Чтение RSS
Рефераты:
 
Рефераты бесплатно
 

 

 

 

 

 

     
 
Силос
1. Производство силоса.

Искусство приготовления силоса как способ сохранения сочных кормов было известно тысячи лет, хотя сложные биохимические и микробиологические изменения, которые происходят при процессах силосования, стали понятны сравнительно недавно.
Силосование, или заквашивание, - способ консервирования зеленого корма, при котором растительную массу хранят во влажном состоянии в ямах, траншеях или специальных сооружениях - силосных башнях. Корм, более или менее спрессованный и изолированный от доступа воздуха, подвергается брожению, приобретает кислый вкус, становится мягче, несколько изменяет цвет (бурая окраска), но остается сочным.
Силосование имеет ряд преимуществ по сравнению с другими способами консервирования корма.

Способы силосования

1. холодный;
2. горячий.
* При холодном способе силосования созревание силоса идет при умеренном повышении температуры, доходящем в некоторых слоях корма до 40?С; оптимальной температурой считается 25-30 ?С. При таком силосовании скошенную растительную массу, если нужно, измельчают, укладывают до отказа в кормовместилище, утрамбовывают, сверху как можно плотнее укрывают для изоляции от воздуха.
* При горячем способе силосное сооружение заполняют по частям. Зеленую массу на один - два дня рыхло укладывают слоем около 1-1.5 м. При большом количестве воздуха в ней развиваются энергичные микробиологические и ферментные процессы, в результате чего температура корма поднимается до 45-50?С. Затем укладывают второй слой такой же толщины, как и первый, и он, в свою очередь, подвергается разогреванию. Растения, находящиеся внизу и размягченные под влиянием высокой температуры, спрессовываются под тяжестью нового слоя корма. Это вызывает удаление воздуха из нижнего слоя силоса, отчего аэробные процессы в нем прекращаются и температура начинает снижаться. Так слой за слоем заполняют все силосохранилище. Самый верхний слой корма утрамбовывают и плотно прикрывают для защиты от воздуха. В связи с тем, что силосохранилище при горячем способе силосования обычно делают небольших размеров, на верхний слой силосуемого корма помещают груз. Разогревание растительной массы связано с потерей иногда значительной части питательных веществ корма. В частности, резко уменьшается переваримость белков. Поэтому горячее силосование не может считаться рациональным способом сохранения растительной массы. Общие потери сухих веществ корма при холодном силосовании не должны превышать 10-15%, во втором достигают 30% и более.
Холодный способ силосования наиболее распространен, что объясняется как сравнительной его простотой, так и хорошим качеством получающегося корма. Горячий способ силосования допустим лишь для квашения грубостебельчатых, малоценных кормов, которые после разогревания лучше поедаются скотом.
Британские фермеры убирают травы, пока они еще находятся в относительно ранней стадии роста, с высоким содержанием ферментируемых сахаров (водорастворимых углеводов - ВРУ) и низким содержанием волокон. Собирают ли культуру немедленно либо оставляют на поле вянуть несколько часов, зависит от погодных условий во время покоса, но в идеале фермер хочет закладывать на силос культуру с содержанием сухого вещества 25-30%. Во многих странах с умеренным климатом, таких как Великобритания, дожди поздней весной и ранним летом не всегда позволяют подсушить траву, и поэтому при силосовании трав, содержащих менее 25% СВ, всегда используются силосные добавки, чтобы достичь хорошей ферментации и уменьшить потери силоса. [15].

2.Фазы созревания силоса.

