Основа-принятая технология. Генплан - графич. изображение показывающее взаимное расположение основных производственных и вспомогательных построек и сооружений, дорог, инж. коммуникаций, зелёных насаждений.
Требования : 1) Участок –горизонтальный; 2) Расстояние от жилой зоны КРС – 200 м, свиноферма – 500, птицефабрики – 1000; 3) с надветренной стороны; 4) резервная площадь.5)Участок возвышенный
Блокировка зданий:
1.Родильное отделение – отдельно от других или отдельный вход;
2.В одном здании может быть:
-профилакторий+молоч.телята+телята до 6 мес+род.
-кормоце+склад
-молочное+коровник
-здание для молодняка+для откорма.
-пункт искуств. осем.+коровник
3.Выгульные площадки-вдоль зданий с подветренной стороны.
Расположение построек и сооружений:
Зональность – 3-6 зон:
1.Производственная,2.Кормовая,3.Навозная,4.Сани-тарно-ветеринарная,5.Административная,6.Зона хоз. построек
Паспорт фермы: объём производства (коров), кол-во скотомест, общая площадь, коэф. застройки (Sобщ/Sзастр), коэф использования участка (Sобщ/Sисп).
2.МЖФ ОПРЕДЕЛЕНИЕ ПРОИЗВОДИТЕЛЬНОСТИ КОРНЕРЕЗОК
Q = V*n*?*z*Кисп*Кпуст
V-объём корнеплодов, срезаемых ножом за 1 оборот.
n-частота вращения, ?-плотность, z-число ножей,
Кисп - коэф. использования ножа.
Кпуст – коэф, учитывающий пустоты.
V=?*d2*h/4 –для дисковой; V=L*2?*2h для барабанной; V=L*?*h*(d1+d2) – для конической. L –длина барабана.
3.МЖФ ТЕХНОЛОГИЧЕСКИЕ ЛИНИИ КОРМОЦЕХОВ.
Несбалансированный рацион приводит к перерасходу кормов, снижению продуктивности, увеличению себестоимости.
БСК-25 КОРК-5
транспортёр
корне силос,
плоды солома
ИКС-5М ПДК-10
АПК-10
мойка+измельчение
сухая обработка
загрузка
Кормоцеха для производства концентратов – для улучшения вкусовых качеств, уничтожения микробов, повышения питательности
загрузка пропарочная колонка
эжектор
транспортёр
Сложные кормоцеха : ЛОС-1(2,3). Поточные линии, входящие в ЛОС: 1) обработка соломы; 2) термическая или термохимическая обработка соломы; 3) травяная резка; 4) прессование; 5) временное накопление кормов.
Специализированные кормоцеха : 1) для приготовления сухих рассыпчатых кормов, пригот. влажных мешанок, пригот. жидких кормов. 2) для пригот. концентратов. 3) для пригот. гидропонных кормов. 4) для получения зелёных водорослей.
4.МЖФ Вентиляция животнов. помещений.
Бывает: естественная, ест. с искусственной вытяжкой, искусственные приток и вытяжка, искусственные приток и вытяжка с подогревом.
Кратность воздухообмена: n=C/V, С-воздухообмен, V-объём помещения. n3-ис- куственная, n>5-искуств. с подогревом.
Расчет: по загазованности: С=?qi / q1-q2; qi –количество вредных газов, выделяемых одним животным; q1- кол-во газов допустимое, q2- кол-во вредных газов в свежем воздухе; по влажности: С=?qi / (q1-q2)?в; ?qi количество влаги, выделяемой одним животным, ?в – плотность воздуха, (q1-q2) – по анемометру; по теплу: С=Q/(Iв-Iн)* ?в; Q-кол-во тепла выделяемое животными, I-теплосодержание воздуха внутри и снаружи.
Естественная вентиляция:
обеспечивается разностью плотностей воздуха и ветрами ( аэрация)
Инфильтрация - неучтённая вентиляция через стены, окна, двери. L=0.25h(rн-rв)*I*H/rв, h-высота расположения окон; I-коэффициент воздухопроводности; Н-общая площадь окон. Площадь шахт: Sобщ.шахт=Сmax/(3600*v),v-скорость, Sприточн.=0,7*Sобщ. .
Искусственная: если Q>1000 м3/ч – несколько вентиляторов. Диаметр воздуховодов: d=(Q/2v)--2 /30; v=10-15м/с.
Напор вентилятора: Н=Ндин+Нтрен+Нмп,
Ндин – для сообщения воздуху скорости, Нтрен – лдя преодоления трения воздуха о стенки, Нмп – для преод. местных потерь.
