Моделирование экономических показателей
1. Описание объекта
В нашем случае объектом исследования являются совокупность фирм , заводов , предприятий . Моделируемым показателем является Y - производительность труда ( тыс.руб / чел ) .
2. Экономические показатели ( факторы )
Отбор факторов для модели осуществляется в два этапа. На первом идет анализ, по результатам которого исследователь делает вывод о необходимости рассмотрения тех или иных явлений в качестве переменных, определяющих закономерности развития исследуемого процесса, на втором – состав предварительно отобранных факторов уточняется непосредственно по результатам статистического анализа.
Из совокупности экономических показателей мы отобрали следующие :
Зависимый фактор:
У- производительность труда, (тыс. руб.)
Для модели в абсолютных показателях
Независимые факторы:
Х1 - стоимость сырья и материалов ( тыс.руб.)
Х2 - заработная плата ( тыс.руб. )
Х3 - основные промышленно-производственные фонды ( тыс.руб. )
Х4 - отчисления на социальное страхование ( тыс.руб. )
Х5 - расходы на подготовку и освоение производства ( тыс.руб. )
Х6 - расходы на электроэнергию ( тыс.кВт час. )
Данные представлены в таблице 1.
Таблица 1
№ Объекта
наблюдения
Y
X1
X2
X3
X4
X5
X6
1
10.6
865
651
2627
54
165
4.2
2
19.7
9571
1287
9105
105
829
13.3
3
17.7
1334
1046
3045
85
400
4
4
17.5
6944
944
2554
79
312
5.6
5
15.7
14397
2745
15407
229
1245
28.4
6
11.3
4425
1084
4089
92
341
4.1
7
14.4
4662
1260
6417
105
496
7.3
8
9.4
2100
1212
4845
101
264
8.7
9
11.9
1215
254
923
19
78
1.9
10
13.9
5191
1795
9602
150
599
13.8
11
8.9
4965
2851
12542
240
622
12
12
14.5
2067
1156
6718
96
461
9.2
Для модели в относительных показателях
Х1- удельный вес стоимости сырья и материалов в себестоимости продукции
Х2- удельный вес заработной платы в себестоимости продукции
Х3- фондовооруженность одного рабочего, тыс.руб./чел.
Х4- удельный вес отчислений на соц. страхования в себестоимости продукции
Х5- удельный вес расходов на подготовку и освоение производства в себестоимости продукции
Х6- электровооруженность одного рабочего, тыс. кВт./ чел.
Данные представлены в таблице 2.
Таблица 2
№ Объекта
наблюдения
Y
X1
X2
X3
X4
X5
X6
1
10.6
16,8
12,6
5,7
1,0
3,2
0,06
2
19.7
33,1
4,5
8,0
0,4
2,8
0,08
3
17.7
9,9
7,7
4,6
0,6
3,0
0,08
4
17.5
63,1
8,6
4,1
0,7
2,8
0,08
5
15.7
32,8
6,3
8,0
0,5
2,8
0,10
6
11.3
40,3
9,9
5,2
0,8
3,1
0,08
7
14.4
28,3
7,7
7,1
0,6
3,0
0,09
8
9.4
25,2
14,6
7,2
1,2
3,2
0,11
9
11.9
47,3
9,9
4,5
0,7
3,0
0,13
10
13.9
26,8
9,3
9,4
0,8
13,1
0,11
11
8.9
25,4
14,6
6,5
1,2
3,2
0,08
12
14.5
14,2
8,0
8,5
0,7
3,2
0,13
3. Выбор формы представления факторов
В данной работе мы не используем фактор времени, т.е. в нашем случае мы используем статистическую модель. В 1-ом случае мы строим статистическую модель в абсолютных показателях, во 2-м – статистическую модель в относительных показателях. Проанализировав полученные результаты, мы выбираем рабочую статистическую модель.