Рассмотрим динамику созревания силоса. Процесс квашения можно условно разбить на три фазы.
* Первая фаза созревания заквашиваемого корма характеризуется развитием смешанной микрофлоры. На растительной массе начинается бурное размножение разнообразных групп микроорганизмов, внесенных с кормов в силосное помещение. Силосование связано с накоплением в корме кислот, образующихся в результате сбраживания микробами-кислотообразователями содержащихся в растениях сахаристых веществ. Основную роль в процессе силосования играют молочнокислые бактерии, продуцирующие из углеводов (в основном из моно- и дисахаридов) молочную и частично уксусную кислоты. Данные кислоты имеют приятные вкусовые свойства, хорошо усваиваются организмом животного и возбуждают у него аппетит. Молочнокислые бактерии снижают реакцию среды корма до pH 4.2...4.0 и ниже. Накопление молочной и уксусной кислот в силосе обусловливает его сохранность, так как гнилостные и прочие нежелательные для силосования бактерии не способны размножаться в среде с кислой реакцией (ниже рН 4.5...4.7 ). Сами же молочнокислые бактерии относительно устойчивы к кислотам.
Обычно первая фаза брожения бывает кратковременной. Вначале захваченный атмосферный кислород в сырье используется растительными ферментами в еще дышащих растениях, но кислород вскоре кончается, и далее брожение происходит в анаэробных условиях. В это время молочнокислые бактерии, присутствующие вначале в небольшом количестве, начинают быстро размножаться до концентрации 109 -1010 клеток/г, используя сахара, освобожденные из разрушенных растительных клеток, как основной источник энергии.
* Во второй фазе - главного брожения - основную роль играют молочнокислые бактерии, продолжающие подкислять корм. Большинство неспороносных бактерий погибает, но бациллярные формы в виде спор могут длительное время сохраняться в заквашенном корме. В начале второй фазы брожения в силосе обычно преобладают кокки, которые позднее сменяются палочковидными молочнокислыми бактериями, отличающимися большой кислотоустойчивостью. При идеальных условиях рН стабилизируется на уровне 3.8 - 4.2, в зависимости от содержания сухого вещества, и силос эффективно консервируется за несколько недель. Однако, когда содержание СВ скошенной травы менее 25%, условия не идеальные, процесс консервации может пройти плохо, особенно если уровень ВРУ также низок (как часто бывает у трав, выросших в умеренном климате). Для нормального силосования нормальных кормов требуется неодинаковое подкисление, в зависимости от различного проявления буферных свойств некоторых составных частей растительного сока. [3].


Буферные свойства.

Механизм действия буферов заключается в том, что в их присутствии значительная часть ионов водорода нейтрализуется. Поэтому несмотря на накопление кислоты, реакция среды почти не снижается до тех пор, пока не израсходован весь буфер. В силосе образуется запас так называемых связанных буферами кислот. Роль буферов могут играть различные соли и некоторые органические вещества (например, протеины), входящие в состав растительного сока.
Для повышения в силосе содержания сырого протеина, а также улучшения ферментации корма в период закладки к массе добавляют мелассу, мочевину, соевый шрот. Мелкое измельчение стержней и оберток початков повышает на 30% поедаемость силоса. [1].
Более буферный корм для получения хорошего силоса должен иметь больше сахаров, чем менее буферный. Следовательно, силосуемость растений определяется не только богатством их сахарами, но и специфическими буферными свойствами. Основываясь на буферности сока растений, можно теоретически вычислить нормы сахара, необходимые для успешного силосования различного растительного сырья.
Буферность сока растений находится в прямой зависимости от количества в них белков. Поэтому большинство бобовых растений трудно силосуется, т.к. в них относительно мало сахара (3...6%) и много белка (20...40%). Прекрасная силосная культура - кукуруза, в стеблях и початках ее содержится 8...10% белка и около 12% сахара. Хорошо силосуется подсолнечник, в котором много белка (около 20%) , но и достаточно углеводов (более 20%). Приведенные показатели рассчитаны на СВ. [1].
В основном силосуемость связывают с запасом моно- и дисахаридов, дающих необходимое подкисление. Минимальное их содержание для доведения реакции среды корма до рН 4.2 может быть названа сахарным минимумом. Технически определить сахарный минимум несложно. Титрованием устанавливают необходимое количество кислот для подкисления пробы исследуемого корма до рН 4.2. затем определяют количество простых сахаров в корме. Допуская, что около 60% сахаров превращаются в молочную кислоту, можно рассчитать, хватает ли имеющегося сахара для должного подкисления корма [11].
Качество силоса во многих случаях не отвечает зоотехническим требованиям. Это обусловлено нарушением технологии силосования (длительное нахождение зеленой массы в поле, силосование перезревшей массы силосных культур, слабая утрамбовка при заполнении траншеи).

Недостаточное уплотнение и
плохое укрывание силосных буртов.

Приведенная причина может также привести к плохой консервации и большим потерям при силосовании из-за доступа воздуха (кислорода). В таких условиях значение рН 4.0 не достигается. Следовательно, могут быстро размножаться микроорганизмы, которые обычно ингибированы анаэробиозом. Энтеробактерии и Clostridium, которые ингибируются низкими значениями рН, будут способны расти и утилизировать молочную кислоту. Белок и остаточные ВРУ с последующей утратой пищевой ценности силоса. (рис. 1 и 2). Рост видов Clostridium, имеющий оптимум при рН 7.2, не ингибируется до тех пор, пока рН не упадет ниже 5.5. Следовательно, в плохо законсервированном влажном силосе они могут доминировать среди микрофлоры. Виды Clostridium предпочитают также более высокую влажность и силос с низким содержанием СВ. [16].
Сахаролитические виды, такие как Clostridium tyrobutyricum, используют ВРУ и молочную кислоту в процессе своего роста, и в силосе, который может изначально иметь низкую концентрацию молочной кислоты, неизбежно будет расти рН из-за наработки масляной кислоты, которая слабее, чем молочная.[13].
Протеолитические виды бактерий, такие как С.sporogenes, используют многие из аминокислот силоса, продуцируя преимущественно масляную кислоту и аммиак. Эти реакции меняют условия среды, усиливая развитие С.spp. Типичные реакции С.spp приведены ниже.
Типичные реакции клостридий, расщепляющих сахара:
глюкоза --> масляная кислота + 2 СО2 + 2 Н2,
2 молочная кислота --> масляная кислота + 2 СО2 + 2 Н2.


