Введение
Моделирование как метод научного познания.
Введение в симплекс-метод
1. Словесное описание
2. Математическое описание
3. Ограничения
4. Переменные
5. Целевая функция
Симплекс-метод .
1. Представление пространства решений стандартной задачи линейного программирования
2. Вычислительные процедуры симплекс-метода
Анализ результатов .
1. Оптимальное решение
2. Статус ресурсов
3. Ценность ресурса
4. Максимальное изменение запаса ресурса
5. Максимальное изменение коэффициентов удельной
прибыли ( стоимости )
Моделирование как метод научного познания.
Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний : техническое конструирование , строительство и архитектуру , астрономию , физику , химию , биологию и , наконец , общественные науки . Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ в . Однако методология моделирования долгое время развивалась независимо отдельными науками . Отсутствовала единая система понятий, единая терминология . Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания .
Термин "модель" широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений . Рассмотрим только такие "модели", которые являются инструментами получения знаний .
Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале .
Под моделирование понимается процесс построения , изучения и применения моделей . Оно тесно связано с такими категориями , как абстракция , аналогия , гипотеза и др . Процесс моделирования обязательно включает и построение абстракций , и умозаключения по аналогии, и конструирование научных гипотез.
Главная особенность моделирования в том , что это метод опосредованного познания с помощью объектов-заместителей . Модель выступает как своеобразный инструмент познания , который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект . Именно эта особенность метода моделирования определяет специфические формы использования абстракций , аналогий , гипотез , других категорий и методов познания .
Необходимость использования метода моделирования определяется тем, что многие объекты ( или проблемы , относящиеся к этим объектам ) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств.
Моделирование - циклический процесс . Это означает , что за первым четырехэтапным циклом может последовать второй , третий и т.д. При этом знания об исследуемом объекте расширяются и точняются, а исходная модель постепенно совершенствуется . Недостатки , обнаруженные после первого цикла моделирования , бусловленные малым знанием объекта и ошибками в построении модели , можно исправить в последующих циклах . В методологии моделирования , таким образом , заложены большие возможности саморазвития .
Словесное описание
Фирма , производящая некоторую продукцию осуществляет её рекламу двумя способами через радиосеть и через телевидение . Стоимость рекламы на радио обходится фирме в 5 $ , а стоимость телерекламы - в 100$ за минуту .
Фирма готова тратить на рекламу по 1000 $ в месяц . Так же известно , что фирма готова рекламировать свою продукцию по радио по крайней мере в 2 раза чаще , чем по телевидению .
Опыт предыдущих лет показал , что телереклама приносит в 25 раз больший сбыт продукции нежели радиореклама .
Задача заключается в правильном распределении финансовых средств фирмы .
Математическое описание .
X1 - время потраченное на радиорекламу .
X2 - время потраченное на телерекламу .
Z - искомая целевая функция , оражающая максимальный сбыт от 2-ух видов рекламы .
X1=>0 , X2=>0 , Z=>0 ;
Max Z = X1 + 25X2 ;
5X1 + 100X2
X1 -2X2 => 0
Использование графического способа удобно только при решении задач ЛП с двумя переменными . При большем числе переменных необходимо применение алгебраического аппарата . В данной главе рассматривается общий метод решения задач ЛП , называемый симплекс-методом .
Информация , которую можно получить с помощью симплекс-метода , не ограничивается лишь оптимальными значениями переменных . Симплекс-метод фактически позволяет дать экономическую интерепритацию полученного решения и провести анализ модели на чувствительность .
Процесс решения задачи линейного программирования носит итерационный характер : однотипные вычислительные процедуры в определенной последовательности повторяются до тех пор , пока не будет получено оптимальное решение . Процедуры , реализуемые в рамках симплекс-метода , требуют применения вычислительных машин - мощного средства решения задач линейного программирования .
Симлекс-метод - это характерный пример итерационных вычислений , используемых при решении большинства оптимизационных задач . В данной главе рассматриваются итерационные процедуры такого рода , обеспечивающие решение задач с помощью моделей исследования операций .