4. Анализ аномальных явлений
При визуальном просмотре матрицы данных легко улавливается аномалия на пятом объекте в таблице 1,2 . Здесь все факторы завышены в несколько раз . Скорее всего мы сталкиваемся в данном случае с заводом-гигантом . Поэтому данное наблюдение мы отбрасываем . Теперь формируем обновлённую матрицу данных .
Таблица 3
№ Объекта
наблюдения
Y
X1
X2
X3
X4
X5
X6
1
10.6
865
651
2627
54
165
4.2
2
19.7
9571
1287
9105
105
829
13.3
3
17.7
1334
1046
3045
85
400
4
4
17.5
6944
944
2554
79
312
5.6
6
11.3
4425
1084
4089
92
341
4.1
7
14.4
4662
1260
6417
105
496
7.3
8
9.4
2100
1212
4845
101
264
8.7
9
11.9
1215
254
923
19
78
1.9
10
13.9
5191
1795
9602
150
599
13.8
11
8.9
4965
2851
12542
240
622
12
12
14.5
2067
1156
6718
96
461
9.2
Таблица 4
№ Объекта
наблюдения
Y
X1
X2
X3
X4
X5
X6
1
10.6
16,8
12,6
5,7
1,0
3,2
0,06
2
19.7
33,1
4,5
8,0
0,4
2,8
0,08
3
17.7
9,9
7,7
4,6
0,6
3,0
0,08
4
17.5
63,1
8,6
4,1
0,7
2,8
0,08
6
11.3
40,3
9,9
5,2
0,8
3,1
0,08
7
14.4
28,3
7,7
7,1
0,6
3,0
0,09
8
9.4
25,2
14,6
7,2
1,2
3,2
0,11
9
11.9
47,3
9,9
4,5
0,7
3,0
0,13
10
13.9
26,8
9,3
9,4
0,8
13,1
0,11
11
8.9
25,4
14,6
6,5
1,2
3,2
0,08
12
14.5
14,2
8,0
8,5
0,7
3,2
0,13
4. Анализ матрицы коэффициентов парных корреляций для абсолютных величин
Таблица 5
№ фактора
Y
X1
X2
X3
X4
X5
X6
Y
1.00
0.52
-0.22
-0.06
-0.23
0.44
0.12
X1
0.52
1.00
0.38
0.52
0.38
0.74
0.60
X2
-0.22
0.38
1.00
0.91
1.00
0.68
0.74
X3
-0.06
0.52
0.91
1.00
0.91
0.86
0.91
X4
-0.23
0.38
1.00
0.91
1.00
0.67
0.74
X5
0.44
0.74
0.68
0.86
0.67
1.00
0.85
X6
0.12
0.60
0.74
0.91
0.74
0.85
1.00
Из таблицы 4 находим тесно коррелирующие факторы. Налицо мультиколлениарность факторов Х2 и Х4 . Оставим только один фактор Х2 . Так же достаточно высокий коэффициент корреляции ( 0.91 ) между факторами Х2 и Х3 . Избавимся от фактора Х3 .
5. Построение уравнения регрессии для абсолютных величин
Проведём многошаговый регрессионный анализ для оставшихся факторов : Х1 , Х2 , Х5 , Х6 .
а) Шаг первый .
Y = 12. 583 + 0 * X1 + 0.043 * X2 + 0.021 * X5 - 0.368 * X6
Коэффициент множественной корреляции = 0.861
Коэффициент множественной детерминации = 0.742
Сумма квадратов остатков = 32.961
t1 = 0.534 *
t2 = 2.487
t5 = 2.458
t6 = 0.960 *
У фактора Х1 t-критерий оказался самым низким . Следовательно фактором Х1 можно пренебречь . Вычеркнем этот фактор .
б) Шаг второй.
Y = 12.677 - 0.012 * X2 + 0.023 * X5 - 0.368 * X6
Коэффициент множественной корреляции = 0.854
Коэффициент множественной детерминации = 0.730
Сумма квадратов остатков = 34.481
t2 = 2.853
t5 = 3.598
t6 = 1.016 *
У фактора Х6 t-критерий оказался самым низким . Следовательно фактором Х6 можно пренебречь . Вычеркнем этот фактор .