Типичные реакции протеолитических клостридий:
1. дезаминирование
лизин --> уксусная кислота + масляная кислота + 2 NH3 ,
2. декарбоксилирование
глутаминовая кислота --> ? - аминомасляная кислота + СО2 ,
3. окислительно-восстановительная реакция
аланин + 2 глицин --> уксусная кислота + 3 NH3 + СО2.
Скармливание коровам, молоко которых идет на сыр, недоброкачественного силоса, подвергавшегося маслянокислому брожению, вызывает в сыре подобное брожение.
Также нежелательны в силосе и дрожжи. Обычно после начального быстрого размножения аэробные виды, такие как Candidas spp. и Pichia spp., «остаются в спячке» в анаэробных условиях, пока силос не откроют для кормления животных. Аэробная порча силоса на поверхности бурта может быть очень быстрой и приводить к полной потере питательности, сопровождаясь образованием диоксида углерода, воды и выделением теплоты, как видно из приведенных ниже типичных реакций дрожжей.
Анаэробиоз:
глюкоза --> 2 этанол + 2 СО2 + 64,7 кДж.
Потеря сухого вещества 100%, энергии 9%.
Аэробиоз:
глюкоза + 6 О2 --> 6 СО2 + 6 H2O + 710,5 кДж.
Потеря сухого вещества и энергии - 100%.
Если анаэробные условия устанавливаются быстро, а достижение низкого рН запаздывает, то, помимо видов рода Clostridium, проблемы могут возникать также из-за дрожжей. Будучи устойчивыми к слабокислым условиям, анаэробные дрожжи, например Torulopsis spp., конкурируют с молочнокислыми бактериями за сахара, которые они превращают в этанол и диоксид углерода с потерей СВ и повышением температуры силоса. [8].
Следовательно, биологические добавки к силосу должны быть способны быстро начинать ферментацию и сохранять низкое значение рН в течении всего периода образования и сохранения силоса. Промедление может быть чревато потерей питательных веществ.

Вернемся к основным бактериям, участвующим в силосовании - молочнокислым бактериям. Среди молочнокислых бактерий силоса имеются кокки и неспорообразующие палочки: Streptococcus lactis, S. thermophilus, Lactobacillus plantarum, а из представителей второй - L. brevis. Эти микробы - анаэробы. На характере продуктов, образуемых молочнокислыми бактериями, сказываются не только биохимические особенности той или иной культуры, но и вид углеводов. В растительном сырье имеются пентозаны, дающие при гидролизе пентозы. Поэтому даже при нормально идущем созревании силоса в нем обычно накапливается некоторое количество уксусной кислоты, которая также образуется, как известно, некоторыми другими молочнокислыми бактериями из гексоз. Большинство молочнокислых бактерий живут при температуре 7...42 ?С (оптимум около 25...30?С). Отмечено, что при разогревании до 60...65 ?С в нем накапливается молочная кислота, которую продуцируют некоторые термотолерантные бактерии, например Bacillus subtilis.
* Третья фаза брожения корма - конечная - связана с постепенным отмиранием в созревающем силосе возбудителей молочнокислого процесса. К этому времени силосование подходит к естественному завершению.
О качестве силосованного корма можно судить по составу органических кислот, накопившихся при брожении (табл.1). [11].

Примерное соотношение кислот в силосе разного качества Табл.1
Качество силоса
Реакция среды
Соотношение кислот
Очень хорошее
4,2 и ниже
молочная - 60% и более,
уксусная - 40% и менее, масляная - 0%
Хорошее
4.5 и ниже
молочная - 40-60 %,
уксусная - 60-40%, масляная - следы
Среднее
около 4.5
молочная - 40-60%,
уксусная - 60-40%, масляная - до 0,2%
Плохое
выше 4.7
молочная - мало,
масляная - значительно
Очень плохое
выше 5.5
преобладают летучие кислоты, в том числе и масляная

Для регулирования процесса силосования существует несколько приемов.
Как уже говорилось, на практике быстрое достижение анаэробных условий в буртах или ямах не всегда гарантировано. Непросто также достичь идеального содержания СВ в скошенной траве из-за погодных условий. Поэтому в течение долгого времени велись поиски химических средств, которые могли бы влиять на консервацию силоса.
3.Силосные добавки.