В гл 2 было показано , что правая и левая части ограничений линейной модели могут быть связаны знаками . Кроме того , переменные , фигурирующие в задачах ЛП , могут быть неотрицательными или не иметь ограничения в знаке . Для построения общего метода решения задач ЛП соответствующие модели должны быть представлены в некоторой форме , которую назовем стандатрной формой линейных оптимизационных моделей . При стандартной форме линейной модели
1. Все ограничения записываются в виде равенств с неотрицательной правой частью ;
2. Значения всех переменных модели неотрицательны ;
3. Целевая функция подлежит максимизации или минимизации .
Покажем , каким образом любую линейную модель можно привести к стандартной .
Ограничения
1. Исходное ограничение , записанное в виде неравенства типа ) ,
можно представить в виде равенства , прибавляя остаточную переменную к левой части ограничения ( вычитая избыточную переменную из левой части ) .
Например , в левую часть исходного ограничения
5X1 + 100X2
вводистя остаточная переменная S1 > 0 , в результате чего исходное неравенство обращается в равенство
5X1 + 100X2 + S1 = 1000 , S1 => 0
Если исходное ограничение определяет расход некоторого ресурса , переменную S1 следует интерпретировать как остаток , или неиспользованную часть , данного ресурса .
Рассмотрим исходное ограничение другого типа :
X1 - 2X2 => 0
Так как левая часть этого ограничения не может быть меньше правой , для обращения исходного неравенства в равенство вычтем из его левой части избыточную переменную S2 > 0 . В результате получим
X1 - 2X2 - S2 = 0 , S2 => 0
2. Правую часть равенства всегда можно сделать неотрицательной , умножая оби части на -1 .
Например равенство X1 - 2X2 - S2 = 0 эквивалентно равенству - X1 + 2X2 + S2 = 0
3. Знак неравенства изменяется на противоположный при умножении обеих частей на -1 .
Например можно вместо 2 < 4 записать - 2 > - 4 , неравенство X1 - 2X2 0
Переменные
Любую переменную Yi , не имеющую ограничение в знаке , можно представить как разность двух неотрицательных переменных :
Yi=Yi’-Yi’’, где Yi’,Yi’’=>0.
Такую подстановку следует использовать во всех ограничениях , которые содержат исходную переменную Yi , а также в выражении для целевой функции .
Обычно находят решение задачи ЛП , в котором фигурируют переменные Yi’ и Yi’’ , а затем с помощью обратной подстановки определяют величину Yi . Важная особенность переменных Yi’ и Yi’’ состоит в том , что при любом допустимом решении только одна из этих переменных может принимать положительное значение , т.е. если Yi’>0 , то Yi’’=0, и наоборот . Это позволяет рассматривать Yi’ как остаточную переменную , а Yi’’ - как избыточную переменную , причем лишь одна из этих переменных может принимать положительное значение . Указанная закономерность широко используется в целевом программировании и фактически является предпосылкой для использования соответсвующих преобразований в задаче 2.30
Целевая функция
Целевая функция линейной оптимизационной модели , представлена в стандартной форме , может подлежать как максимизации , так и минимизации . В некоторых случаях оказывается полезным изменить исходную целевую функцию .
Максимизация некоторой функции эквивалентна минимизации той же функции , взятой с противоположным знаком , и наоборот . Например максимизация функции
Z = X1 + 25X2
эквивалентна минимизации функции
( -Z ) = -X1 - 25X2
Эквивалентность означает , что при одной и той же совокупности ограничений оптимальные значения X1 , X2 , в обоих случаях будут одинаковы . Отличие заключается только в том , что при одинаковых числовых значениях целевых функций их знаки будут противоположны .
Симплекс-метод .
В вычислительной схеме симплекс-метода реализуется упорядоченный процесс , при котором , начиная с некоторой исходной допустимой угловой точки ( обычно начало координат ) , осуществляются последовательные переходы от одной допустимой экстремальной точки к другой до тех пор , пока не будет найдена точка , соответствующая оптимальному решению .
Общую идею симплекс-метода можно проиллюстрировать на примере модели , посроенной для нашей задачи . Пространство решений этой задачи представим на рис. 1 . Исходной точкой алгоритма является начало координат ( точка А на рис. 1 ) . Решение , соответствующее этой точке , обычно называют начальным решением . От исходной точки осуществляется переход к некоторой смежной угловой точке .
Выбор каждой последующей экстремальной точки при использовании симплекс-метода определяется следующими двумя правилами .
1. Каждая последующая угловая точка должна быть смежной с предыдущей . Этот переход осуществляется по границам ( ребрам ) пространства решений .