в) Шаг третий .
Y = 12.562 - 0.005 * X2 + 0.018 * X5
Коэффициент множественной корреляции = 0.831
Коэффициент множественной детерминации = 0.688
Сумма квадратов остатков = 39.557
t2 = 3.599
t5 = 4.068
В результате трёхшаговой регрессии мы получили рабочее уравнение.
6. Анализ матрицы коэффициентов парных корреляций для относительных величин
Таблица 5
№ фактора
Y
X1
X2
X3
X4
X5
X6
Y
1.00
0.14
-0.91
0.02
-0.88
-0.01
-0.11
X1
0.14
1.00
-0.12
-0.44
-0.17
-0.09
0.02
X2
-0.91
-0.12
1.00
-0.12
0.98
-0.01
-0.38
X3
0.02
-0.44
-0.12
1.00
0.00
0.57
0.34
X4
-0.88
-0.17
0.98
0.00
1.00
0.05
-0.05
X5
-0.01
-0.09
-0.01
0.57
0.05
1.00
0.25
X6
-0.11
0.02
-0.38
0.34
-0.05
0.25
1.00
В таблице выявляем тесно коррелирующие факторы. Таким образом, не трудно заметить достаточно высокий коэффициент корреляции между факторами Х2 и Х4. Избавимся от Х2
7. Построение уравнения регрессии для относительных величин
а) Шаг первый .
Y = 25,018+0*Х1+
Коэффициент множественной корреляции = 0,894
Коэффициент множественной детерминации = 0.799
Сумма квадратов остатков = 26,420
t1 = 0,012*
t2 = 0,203*
t3 =0.024*
t4 =4.033
t5 = 0.357*
t6 = 0.739 *
У фактора Х1 t-критерий оказался самым низким . Следовательно фактором Х1 можно пренебречь . Вычеркнем этот фактор .
б) Шаг второй .
Y = e ^3.141 * X2^(-0.722) * X5^0.795 * X6^(-0.098)
Коэффициент множественной корреляции = 0.890
Коэффициент множественной детерминации = 0.792
Сумма квадратов остатков = 0.145
t2 = 4.027
t5 = 4.930
t6 = 0.623 *
У фактора Х6 t-критерий оказался самым низким . Следовательно фактором Х6 можно принебречь . Вычеркнем этот фактор .
в) Шаг третий .
Y = e ^3.515 * X2^(-0.768) * X5^0.754
Коэффициент множественной корреляции = 0.884
Коэффициент множественной детерминации = 0.781
Сумма квадратов остатков = 0.153
t2 = 4.027
t5 = 4.930
В результате трёхшаговой регрессии мы получили рабочее уравнение :
Y =
Экономический смысл модели :
При увеличении расходов на подготовку и освоение производства производительность труда будет увеличиваться . Это означает что на данных предприятиях есть резервы для расширения производства , для введения новых технологий и инноваций с целью увеличения прибыли .
При увеличении заработной платы производительность труда будет снижаться . Это , скорее всего , будет происходить из-за того , что рабочие на данных предприятиях получают и так высокие зарплаты , либо фонд заработной платы используется по максимуму и дальнейший его рост приведёт к непредвиденным расходам .
8. Сравнительный анализ линейной и степенной моделей
Сравнивая линейную и степенную регрессионную модель видим , что статистические характеристики степенной модели превосходят аналогичные характеристики линейной модели . А именно : коэффициент множественной детерминации у степенной модели равен 0.781 , а у линейной - 0.688 . Это означает , что факторы , вошедшие в степенную модель , объясняют изменение производительности труда на 78.1 % , тогда как факторы , вошедшие в линейную модель , - на 68,8 % ; сумма квадратов остатков степенной модели ( 0.153 ) значительно меньше суммы квадратов остатков линейной модели ( 39.557 ) . Следовательно значения полученные с помощью степенной модели близки к фактическим .
Список литературы
Для подготовки данной работы были использованы материалы с сайта http://www.cooldoclad.narod.ru/