По их действию на процесс ферментации силосные добавки делятся на 2 основные группы: ингибиторы и стимуляторы ферментации. Ингибиторы- это кислотные добавки (серная и муравьиная кислоты) и консерванты (например, формальдегид и параформальдегид). Стимуляторы- это источники углеводов- патока и барда - или разнообразные добавки, такие как молочнокислые бактерии и ферменты.

1.Ингибиторы ферментации.

Опыты по кормлению показали, что силос с рН ниже 3.0 (значение легкодостижимое с помощью сильных неорганических кислот) был неприятным для животных, и даже если они его ели, вызывал ацидоз в рубце. Было вычислено количество кислоты, необходимое для достижения рН 3.6-4.0, более пригодного для питания животных, однако все еще ингибирующего некоторые вредные процессы ферментации. Хотя серная кислота и смесь серной и соляной кислот в качестве добавок были популярны во многих североевропейских странах, они постепенно вышли из употребления из-за коррозионного действия и возникновения проблем, связанных с использованием этих кислот.
Еще в двадцатые годы было предложено в качестве добавок использовать органические кислоты. Но разбрызгивание смеси муравьиной и соляной кислот по силосной массе не привело к успеху. Неудача была связана в основном с трудностью равномерного распределения кислоты в толще силосной массы, но с появлением специальных уборочных машин и накопительных фургонов стало возможным обрызгивать кормовую культуру муравьиной кислотой сразу после скашивания. В частности, использование добавок муравьиной кислоты стало промышленно доступной в 50-х годах. Хотя муравьиная кислота слабее неорганических кислот, она понижает значение рН ниже 4.0, если добавлять ее в концентрации, пропорциональной содержанию СВ. Муравьиная кислота обладает антибактериальной активностью за счет сочетания действия водородного иона и бактерицидности самой недиссоциированной кислоты. Хотя она действует ингибирующе на Clostridium spp., энтеробактерии и некоторые штаммы Streptococcus spp. и Pediococcus spp., но при этом значении рН не полностью подавляет Lactobacillus spp. и, таким образом, некоторая микробная активность сохраняется. [8].
До создания специальных заквасок использовали главным образом химические консерванты (таблица 2), [4] , в состав которых входит от одной до трех органических кислот, являющихся также метаболитами пропионовых бактерий, правда, доля муравьиной кислоты превалирует в составе химических консервантов и очень мала в биологических.

Химические консерванты для силосов. Таблица 2
Название
Состав, %
ВИК-1
муравьиная кислота -27
уксусная кислота -27
пропионовая кислота -26
вода -20
АИВ-2
муравьиная кислота -80
ортофосфорная кислота - 2
вода -18
ВИК-11
муравьиная кислота -80
уксусная кислота -9
пропионовая кислота -11

Было обнаружено, что по мере возрастания концентрации муравьиной кислоты в силосе наблюдалось снижение уровня молочной и уксусной кислот, как и ожидалось, а также увеличивалась концентрация азота белка и ВРУ благодаря ингибированию протеолитической и дыхательной активности микроорганизмов. Однако использование муравьиной кислоты не всегда дает устойчивый эффект при силосовании.
Исследования устойчивости силоса, обработанного муравьиной кислотой, к воздействию кислорода показали, что некоторые дрожжи устойчивы к муравьиной кислоте и иногда вызывают аэробное брожение, как только бурты открывались для использования. До 50% муравьиной кислоты может быть потеряно в процессе силосования, и это также приводит к плохой консервации силоса. Однако промышленные препараты муравьиной кислоты еще достаточно широко используются в Великобритании и северной Европе. [1].
Уксусная, пропионовая и акриловая кислоты, в качестве добавок к силосу, оказались менее эффективными, чем муравьиная, для подавления ферментации. Кроме того, это слабые кислоты, и для достижения ингибирования ферментации их надо вносить в большом количестве, что означает неоправданные затраты.
Благодаря известным бактериостатическим свойствам формалин (40% водный раствор формальдегида) использовался как консервант еще в 30-х годах. Интерес к его использованию возродился, когда были опубликованы результаты изучения обработанной формальдегидом люцерны. Было обнаружено, что умеренные добавки формальдегида защищают растительные белки от микробной атаки в рубце. Однако при полевом применении его потери могут быть высоки из-за летучести, и даже в силосных ямах содержание формальдегида постепенно уменьшается вследствие разложения, так что через 100 дней остается только 20% исходного содержания. Это приводит к порче силоса из-за сочетания маслянокислого брожения по мере падения концентрации формальдегида и последующей аэробной неустойчивости при вскрытии. При применении больших концентраций возникают другие проблемы. Защита растительного белка умеренными концентрациями формальдегида может привести к тому, что при его высоких концентрациях микроорганизмы в рубце будут лишены доступного азота и погибнут, что ухудшит переваривание белка в толстом отделе кишечника. Также обнаружено, что «свободный» формальдегид может переноситься в молоко. [1].
Большая часть этих неприятностей исчезает, когда используют смеси формальдегида и муравьиной кислоты, которые эффективно уменьшают протеолиз и маслянокислую ферментацию и не мешают перевариванию белков, что приводит к увеличению содержания СВ в силосе.