2. Обратный переход к предшествующей экстремальной точке не может производиться .
Таким образом , отыскание оптимального решения начинается с некоторой допустимой угловой точки , и все переходы осуществляются только к смежным точкам , причем перед новым переходом каждая из полученных точек проверяется на оптимальность .
Определим пространство решений и угловые точки агебраически . Требуемые соотнощшения устанавливаются из указанного в таблице соответствия геометрических и алгебраических определений .
Геометрическое определение
Алгебраическое определение( симплекс метод )
Пространство решений
Ограничения модели стандартной формы
Угловые точки
Базисное решение задачи в стандартной форме
Представление пространства решений стандартной задачи линейного программирования .
Линейная модель , построенная для нашей задачи и приведенная к стандартной форме , имеет следующий вид :
Максимизировать
Z = X1 + 25X2 + 0S1 + 0S2
При ограничениях
5X1 + 100X2 +S1= 1000
- X1 +2X2+ S2 = 0
X1=>0 , X2=>0 , S1=>0 , S2=>0
Каждую точку пространства решений данной задачи , представленную на рис.1 , можно определить с помощью переменных X1 , X2 , S1 и S2 , фигурирующими в модели стандартной формы. При S1 = 0 и S2 = 0 ограничения модели эквивалентны равенствам , которые представляются соответствующими ребрами пространства решений . Увеличение переменных S1 и S2 будет соответствовать смещению допустимых точек с границ пространства решений в его внутреннюю область. Переменные X1 , X2 , S1 и S2 , ассоциированные с экстремальными точками А , В , и С можно упорядочить , исходя из того , какое значение ( нулевое или ненулевое ) имеет данная переменная в экстремальной точке .
Экстремальная точка
Нулевые переменные
Ненулевые переменные
А
S2 , X2
S1 , X1
В
S1 , X2
S2 , X1
С
S1 , S2
X1 , X2
Анализируя таблицу , легко заметить две закономерности:
1. Стандартная модель содержит два уравнения и четыре
неизвестных , поэтому в каждой из экстремальных точек две ( = 4 - 2 ) переменные должны иметь нулевые значения .
2. Смежные экстремальные точки отличаются только одной пе-
ременной в каждой группе ( нулевых и ненулевых переменных ) ,
Первая закономерность свидетельствует о возможности опре-
деления экстремальных точек алгебраическим способом путем при-
равнивания нулю такого количества переменных , которое равно
разности между количеством неизвестных и числом уравнений .
В этом состоит сущность свойства однозначности экстремальных
точек . На рис. 1 каждой неэкстремальной точке соответствует
не более одной нулевой переменной . Так , любая точка внутренней
области пространства решений вообще не имеет ни одной нулевой
переменной, а любая неэкстремальная точка , лежащая на границе ,
всегда имеет лишь одну нулевую переменную .
Свойство однозначности экстремальных точек позволяет опре-
делить их алгебраическим методом. Будем считать , что линейная
модель стандартной формы содержит т уравнений и п ( т
известных ( правые части ограничений — неотрицательные ) . Тогда
все допустимые экстремальные точки определяются как все одно-
значные неотрицательные решения системы m уравнений , в ко-
торых п — m переменных равны нулю.
Однозначные решения такой системы уравнений, получаемые
путем приравнивания к нулю ( п — т ) переменных , называются
базисными решениями . Если базисное решение удовлетворяет
требованию неотрицательности правых частей , оно называется
допустимым базисным решением. Переменные , имеющие нулевое
значение , называются небазисными переменными , остальные —
базисными переменными.
Из вышеизложенного следует , что при реализации симплекс-
метода алгебраическое определение базисных решений соответст-
вует идентификации экстремальных точек , осуществляемой при
геометрическом представлении пространства решений . Таким об-
разом , максимальное число итераций при использовании симплекс-
метода равно максимальному числу базисных решений задачи ЛП ,
представленной в стандартной форме . Это означает , что количество
итерационных процедур симплекс-метода не превышает
Cпт= n! / [ ( n - m )!m! ]
Вторая из ранее отмеченных закономерностей оказывается
весьма полезной для построения вычислительных процедур симп-
лекс-метода , при реализации которого осуществляется последова-
тельный переход от одной экстремальной точки к другой, смежной с ней . Так как смежные экстремальные точки отличаются только
одной переменной, можно определить каждую последующую ( смеж-
ную) экстремальную точку путем замены одной из текущих не-
базисных ( нулевых ) переменных текущей базисной переменной.
