Чтение RSS
Рефераты:
 
Рефераты бесплатно
 

 

 

 

 

 

     
 
Пузыри. Условия существования. Пузырится ли российский фондовый рынок


Государственный университет Высшая Школа Экономики

Исследовательский проект по курсу «Макроэкономика-3»

на тему:

«Пузыри. Условия существования.

Пузырится ли российский фондовый рынок?»

Выполнила Величко Оксана

группа 612

Москва 2003
Введение

Исследование проблемы финансовых пузырей началось около начала 80-х. В середине 80-х исследование данной проблемы получило наибольшее распространение. Хотя данная работа и основывается на работах с достаточным сроком жизни, но с последнее время проблеме пузырей в исследованиях ученых уделяется заметно меньше места, чем в то время. И можно сказать, что со времен тех научных трудов, принципиально нового в этой области макроэкономики не было сделано. Хотя проблему пузырей можно назвать уже не молодой, но она жива и иногда дает о себе знать. Российская экономика несколько лет назад испытала на себе последствия взрыва пузыря на фондовом рынке. Поэтому важно периодически отслеживать рынок на предмет зарождения этого явления. Особенно в российской экономике, т.к. темп роста экономики не справится с существованием быстрорастущего пузыря.

Большинство аналитиков в России судят о существовании на рынке пузырей на основании выводов, неподкрепленных расчетами. В западных работах распространена практика количественного подтверждения всех выводов.
Приложение западной теории к российским реалиям не только интересно, с точки зрения результатов, но и несколько проблематично с точки зрения несовпадения некоторых тонкостей экономик. Эта проблема также будет решена в проекте.

Целью данного исследовательского проекта является анализ некоторых работ по данной проблематике, нахождение общей линии в этих исследованиях для дальнейшего применения этих выводов на российском рынке. Т.е. главная цель – выяснить, существует ли на российском рынке пузыри или нет.

Данная работа разделена на 2 логические части: теоретическую и эмпирическую. В теоретической части описывается модель, с помощью которой в следующей части проводится эмпирический анализ существования пузыря на рынке.

Теоретические предпосылки

Цена актива состоит из двух составляющих: фундаментальной стоимости, которая является набором экзогенных переменных, и пузыря, определяемого как то, что осталось после вычитания фундаментальной стоимости актива.

В любой проблеме, связанной с неопределенностью, существуют общие моменты. И для того чтобы перейти к общим показателям по рынку, рассмотрим сначала репрезентативного потребителя (держателя акции), максимизирующего свою функцию полезности:

(1)

с учетом бюджетного ограничения: ct+i+pt+i kt+i = y+(pt+i+ dt+i) kt+i-1, i = 0, 1, 2, …… (2)

Условие первого порядка в данном случае может быть переписано следующим образом:

i = 0, 1, 2, …… (3)

где - предельная полезность единицы актива в момент времени t4

- предельная полезность дивиденда на единицу актива.

Результат (3) можно вывести и другим способом: из условия отсутствия арбитража (Diba, Grossman (1985)). Теоретическая модель представляет собой отдельное уравнение, которое подразумевает, что ожидаемая реальная доходность от держания акции, включая дивиденды и ожидаемый выигрыш или потери от изменения стоимости, равна реальной стоимости акции.

(4)

где r – ставка дисконтирования, требуемая норма доходности;

Pt – рыночная цена в момент времени t, в отношении к общему индексу цен;

Dt+1 – величина дивидендов, получаемая держателем акции.

Информация, поступающая в момент времени t, на основе которого рассчитывается Et, содержит по крайней мере текущую и прошлую ценность цены акции и дивидендов. Переменная dt является стохастической, т.е. ее изменения не зависят от цен в прошлом.

Уравнение (4) представляет собой дифференциальной уравнений с ожиданием. Т.к. (1+r) > 1, вперед-смотрящее решение этого уравнения включает сходящуюся последовательность. Это вперед смотрящее решение (Ft) является фундаментальной стоимостью:

(5)

Уравнение (5) говорит о том, что фундаментальная стоимость равнее приведенной стоимости ожидаемого размера выплат дивидендов, приведенных при помощи постоянной ставки (1+r).

Общее решение уравнения (4) представляет собой сумму Ft, а общим решение гомогенного дифференциального уравнения с ожидаем следующее:

(6)

Решением этого уравнения кроме случаев Bt = 0 являются рациональные пузыри. Любое решение уравнения (4) может быть представлено в виде:

(7)

для любого Bt, удовлетворяющего уравнению (6).

Решение этого уравнения удовлетворяет разностному стохастическому уравнению:

, (8)

где zt+1 – это случайная величина, генерируемая случайным процессом, задаваемым процессом:

для всех j ? 0. (9)

Ключевой предпосылкой того, что уравнение (8) является общим решением Pt, является то что уравнение (6) скорее всего связывает Bt с
EtBt+1, чем с Bt+1, что могло быть в модели с совершенной определенностью.

Случайная переменная zt+1 является инновацией, включающей новую информацию, доступную в момент времени t+1. Эта информация может быть внутренне несвязанна с фундаментальной стоимостью в будущем периоде Ft+1 или может быть относиться к действительно влияющим переменным, такие как
Dt+1, через параметры, не присутствующие в Ft+1. Единственным спорным свойством zt+1 в уравнении (8) является то, что ее ожидаемая стоимость всегда равна нулю.

Решение уравнения (8) для каждого момента времени t>0 следующее:

, (10)

где нулевой период представляет из себя начало рынка. Выражение (10) приравнивает Bt (компонент пузыря в рыночной цене на момент времени t) к B0
(стоимости компонента пузыря на начальную дату) и к состоянию случайной переменно z между датами 1 и t. Т.к. дисконтирующий множитель (1+r) > 1, то вклад z? в Bt экспоненциально повышается с увеличением разницы между t и
?.

Хотя линейная модель с рациональными ожиданиями приводит к возможности появления пузырей, более глубокий теоретический анализ предполагает, что такая модель терпит поражение. Это происходит из-за того, что в этой модели не рассматривается такой момент, что повлияет на спрос на активы по экстремально низким/высоким ценам и что помешает образованию пузырей.

Уравнение (6) подразумевает, что для каждого j>0 ожидаемый компонент пузыря в рыночных ценах зависит от текущей стоимости компонента пузыря:

(11)

Согласно этому, если Bt отличается от нуля, то участники рынка должны ожидать либо увеличения (Bt >0), либо уменьшения (Bt

 
     
Бесплатные рефераты
 
Банк рефератов
 
Бесплатные рефераты скачать
| мероприятия при чрезвычайной ситуации | Чрезвычайная ситуация | аварийно-восстановительные работы при ЧС | аварийно-восстановительные мероприятия при ЧС | Интенсификация изучения иностранного языка с использованием компьютерных технологий | Лыжный спорт | САИД Ахмад | экономическая дипломатия | Влияние экономической войны на глобальную экономику | экономическая война | экономическая война и дипломатия | Экономический шпионаж | АК Моор рефераты | АК Моор реферат | ноосфера ба забони точики | чесменское сражение | Закон всемирного тяготения | рефераты темы | иохан себастиян бах маълумот | Тарых | шерхо дар борат биология | скачать еротик китоб | Семетей | Караш | Influence of English in mass culture дипломная | Количественные отношения в английском языках | 6466 | чистонхои химия | Гунны | Чистон
 
Рефераты Онлайн
 
Скачать реферат
 
 
 
 
  Все права защищены. Бесплатные рефераты и сочинения. Коллекция бесплатных рефератов! Коллекция рефератов!