2. Стимуляторы ферментации.

Добавки, которые активно стимулируют ферментационные процессы в силосе, используются уже много лет. Добавление патоки, как оказалось, увеличивает и содержание сухих веществ, и концентрацию молочной кислоты, с последующим уменьшением рН и ингибированием роста вредных микроорганизмов, однако этот уровень рН еще позволяет расти молочнокислым бактериям. Добавка патоки к культурам с низким содержанием ВРУ, таким как бобовые, была только тогда полезна, когда применялись относительно высокие дозы (около 40-50 г/кг и более). При таких дозах не все доступные углеводы превращаются в молочную кислоту лактобациллами, обычно присутствующими в силосе, и к концу ферментации сохранится довольно высокий остаточный уровень ВРУ. [1].
Последняя группа промышленных стимуляторов ферментации - это вещества, включающие молочнокислые бактерии и/или ферменты, известные в совокупности как микробные или биологические силосные добавки.
В таблице 3 представлены некоторые бактериальные закваски для силосования, которые разрабатывались в Институте микробиологии и вирусологии Казахстана. [7].

Бактериальные закваски для силосования. Таблица 3
Название
Место создания
Штаммы
Силосуемые растения
АМС “Казахсил”
Институт микробиологии и вирусологии АН Казахстана
Streptococcus lactis diastaticus (сухой)
Трудносилосуемые (бобовые, злаковые, травосмеси, тростник)
ПКБ

“”
Propionibacterium shermanii
Высокосахаристые, легкосилосуемые (кукуруза, подсолнечник)
ПМБ

“”
Lactobacterium pentoaceticus
Солома и грубостебельчатые остатки растений
Смешанные закваски: АПП (АМС, ПКБ, ПМБ)


“”
Str. lactis diastaticus, P. shermanii, L.pentoaceticus
Кукурузная солома
Силамп (АМС, ПКБ)

“”
Str. lactis diastaticus, P. shermanii
Легкосилосуемые, высокосахаристые
АПП (АМС, ПМБ)

“”
Str. lactis diastaticus, L.pentosus
Многолетние и однолетние с соломой, бобовые. солома


4. Роль молочнокислых бактерий в силосных добавках.

Качество естественной ферментации силоса сильно зависит от числа и типа молочнокислых бактерий, присутствующих в фураже во время закладки силоса. Из четырех родов молочнокислых бактерий, связанных с силосом (Lactobacillus, Pediococcus, Streptococcus, Leuconostoc), со временем в силосной микрофлоре начинают доминировать Lactobacillaceae. На ранних стадиях, когда установился анаэробиоз, кокки быстро размножаются благодаря их норме реакции на кислотность (рН 6.5-5.0 с оптимумом 5.5), хотя некоторые педиококки могут выживать при рН 4.0 из-за их более высокой толерантности к кислоте. [1]. Когда рН падает ниже 5.5 начинают преобладать лактобациллы, и это положение сохраняется на протяжении всего периода консервации. Обнаружено, что процесс силосования начинается гомоферментативными лактобациллами, такими как Lactobacillus plantarum и L. curvatus, а к концу 75-95% лактобацилл представлены гетероферментативными видами, преимущественно L. buchneri и L. brevis. Это объясняется тем, что гетероферментативные лактобациллы более устойчивы к уксусной кислоте, которую они также производят. Показано также, что может иметь место сдвиг от чисто молочнокислого к смешанному брожению, включающему реферментацию молочной кислоты под действием некоторых гомоферментативных бактерий вследствие нехватки субстрата. [12].
В районах с умеренным климатом, где содержание сахара в фураже может быть низким, потребность молочнокислых бактерий в ВРУ силоса может опережать их поступление, и тогда может произойти изменение в схеме ферментации в сторону доминирования гетероферментативных молочнокислых бактерий. Значимость этих естественных схем ферментации иллюстрируется следующими реакциями Lactobacillus spp.. [12].
Реакции гомоферментативных молочнокислых бактерий:
глюкоза, фруктоза --> 2 молочная кислота,
арабиноза, ксилоза --> молочная кислота + уксусная кислота.
Потери сухого вещества не происходит. Потери энергии незначительно.
Реакции гетероферментативных молочнокислых бактерий:
глюкоза --> молочная кислота + этанол + СО2
Потери сухого вещества 20%, энергии 1,7%.
Рост гетероферментативных Lactobacillus spp. в силосе ведет к образованию этанола и диоксида углерода с последующей потерей СВ и энергии.