В нашем случае получено решение , соответствующее точке А , откуда следует осуществить переход в точку В . Для этого нужно увеличивать небазисную переменную X2 от исходного нулевого значения до значе-
ния , соответствующего точке В ( см. рис. 1 ). В точке B переменная
S1 ( которая в точке А была базисной ) автоматически обращается в
нуль и , следовательно , становится небазисной переменной . Таким
образом , между множеством небазисных и множеством базисных
переменных происходит взаимообмен переменными X2 и S1 . Этот
процесс можно наглядно представить в виде следующей таблицы.
Экстремальная точка
Нулевые переменные
Ненулевые переменные
А
S2 , X2
S1 , X1
В
S1 , X2
S2 , X1
Применяя аналогичную процедуру ко всем экстремальным точкам
рис. 1 , можно убедиться в том , что любую последующую экстре-
мальную точку всегда можно определить путем взаимной замены
по одной переменной в составе базисных и небазисных переменных
( предыдущей смежной точки ) . Этот фактор существенно упрощает
реализацию вычислительных процедур симплекс-метода.
Рассмотренный процесс взаимной замены переменных приводит
к необходимости введения двух новых терминов . Включаемой пе-
ременной называется небазисная в данный момент переменная ,
которая будет включена в множество базисных переменных на сле-
дующей итерации ( при переходе к смежной экстремальной точке ) .
Исключаемая переменная — это та базисная переменная , которая
на следующей итерации подлежит исключению из множества ба-
зисных переменных .
Вычислительные процедуры симплекс-метода .
Симплекс-алгоритм состоит из следующих шагов.
Шаг 0. Используя линейную модель стандартной формы , опреде-
ляют начальное допустимое базисное решение путем приравнива-
ния к нулю п — т ( небазисных ) переменных.
Шаг 1. Из числа текущих небазисных ( равных нулю ) перемен-
ных выбирается включаемая в новый базис переменная , увеличение
которой обеспечивает улучшение значения целевой функции. Если
такой переменной нет , вычисления прекращаются , так как текущее
базисное решение оптимально . В противном случае осуществляется
переход к шагу 2.
Шаг 2. Из числа переменных текущего базиса выбирается исклю-
чаемая переменная , которая должна принять нулевое значение ( стать
небазисной ) при введении в состав базисных новой переменной .
Шаг 3. Находится новое базисное решение , соответствующее
новым составам небазисных и базисных переменных . Осуществляется переход к шагу 1.
Поясним процедуры симплекс-метода на примере решения нашей зада-
чи . Сначала необходимо представить целевую функцию и ограничения модели в стандартной форме:
Z -X1-25X2 +0S1 -0S2 = 0 ( Целевая функция )
5X1 + 100X2 + S1 = 1000 ( Ограничение )
-X1+2X2+ S2 = 0 ( Ограничение )
Как отмечалось ранее , в качестве начального пробного решения
используется решение системы уравнений , в которой две переменные принимаются равными нулю . Это обеспечивает единст-
венность и допустимость получаемого решения . В рассматриваемом
случае очевидно, что подстановка X1 = X2 = 0 сразу же приводит к следующему результату: S1 = 1000 , S2 = 0 ( т. е. решению , соответствующему точке А на рис. 1 ) . Поэтому точку А можно использовать как начальное допустимое решение . Величина Z в этой точке равна нулю , так как и X1 и X2 имеют нулевое значение . Поэтому , преобразовав уравнение целевой функции так , чтобы его правая часть стала равной нулю , можно убедиться в том , что правые части уравнений целевой функции и ограничений полностью характеризуют начальное решение . Это имеет место во всех случаях , когда начальный базис состоит из остаточных переменных.
Полученные результаты удобно представить в виде таблицы :
Базисные переменные Z X1 X2 S1 S2 Решение
Z 1 -1 - 25 0 0 0 Z - уравнение
S1 0 5 100 1 0 1000 S1 -уравнение
S2 0 -1 2 0 1 0 S2 - уравнение
Эта таблица интерпретируется следующим образом. Столбец
« Базисные переменные » содержит переменные пробного базиса S1 ,
S2 , значения которых приведены в столбце « Решение » . При
этом подразумевается , что небазисные переменные X1 и X2 ( не пред-
ставленные в первом столбце ) равны нулю . Значение целевой функ-
ции Z = 1*0 + 25*0 + 0*1000 + 0*1 равно нулю , что и показано в последнем столбце таблицы .
