Электропроводность щелочных растворов вольфрамата натрия
Студ. Гадиев Г.А., студ. Касаева М.С., доц. Алкацева В.М.
Кафедра металлургии цветных металлов.
Северо-Кавказский государственный технологический университет
Целью работы явилось исследование зависимости удельной электропроводности щелочных растворов вольфрамата натрия от их состава (WO3, NaOH) и температуры, а также поиск условий, отвечающих их наибольшей удельной электропроводности.
Исследования проводили на растворах с составом, близким к растворам, получаемым в результате электрохимического растворения вторичного вольфрамового сырья.
Измерения электропроводности растворов проводили с помощью переменно-токового кондуктометра ОК-102/1 с платинированными электродами.
Как показал предварительный анализ литературных данных [1-3], растворы, получаемые электрохимическим растворением вторичного вольфрамового сырья, содержат до 120 г/дм3 WO3, 20-200 г/дм3 NaOH, а температура их находится в пределах 40-70 оС. Несколько расширив эти границы, мы провели исследования на растворах состава 10-150 г/дм3 WO3 и 20-200 г/дм3 NaOH при температурах 20-70 оС, использовав планируемый эксперимент.
Исходя из этого, приняты следующие уровни независимых переменных:
WO3, г/л 10 – 80 – 150;
NaOH, г/л 20 – 110 – 200;
t, оС 20 – 45 – 70.
Значения независимых переменных в кодовом масштабе:
X1 = ; X2 = ; X3 = . (1)
Для изучения электропроводности щелочных растворов вольфрамата натрия воспользовались планом Рехтшафнера. Матрица планирования приведена в табл.1.
Растворы, соответствующие по составу каждому пункту плана, готовили из однокомпонентных растворов Na2WO4 и NaOH, которые в свою очередь были приготовлены из реактивов марки ЧДА и ХЧ соответственно.
В соответствии с составами растворов (табл.1) готовили в каждом случае 200 мл раствора, содержащего Na2WO4 и NaOH. Приготовленный щелочной раствор вольфрамата натрия переводили в стакан и замеряли электропроводность в интервале температур 20-70 оС с шагом 5о. Поскольку составы растворов в некоторых пунктах плана одинаковы, то при замере электропроводности их объединили.
Пересчет показаний кондуктометра (S) на удельную электропроводность проводили по формуле
c = , См/м, (2)
где К – постоянная ячейки.
Т а б л и ц а 1
Матрица планирования и результаты опытов
№
Кодовый масштаб
Натуральный масштаб
c,
оп.
X1
X2
X3
WO3,
г/л
NaOH,
г/л
t,
оС
См/м
1
-
-
-
10
20
20
9,979
2
-
+
+
10
200
70
61,948
3
+
-
+
150
20
70
24,592
4
+
+
-
150
200
20
21,796
5
-
-
+
10
20
70
18,800
6
-
+
-
10
200
20
29,581
7
+
-
-
150
20
20
12,207
8
+
0
0
150
110
45
36,887
9
0
+
0
80
200
45
43,192
10
0
0
+
80
110
70
51,031
11
0
0
0
80
110
45
38,759
Значения удельной электропроводности растворов при 20-70 оС приведены в табл.2.
Обработкой экспериментальных данных, представленных в табл.1, получена кодовая модель зависимости удельной электропроводности щелочных растворов вольфрамата натрия от состава и температуры:
c = 38,788 – 0,4891 X1 + 13,1934 X2 + 11,1972 X3 – 1,4269 -
- 8,8044 + 1,0309 - 2,4959 X1X2 + 0,8983 X1X3 +
+ 5,8938 X2X3; (3)
Fрасч = 130740,15; F0,05;10;1 = 242.