Селекция штаммов при разработке силосных добавок.

Выбранные виды молочнокислых бактерий с целью включения их в силосные добавки должны:
1. Быстро расти и быть способными к быстрому доминированию над местной силосной микрофлорой;
2. Быть гомоферментативными и, таким образом, производить молочную кислоту из доступных ВРУ;
3. Быть устойчивыми к кислоте, по крайней мере, при рН 4.0;
4. Быть способными сбраживать гексозы, пентозы и фруктаны;
5. Не производить декстраны и никак не воздействовать на органические кислоты;
6. Обладать способность к росту при температуре до 50 ?С.
Некоторые штаммы Lactobacillus plantarum обладают всеми этими свойствами, и потому этот вид был выбран для включения в биологические силосные добавки. Однако, т.к. Lactobacillus spp. медленно растут, пока рН силоса не упадет до 5.0, продукт редко состоит исключительно из них. Обычно еще добавляют Pediococcus или Streptococcus spp., т.к. эти виды активны при рН 5.0 - 6.5 и, следовательно, отражая естественный ход ферментации, кокки будут доминировать на ранних стадиях силосования, а при рН ниже 5.0 они будут подавлены гомоферментативными Lactobacillus plantarum.

Дополнительные требования к микробиологическим добавкам

Любая бактериальная силосная добавка помимо селектированных штаммов молочнокислых бактерий должна содержать достаточное число жизнеспособных бактерий, чтобы они могли доминировать в местной микрофлоре при добавлении в скошенную траву не менее 105 -106 бактерий на 1 г травы. Когда биологические силосные добавки и инокуляты только стали использоваться для силосования, в них было такое количество жизнеспособных бактерий, которое успешно обеспечивало силосование. Если корма содержали достаточное количество пригодных к ферментации сахаров, они силосовались без трудностей. Но с другой стороны зеленые корма (особенно выращенные в районах умеренного климата), могут иметь низкое содержание ВРУ (менее 8-20% от СВ), и биологические добавки, содержащие только молочнокислые бактерии, не всегда обеспечивают хорошую ферментацию из-за истощения допустимых сахаров прежде, чем может быть достигнуто удовлетворительное значение рН. Кроме того, наблюдалась тенденция использовать добавки, когда содержание СВ было менее 25%, и в сочетании с тем, что содержание ВРУ было также низким, эти первые инокуляты были неспособны препятствовать вторичной клостридиальной ферментации. Когда на силос закладывали смешанный фураж - райграсс и клевер или другие бобовые, например люцерну - результаты были еще хуже. Бобовые создают лучшую буферную среду, чем другие травы, за счет высокого содержания органических кислот и белка, и поэтому в присутствии бобовых для достижения необходимого рН требуется , чтобы бактерии производили больше молочной кислоты- задача почти не достижимая, если обе культуры были влажными и с низким содержанием ферментируемых сахаров.
Стало ясно, что необходим способ повышения содержания ферментируемых сахаров в самих кормах, так как , хотя растительные ферменты способны медленно производить некоторое добавочное количество ВРУ путем гидролиза гемицеллюлоз до пентоз, есть еще большой неиспользованный источник потенциально ферментируемых сахаров внутри неразрушенных растительных клеток. Количество и тип углеводов, присутствующих в травах, зависят от вида трав, погоды в период роста и способов культивации. Большая часть углеводов в траве может быть разделена на структурные углеводы, состоящие из лигнина и целлюлозы, и запасные углеводы, которые включают ферментируемые сахара (рис.3).В травах умеренного пояса волокна обычно составляют 30-40 % от СВ, основные запасные углеводы, фруктаны и гемицеллюлозы-5-7 % от СВ, истинные ферментируемые сахара -около 10 % от СВ (это глюкоза, фруктоза, сахароза).У бобовых основной запасной углевод- крахмал.[17].
В последние несколько лет появились силосные добавки второго поколения, включающие различные смеси ферментов, способные гидролизовать многие из обычно неподдающихся запасных полисахаридов до гексоз и пентоз, которые могут быть усвоены гомоферментативными молочнокислыми бактериями. Структурные углеводы остаются нетронутыми, так как лигнин и целлюлозу трудно эффективно гидролизовать при нормальных условиях, существующих в силосе. Скорость целлюлазных реакций мала , и поскольку эти ферменты требуют для эффективного гидролиза повышенной температуры и большого времени, реально они мало полезны. Однако есть много выделенных из грибов доступных гемицеллюлаз и амило-глюкозидаз, которые могут производить быстрый гидролиз гемицеллюлозных компонентов неструктурных углеводов в травах с низким содержанием СВ при температуре и рН, существующих в силосе при обычных условиях.