Определим , является ли полученное пробное решение наи-
лучшим ( оптимальным ) . Анализируя Z - уравнение , нетрудно заме-
тить , что обе небазисные переменные X1 и X2 , равные нулю , имеют
отрицательные коэффициенты . Всегда выбирается переменная с большим абсолютным значением отрицательного коэффициента ( в Z - уравнении ) , так как практический опыт вычислений показывает , что в этом случае оптимум достигается быстрее .
Это правило составляет основу используемого в вычислительной
схеме симплекс-метода условия оптимальности , которое состоит в
том , что , если в задаче максимизации все небазисные переменные в
Z - уравнении имеют неотрицательные коэффициенты , полученное пробное решение является оптимальным . В противном случае в ка-
честве новой базисной переменной следует выбрать ту , которая имеет
наибольший по абсолютной величине отрицательный коэффициент .
Применяя условие оптимальности к исходной таблице , выберем
в качестве переменной , включаемой в базис , переменную Х2 . Исклю-
чаемая переменная должна быть выбрана из совокупности базисных
переменных S1 , S2 . Процедура выбора исключаемой переменной предполагает проверку условия допустимости , требующего , чтобы в качестве исключаемой переменной выбиралась та из пере-
менных текущего базиса , которая первой обращается в нуль при уве-
личении включаемой переменной X2 вплоть до значения , соответствующего смежной экстремальной точке .
Интересующее нас отношение ( фиксирующее искомую точку пе-ресечения и идентифицирующее исключаемую переменную ) можно
определить из симплекс-таблицы. Для этого в столбце , соответствующем вводимой переменной X2 , вычеркиваются отрицательные и нулевые элементы ограничений . Затем вычисляются отношения постоянных , фигурирующих в правых частях этих ограничений , к оставшимся элементам столбца , соответствующего вводимой переменной X2 . Исключаемой переменной будет та переменная текущего базиса , для которой указанное выше отношение минимально.
Начальная симплекс-таблица для нашей задачи , получаемая после проверки условия допустимости ( т. е. после вычисления соответствующих отношений и определения исключаемой переменной ) , воспроизведена ниже . Для удобства описания вычислительных процедур , осуществляемых на следующей итерации , введем ряд необходимых определений . Столбец симплекс-таблицы , ассоциированный с вводимой переменной , будем называть ведущим столбцом . Строку , соответствующую исключаемой переменной , назовем ведущей строкой ( уравнением ) , а элемент таблицы , находящийся на пересечении ведущего столбца и ведущей строки , будем называть ведущим элементом .
После того как определены включаемая и исключаемая пере-
менные ( с использованием условий оптимальности и допустимости ) ,
следующая итерация ( поиск нового базисного решения ) осуществля-
ется методом исключения переменных , или методом Гаусса — Жордана . Этот процесс изменения базиса включает вычислительные процедуры двух типов .
Тип 1 ( формирование ведущего уравнения ) .
Новая ведущая строка = Предыдущая ведущая строка / Ведущий элемент
Тип 2 ( формирование всех остальных уравнений , включая Z - yравнение ) .
Новое уравнение = Предыдущее уравнение —
? Коэффициент ?
? ведущего столбца ??????Новая ведущая строка ) .???
??предыдущего?
??уравнения??
Выполнение процедуры типа 1 приводит к тому , что в новом
ведущем уравнении ведущий элемент становится равным единице .
В результате осуществления процедуры типа 2 все остальные коэф-
фициенты , фигурирующие в ведущем столбце , становятся равными
нулю . Это эквивалентно получению базисного решения путем ис-
ключения вводимой переменной из всех уравнений , кроме ведущего .
Применяя к исходной таблице процедуру 1 , мы делим S2 - уравнение на ведущий элемент , равный 1 .
Базисные переменные Z X1 X2 S1 S2 Решение
Z
S1
S2 0 -1/2 1 0 1/2 0
Чтобы составить новую симплекс-таблицу , выполним необходимые вычислительные процедуры типа 2 .
1. Новое Z - уравнение .
