 100 изготовляют из остатков переработки нефти. В мазут марки 40 для снижения температуры застывания до 10 °С добавляют 8—15 % среднедистиллятных фракций, в мазут марки 100 дизельные фракции не добавляют.

Таблица 17 — Характеристики мазутов (ГОСТ 10585-75)

|Показатели | Марка |
| |топлива |
| |Ф-5 |Ф-12 |40 |100 |
|Вязкость при 50 °С, не более: | | | | |
|условная, °ВУ |5,0 |12,0 |- |- |
|соответствующая ей |36,2 |89,0 |- |- |
|кинематическая, мм2/с | | | | |
|Вязкость при 80 °С, не более: | | | | |
|условная, °ВУ |- |- |8,0 |16,0 |
|соответствующая ей |- |- |59,0 |118,0 |
|кинематическая, мм2/с | | | | |
|Динамическая вязкость пр

 
     
Бесплатные рефераты
 
Банк рефератов
 
Бесплатные рефераты скачать
| мероприятия при чрезвычайной ситуации | Чрезвычайная ситуация | аварийно-восстановительные работы при ЧС | аварийно-восстановительные мероприятия при ЧС | Интенсификация изучения иностранного языка с использованием компьютерных технологий | Лыжный спорт | САИД Ахмад | экономическая дипломатия | Влияние экономической войны на глобальную экономику | экономическая война | экономическая война и дипломатия | Экономический шпионаж | АК Моор рефераты | АК Моор реферат | ноосфера ба забони точики | чесменское сражение | Закон всемирного тяготения | рефераты темы | иохан себастиян бах маълумот | Тарых | шерхо дар борат биология | скачать еротик китоб | Семетей | Караш | Influence of English in mass culture дипломная | Количественные отношения в английском языках | 6466 | чистонхои химия | Гунны | Чистон
 
Рефераты Онлайн
 
Скачать реферат
 
 
 
 
  Все права защищены. Бесплатные рефераты и сочинения. Коллекция бесплатных рефератов! Коллекция рефератов!