Поэтому в качестве биологических консервантов кормов используют микорм, амилолитические, целлюлозолитические и комплексные цитолитические ферментные препараты. Ведущее место при этом занимают неочищенные ферментные препараты грибного происхождения и микорм. Так, добавление в закладываемый силос 2% кукурузных стержней, обогащенных белково-ферментным комплексом, способствует молочнокислому брожению, значительному повышению содержания молочной кислоты и получению силоса высокого качества, а введение 0,5-1% амилоризина Пх в смесь люцерновой травы и сырого картофеля - улучшению соотношения молочной и уксусной кислот (81,6: 18,4 и 85,9:14,1%), отсутствию масляной кислоты и получению биологически ценного комбинированного силоса. Добавление в закладываемую смесь (картофель - 50%, измельченные початки кукурузы без обверток - 25%, отава люцерны - 25%) глюкаваморина Пх в количестве 5 кг/т способствует улучшению соотношения молочной и уксусной кислот (85,2:14,8%), сокращению потерь СВ в 3 раза. [2].
В связи с включением подобных ферментов в биодобавки к силосу важно отметить, что гексозы и пентозы, получающиеся в результате их деятельности, должны соответствовать ферментативным способностям молочнокислых бактерий в силосе. Тогда как С6 -сахара используются всеми гомо- и гетероферментативными лактобациллами, пентозы могут быть использованы лишь относительно небольшим числом лактобацилл. Из травяного силоса были изолированы штаммы L.plantarum, которые могут утилизировать также и пентозы, и эти штаммы должны использоваться вместе со смесью энзимов, которые продуцируют пентозы. Продукция пентоз особенно полезна, так как оба типа утилизирующих пентозы гомо- и гетероферментативных штаммов лактобацилл выделяют уксусную и молочную кислоты без потерь СВ или энергии.
Последние из появившихся биологических добавок- те, которые содержат только ферменты. Целлюлолитические и гемицеллюлолитические ферменты, содержащиеся в этих продуктах, превращают запасные полисахариды травы в гексозы и пентозы , которые затем используются молочнокислыми бактериями, обычно присутствующими в силосе. Однако, как уже говорилось ранее, в большей части натурального силоса имеется тенденция к размножению гетероферментативных молочнокислых бактерий с последующей потерей СВ из-за образования этанола и диоксида углерода. Следовательно, превращение ВРУ в молочную кислоту с помощью чисто ферментативных добавок менее выгодно энергетически, чем если включаются гомоферментативные молочнокислые бактерии. Если ферменты, присутствующие в этих добавках, также производят пентозы, как и гексозы,С5 -сахара не могут быть утилизированы из-за того , что пентозоусваивающие молочнокислые бактерии в естественных силосах встречаются относительно редко.
Следовательно, кажется целесообразным включать гемицеллюлолитические ферменты, так и гомоферментативные молочнокислые бактерии в биологические добавки к силосу, чтобы перекрыть все возможные сочетания условий силосования. Добавки, которые содержат гомоферментативные молочнокислые бактерии, только тогда будут хорошо работать, когда имеется достаточная концентрация ВРУ для поддержания их пищевых потребностей, и , тем самым, будет достигнуто низкое значение рН и стабильная ферментация. Однако в силосах с низкой концентрацией ВРУ эти бактерии израсходуют все питательные вещества задолго до того, как будет достигнуто стабильное значение рН, и, таким образом, они не будут способны ингибировать рост клостридиальных бактерий. С другой стороны, добавки, содержащие только ферменты, рассчитаны на наличие естественных, преимущественно гетероферментативных молочнокислых бактерий, способных производить достаточное количество кислоты для понижения рН.
Хотя ВРУ может быть достаточно благодаря гидролитической активности ферментов, гетероферментативные молочнокислые бактерии менее энергетически эффективны, чем гомоферментативные, что приводит к потере питательных веществ. Если фураж при закладке на силосование также содержит мало эндогенных молочнокислых бактерий, период, необходимый для того чтобы значение рН снизилось достаточно для ингибирования других микроорганизмов, может затянуться на несколько дней - время достаточное для того, чтобы вредные микроорганизмы начали влиять на процесс ферментации. Однако, добавляя гемицеллюлолитические ферменты одновременно с гомоферментативными молочнокислыми бактериями, можно преодолеть оба этих затруднения.