старое Z - уравнение : ( 1 -1 -25000 )
( - ( -25 ) * ( 0 -1/210 1/20 )
( 1 -131/2 00 121/2 0 )
2. Новое S1 - уравнение
старое S1 - уравнение : ( 05 100 101000 )
( - 100 ) *( 0 -1/2 1 01/2 0 )
( 0 5501 -50 1000 )
Новая симплекс-таблица будет иметь вид :
Базисные переменные Z X1 X2 S1 S2 Решение
Z 1 -131/2 0 0 121/2 0 Z - уравнение
S1 0 55 0 1 -50 1000 S1 -уравнение
X2 0 -1/2 1 0 1/2 0 X2 - уравнение
В новом решении X1 = 0 и S2 = 0 . Значение Z не изменяется .
Заметим , что новая симплекс-таблица обладает такими же ха-
рактеристиками , как и предыдущая : только небазисные переменные
X1 и S2 равны нулю , а значения базисных переменных , как и раньше ,
представлены в столбце « Решение » . Это в точности соответствует
результатам , получаемым при использовании метода Гаусса—Жор-
дана .
Из последней таблицы следует , что на очередной итерации в со-
ответствии с условием оптимальности в качестве вводимой перемен-
ной следует выбрать X1 , ?ак как коэффициент при этой переменной в
Z-ypaвнении равен -131/2 . Исходя из условия допустимости , определяем , что исключаемой переменной будет S1 . Отношения , фигурирующие в правой части таблицы , показывают , что в новом базисном решении значение включаемой переменной X1 будет равно 1000/55 ( = минимальному отношению ) . Это приводит к увеличению целевой функции на ( 1000/55 ) *( -131/2 ) = ( 2455/11 ) .
К получению симплекс-таблицы , соответствующей новой итерации , приводят следующие вычислительные операции метода Гаусса—Жордана.
1) Новое ведущее S1 - уравнение = Предыдущее S1 - уравнение / ( 55 ) .
Базисные переменные Z X1 X2 S1 S2 Решение
Z
S1 0 1 0 1/55 - 50/55 1000/55
X2
2) Новое Z - уравнение = Предыдущее Z - уравнение - ( -131/2 ) * Новое /ведущее уравнение :
( 1 -131/2 00121/2 0)
- ( -131/2 ) * ( 0 101/55 -50/551000/55 )
( 1 0027/110 5/22 2455/11 )
3) Новое X2 - уравнение = Предыдущее X2 - уравнение - ( -1/2 ) * Новое ведущее уравнение :
( 0 -1/2 10 1/2 0)
- ( - 1/2 ) *( 0101/55 -50/551000/55 )
( 001 1/1101/2291/11 )
В результате указанных преобразований получим следующую симп-
лекс-таблицу .
Базисные переменные Z X1 X2 S1 S2 Решение
Z 1 0 0 27/110 5/22 2455/11
X1 0 1 0 1/55 -50/55 1000/55
X2 0 0 1 1/110 1/22 91/11
Последняя симплекс-таблица соответствует оптимальному реше-
нию задачи, так как в Z - уравнении ни одна из небазисных переменных не фигурирует с отрицательным коэффициентом. Получением этой pезультирующей таблицы и завершаются вычислительные процедуры симплекс-метода .
В рассмотренном выше примере алгоритм симплекс-метода ис-
пользован при решении задачи , в которой целевая функция подлежала максимизации . В случае минимизации целевой функции в этом
алгоритме необходимо изменить только условие оптимальности :
в качестве новой базисной переменнойследует выбирать ту переменную , которая в Z - уравнении имеет наибольший положительный коэффициент . Условия допустимости в обоих случаях ( максимизации и минимизации ) одинаковы . Представляется целесообразным дать теперь окончательные формулировки обоим условиям , используемым в симплекс-методе .
Условие оптимальности . Вводимой переменной в задаче максимизации ( минимизации ) является небазисная переменная , имеющая в Z -уравнении наибольший отрицательный ( положительный ) коэффициент , В случае равенства таких коэффициентов для нескольких небазисных переменных выбор делается произвольно , если все коэффициенты при небазисных переменных в Z - уравнении неотрицательны (неположительны) , полученное решение является оптимальным .