Т а б л и ц а 2
Значения удельной электропроводности растворов
при 20-70 оС, См/м
t,
oC
№ опыта
1, 5
2, 6
3, 7
4
8
9
10, 11
20
9,979
29,581
12,207
21,796
24,324
25,942
26,463
25
10,870
32,700
13,454
25,006
26,641
28,616
29,047
30
11,672
35,818
14,612
28,750
29,225
32,494
31,631
35
12,563
39,204
15,771
32,360
31,809
36,104
34,125
40
13,543
42,501
17,107
35,703
34,304
39,849
36,531
45
14,345
45,849
18,266
39,315
36,887
43,192
38,759
50
15,236
49,327
19,602
42,657
38,937
46,401
41,432
55
16,038
52,417
21,028
45,866
41,877
49,878
43,926
60
16,929
55,766
22,275
50,011
44,105
53,087
46,252
65
17,820
58,857
23,522
52,953
46,647
56,430
48,835
70
18,800
61,948
24,592
55,360
48,807
59,372
51,031
Поскольку чем выше удельная электропроводность раствора, тем ниже удельный расход электроэнергии на электрохимическое растворение вторичного вольфрамового сырья, то методом нелинейного программирования по модели (3) был найден максимум целевой функции c = 62,062 См/м и его координаты:
X1 = -0,7307 или 28,851 г/дм3 WO3;
X2 = 1 или 200 г/дм3 NaOH;
X3 = 1 или 70 оС.
Частные зависимости удельной электропроводности растворов при значениях других переменных на нулевом уровне приведены на рисунке.
Для описания зависимости электропроводности щелочных растворов вольфрамата натрия от температуры (25-70 оС) воспользовались формулой Кольрауша [4]:
ct = ct=25 [1 + a(t – 25) + b( t – 25)2], (4)
в которой за стандартную температуру принята t=25 оС.
См×м
Частные зависимости удельной электропроводности растворов.
Экспериментальные данные хорошо описываются линейным уравнением вида
ct = ct=25 [1 + a(t – 25)]. (5)
Расчетные значения ct=25, a, а также коэффициента корреляции (rрасч) приведены в табл.3.
Т а б л и ц а 3
Коэффициенты математических моделей температурной зависимости удельной электропроводности растворов и оценка адекватности
№
оп.
ct=25,
См/м
a,
град.-1
rрасч
rкрит
1,5
10,8376
0,016174
0,9998
0,6319
2,6
32,6967
0,020039
0,9999
0,6319
3,7
13,3439
0,018915
0,9997
0,6319
4
25,3974
0,026951
0,9993
0,6319
8
26,8049
0,018436
0,9998
0,6319
9
29,1996
0,023353
0,9995
0,6319
10,11
29,1448
0,016793
0,9999
0,6319
Чтобы распространить полученные данные на растворы другого состава из изученной области, получены модели зависимости удельной электропроводности растворов при 25 оС (ct=25) и температурного коэффициента (a) от состава раствора (по WO3 и NaOH) в кодовом масштабе:
ct=25 = 28,8810 – 1,2642 X1 + 8,4122 X2 – 0,5482 - 7,8299 -
- 2,4514 X1X2; (6)
Fрасч = 271,97; F0,05;6;1 = 234;
a = 0,01645 + 0,002328 X1 + 0,002952 X2 + 0,004045 +
+ 0,001043 X1X2; (7)
Fрасч = 105,90; F0,05;6;1 = 19,33.
Выполненные исследования связаны с физико-химическим обоснованием процесса прямого электрохимического растворения отходов металлического вольфрама в растворах натриевой щелочи.
Список литературы
1. Гуриев Р.А., Алкацев М.И. Электрохимическое растворение вольфрама под действием переменного тока // Изв. вузов. Цв. металлургия. 1980. № 1. С. 61-64.
2. Резниченко В.А., Палант А.А., Ануфриева Г.И., Гуриев Р.А., Гаврилов В.К. Исследование процесса электрохимического растворения многофазных сплавов на основе вольфрама // Изв. АН СССР. Мет. 1985. № 2. С. 32-35.
3. Балихин В.С., Резниченко В.А., Корнеева С.Г., Корчагин И.В., Крепков П.Н. О переработке отходов торированного вольфрама // Цв. мет. 1972. № 11. С. 65-67.
4. Антропов Л.И. Теоретическая электрохимия. М.: Высшая школа, 1984. 519 с.
Для подготовки данной работы были использованы материалы с сайта http://www.skgtu.ru/