Пропионовые бактерии в силосовании.

Из свежих трав пропионовые бактерии не выделялись, а из силосов выделялись, но в очень небольшом количестве, поэтому их истинное участие в силосовании в природных условиях сильно нивелировано. При внесении пропионовых бактерий (ПКБ) в силосуемые растения, прежде всего с высоким содержанием сахаров (кукуруза), получили корм более высокого качества, чем в контроле (без внесения ПКБ). Он имел низкую кислотность, был обогащен витаминами В2 и В12, пропионовой кислотой и не подвергался плесневению. [5].
В результате скармливания такого силоса в течении 3 месяцев повысилась яйценоскость птиц, выводимость цыплят, сохранность молодняка животных, в крови которых увеличивается содержание каротина и снижается содержание аммиака [4]. В одном грамме бакконцентрата “Казахсил” ПКМ содержится 109 жизнеспособных клеток, и в 1 тонну силосуемой массы рекомендуют вносить 1,5 г препарата. Особенно высокий эффект (см. таблицу 3) достигается при использовании одновременно трех бакконцентратов: ПКБ, АМС, ПМБ (пентозосбраживающие молочнокислые бактерии).



4. Ферментные препараты при силосовании.

Ферментные препараты при силосовании бобовых трав.
Бобовые травы относятся к категории трудносилосуемых или вообще несилосуемых растений. Ферментные препараты не только силосуют корма, но и обогащают их легкопереваримыми питательными веществами.
Это целловиридин, пектофоетидин, целлолигнорин, глюковомарин и др. В условиях Узбекистана при силосовании зеленой люцерны применялся ферментный препарат- целловиридин - Г3Х (рН 3.9 - 4.1, температура 37 ?С, активность 3000 ед./кг). Он обеспечил гидролиз целлюлозы, гемицеллюлозы, пектиновых веществ до моносахаридов (этот процесс очень важен для бобовых, т.к. в них содержится мало сахаров и много белковых веществ - а значит, они плохо силосуются).
В результате образования достаточного количества сахара появляются благоприятные условия для развития молочнокислых бактерий. Значительно уменьшается количество бесполезно теряющегося аммиачного азота, что положительно влияет на сохранение протеина (достигает 78-80%). Под влиянием ферментных препаратов в корме увеличивается содержание белков, аминокислот, которые повышают биологическую ценность корма.

Технология силосования зеленой люцерны с помощью
ферментного препарата целловиридина.

Скошенную и измельченную зеленую массу без провяливания перевозят, взвешивают на автовесах и укладывают в бетонированную траншею слоями толщиной 40-50 см.. Траншея должна быть заранее очищена и дезинфицирована.
Фермент вносят послойно из расчета 2 кг на 1 т силосуемой массы. Этот ферментный препарат имеет порошкообразную структуру и обладает высоким консервирующим свойством. Его надо разбрасывать равномерно по всей поверхности каждого слоя, затем утрамбовывают.
Запо
 
     
Бесплатные рефераты
 
Банк рефератов
 
Бесплатные рефераты скачать
| мероприятия при чрезвычайной ситуации | Чрезвычайная ситуация | аварийно-восстановительные работы при ЧС | аварийно-восстановительные мероприятия при ЧС | Интенсификация изучения иностранного языка с использованием компьютерных технологий | Лыжный спорт | САИД Ахмад | экономическая дипломатия | Влияние экономической войны на глобальную экономику | экономическая война | экономическая война и дипломатия | Экономический шпионаж | АК Моор рефераты | АК Моор реферат | ноосфера ба забони точики | чесменское сражение | Закон всемирного тяготения | рефераты темы | иохан себастиян бах маълумот | Тарых | шерхо дар борат биология | скачать еротик китоб | Семетей | Караш | Influence of English in mass culture дипломная | Количественные отношения в английском языках | 6466 | чистонхои химия | Гунны | Чистон
 
Рефераты Онлайн
 
Скачать реферат
 
 
 
 
  Все права защищены. Бесплатные рефераты и сочинения. Коллекция бесплатных рефератов! Коллекция рефератов!