Условие допустимости , в задачах максимизации и минимизации в качестве исключаемой переменной выбирается та базисная переменная , для которой отношение постоянной в правой части соответствующего ограничения к ( положительному ) коэффициенту ведущего столбца минимально. В случае равенства этого отношения для нескольких базисных переменных выбор делается произвольно .
Оптимальное решение
С точки зрения практического использования результатов ре-
шения задач ЛП классификация переменных , предусматривающая
их разделение на базисные и небазнсные , не имеет значения и при
анализе данных , характеризующих оптимальное решение , может
не учитываться . Переменные , отсутствующие в столбце « Базисные
переменные » , обязательно имеют нулевое значение . Значения ос-
тальных переменных приводятся в столбце « Решение » . При интер-
претации результатов оптимизации в нашей задаче нас прежде всего интересует количество времени , которое закажет наша фирма на радио и телевидение , т. е. значения управляемых переменных X1 и X2 . Используя данные , содержащиеся в симплекс-таблице для оптимального решения , основные результаты можно представить в следующем виде :
Управляемые переменные
Оптимальные значения
Решение
X1
1000/55
Время выделяемое фирмой на телерекламу
X2
91/11
Время выделяемое фирмой на радиорекламу
Z
2455/11
Прибыль получаемая от рекламы .
Заметим, что Z = X1 + 25X2 = 1000/55 + 25 * 91/11 = 2455/11 . Это решение соответствует данным заключительной симплекс-таблицы .
Статус ресурсов
Будем относить ресурсы к дефицитным или недифицитным в зависимости от того , полное или частичное их использо-
вание предусматривает оптимальное решение задачи . Сейчас цель
состоит в том , чтобы получить соответствующую информацию непос-
редственно из симплекс-таблицы для оптимального решения . Од-
нако сначала следует четко уяснить следующее . Говоря о ресурсах ,
фигурирующих в задаче ЛП , мы подразумеваем , что установлены
некоторые максимальные пределы их запасов , поэтому в соответст-
вующих исходных ограничениях должен использоваться знак
Следовательно , ограничения со знаком => не могут рассматриваться
как ограничения на ресурсы . Скорее , ограничения такого типа отра-
жают то обстоятельство , что решение должно удовлетворять опре-
деленным требованиям , например обеспечению минимального спро-
са или минимальных отклонений от установленных структурных
характеристик производства ( сбыта ) .
В модели , построенной для нашей задачи , фигурирует ограничение со знаком
Из вышеизложенного следует , что статус ресурсов ( дефицитный
или недефицитный ) для любой модели ЛП можно установить не-
посредственно из результирующей симплекс-таблицы , обращая вни-
мание на значения остаточных переменных . Применительно к нашей задаче можно привести следующую сводку результатов :
Ресурсы
Остаточная переменная
Статус ресурса
Ограничение по бюджету
S1
Дефицитный
Превышение времени рекламы радио над теле
S2
Дефицитный
Положительное значение остаточной переменной указывает на
неполное использование соответствующего ресурса , т . е . данный
ресурс является недефицятным. Если же остаточная переменная рав-
на нулю , это свидетельствует о полном потреблении соответствующе-
го ресурса. Из таблицы видно , что наши ресурсы являются дефицитными . В случае недефицитности любое увиличение ресурсов сверх установленного максимального значения привело бы лишь к тому , что они стали бы еще более недефнинтными . Оптимальное решение задачи при этом осталось бы неизменным.
Ресурсы, увеличение запасов которых позволяет улучшить ре-
шение ( увеличить прибыль ) , — это остаточные переменные S1 и S2 , по-
скольку из симплекс-таблицы для оптимального решения видно ,
что они дефицитные . В связи с этим логично поставить следующий
вопрос: какому из дефицитных ресурсов следует отдать предпочте-
ние при вложении дополнительных средств на увеличение их запа-
сов , с тем чтобы получить от них максимальную отдачу ? Ответ на
этот вопрос будет дан в следующем подразделе этой главы , где рас-
сматривается ценность различных ресурсов .
Ценность ресурса
Ценность ресурса характеризуется величиной улучшения опти-
мального значения Z , приходящегося на единицу прироста объема
данного ресурса .
Информация для оптимального решения задачи представлена в симплекс-таблице . Обратим внимание на значения коэффициентов Z - уравнения , стоящих при переменных начального базиса S1 и S2 . Выделим для удобства соответстзующую часть симплекс-таблицы :
Базисные переменные Z X1 X2 S1 S2 Решение
Z 1 0 0 27/110 5/22 2455/11
Как следует из теории решения задач ЛП , ценность ресурсов всегда можно определить по значениям коэффициентов при переменных начального базиса , фигурирующих в Z - уравнении оптимальной симплекс-таблицы , таким образом Y1 = 27/110 , а Y2 = 5/22 .
Покажем , каким образом аналогичный результат можно получить непосредственно из симплекс-таблицы для оптимального решения . Рассмотрим Z - уравнение симплекс-таблицы для оптимального решения нашей задачи
Z = 2455/11 - ( 27/110S1 + 5/22S2 ) .
Положительное приращение переменной S1 относительно ее текущего
нулевого значения приводит к пропорциональному уменьшению Z ,
причем коэффициент пропорциональности равен 27/110 . Но , как следует из первого ограничения модели :
5X1 + 100X2 + S1 = 1000
увеличение S1 эквивалентно снижению количества денег выделеных на рекламу ( далее мы будем использовать в тексте , как первый ресурс ) . Отсюда следует , что уменьшение количества денег выделеных на рекламу вызывает пропорциональное уменьшение целевой функции с тем же коэффициентом пропорциональности , равным 27/110 . Так как
мы оперируем с линейными функциями , полученный вывод можно
обобщить , считая , что и увеличение количества денег выделеных на рекламу ( эквивалентное введению избыточной переменной S1 < 0 ) приводит к пропорциональному увеличению Z с тем же коэффициентом пропорциональности , равным 27/110 . Аналогичные рассуждения справед->
ливы для ограничения 2 .
Несмотря на то что ценность различных ресурсов , определяемая
значениями переменных Yi , была представлена в стоимостном выражении , ее нельзя отождествлять с действительными це-
нами , по которым возможна закупка соответствующих ресурсов .
На самом деле речь идет о некоторой мере , имеющей экономическую
природу н количественно характеризующей ценность ресурса только относительно полученного оптимального значения целевой функции .
При изменении ограничении модели соответствующие экономические
оценки будут меняться даже тогда , когда оптимизируемый процесс
предполагает применение тех же ресурсов . Поэтому при характерис-
тике ценности ресурсов экономисты предпочитают использовать
такие терминыт , как теневая цена , скрытая цена , или более специ-
фичный термин — двойственная оценка .
Заметим , что теневая цена ( ценность ресурса ) характеризует ин-
тенсивность улучшения оптимального значения Z . Однако при этом
не фиксируется интервал значений увеличения запасов ресурса ,
при которых интенсивность улучшения целевой функции остается
постоянной . Для большинства практических ситуаций логично пред-
положить наличие верхнего предела увеличения запасов , при пре-
вышении которого соответствующее ограничение становится избы-
точным , что в свою очередь приводит к новому базисному решению
и соответствующим ему новым теневым ценам . Ниже определяется
нитервал значений запасов ресурса , при которых соответствую-
щее ограничение не становится избыточным .
Максимальное изменение запаса ресурса
При решении вопроса о том , запас какого из ресурсов следует
увеличивать в первую очередь , обычно используются теневые цены
Чтобы определить интервал значений изменения запаса ресурса ,
при которых теневая цена данного ресурса , ( фигурирующая в заклю-
чительной симплекс-таблице , остается неизменной , необходимо выполнить ряд дополнительных вычислений . Рассмотрим сначала
соответствующие вычислительные процедуры , а затем покажем , как
требуемая информация может быть получена из симплекс-таблицы
для оптимального решения .
В нашей задаче запас первого ресурса изменился на ?? т. е. запас бюджета составит 1000 + ?? . При положительной величине ?? запас данного ресурса увеличивается , при отрицательной — уменьшается . Как правило , исследуется ситуация , когда объем ресурса увеличивается ( ???> 0 ) , однако , чтобы получить результат в общем виде , рассмотрим оба случая .
Как изменится симплекс-таблица при изменении величины за-
паса ресурса на????? Проще всего получить ответ на этот вопрос .
если ввести ???в правую часть первого ограничения начальной сим-
плекс-таблицы и затем выполнить все алгебраические преобразова-
ния , соответствующие последовательности итераций . Поскольку
правые части ограничений никогда не используются в качестве
ведущих элементов , то очевидно , что на каждой итерации ???будет
оказы