Ндин= rн*v/(2*g); Нтрен=?в*v* rн*l/(2gd) [?в- гидравлический коэф. сопротивления; l-длина трубопровода]; Нмп=??*v2rн/2g.
По Q и Н определяют № вентилятора, КПД.
Nвент=Q*H/(3,6*106*?вент*?передачи).
5.МЖФ Принцип работы машин для измельчения стебельчатых кормов.
Способ обработки зависит от вида корма, то есть от плотности, угла естественного откоса, коэф. трения.
а в д
б г е
До а –предварительное сжатие питающим механизмом; аб, вг, де – сжатие материала. Стебель обладает упруго-пластинчато-вязкими свойствами.
Резание: безопорное с опорой двухопорное
?-угол скольжения.
Резание бывает:
1.нормальное (рубка) ?=0
2.наклонным ножом.
Появляется тангенсальная сила Т,
но она маленькая и не влияет на
резание ??, q
q снижают: значимость Т;
эффект пилы; трансформация Т N
угла заточки.
При увеличении угла скольжения появляется трение между разрезанным материалом и боковыми гранями ножа. При ?>450 возрастает усилие на резание.
Угол защемления ?, если он больше 2?, солому необходимо удерживать.
6.МЖФ Охладители молока.
Цель-замедление жизнедеятельности микроорганизмов. Охлаждают водой и рассолом.
Трубчатые и пластинчатые. Однопакетные (каждая порция молока встречается с холодной стенкой 1 раз) и двухпакетные. Для охлаждения молока ниже 30 применяют пластинчатые двухсекционные с рассолом.
Охлаждение молока в потоке:
1 2 3
4 5
1-фильтр; 2-охладитель; 3-ёмкость для молока; 4-холодильная машине; 5 – водяной насос.
Резервуары-охладители: с промежуточным охлаждением (РПО-1,6 [2.5], ТОМ-2А) и непосредственным.
Расчёт:
тепловой график
Тепловой баланс: Q=МпрСпр(tн- tк)=nвМвСв(tк- tн)
молоко вода
С-теплоёмкость;n= Мв/Мпр - кратность расхода хладоагента. nводы=2,5-3; nрассола=1,5-2
S=Q/K*?tcр; К-общий коэф. теплоёмкости. ?tcр-среднелогарифмическая разность температур.
?1-коэф. теплопередачи от молока к стенке; ?2 –коэф. теплопередачи от стенки к воде; ?-толщина стенки; ?-коэф. теплопроводности.
Кол-во параллельных потоков в охладителе:
m=Mпр/(1000*vпр*в*h); в-ширина пластины; h-толщина прокладки
7.МЖФ Принцип работы молотковой дробилки.
Раб. органы: решето ( толщина 3-8 мм, не должно вибрировать. Решето чаще из-за забивания изготавливают не с цилиндрическими отверстиями, а с расширяющимися книзу); дека (то же решето, но с глухими отверстиями) [ и дека и решето обеспечивают вторичный удар зерна по закрытой поверхности]; молоток ( чем меньше площадь удара молотка о зерно, ем больше контактные напряжения, следовательно легче разрушить, масса молотка – 65-200 гр)
Виды измельчения в дробилке: удар влёт, истирание, удар о решето или деку. Регулируют степень измельчения подбором решет. Точность зависит от толщины отверстия в решете. Отводится вентилятором, следовательно необходим циклон для отделения дерти от воздуха.
8.МЖФ Особенности технологического расчёта доильного агрегата Ёлочки.
Кол-во аппаратов для 1 мастера: nопт=(tмаш+?tрр)/ ?tрр
?tмр=tмаш/(n-1); ?tрр=24-30 сек. ?tрр-ручные работы.
Q=2*n*60/tзс.
n-кол-во аппаратов в групповом стойле; tзс-время занятости стойла.
tзс=tмаш +?tрр+tвпуск группы +tвыпуск.
Q-пропускная способность доильной установки.
9.МЖФ Машины для мойки и сухой очистки картофеля.
Тип: МП – барабанная мойка.
выгрузной ковш.
ванна с водой
Кулачковая мойка
Шнековая: ИКМ-5 Центробежная: МРК-5
ИКМ-Ф-10 – БЕЗВАЛЬНЫЙ ШНЕК.
Корнемойка с использованием ультразвука:
100% удаление грязи, но сложное оборудование.
Сухая очистка:
1.Шнек с мелкой нарезкой
2.Виброрешето.
циклон
тёплый воздух с избыточным давлением
10.МЖФ Особенности технологического расчёта доильного агрегата Ёлочки.
nопт=(tмаш+?tрр)/ ?tрр
q=60/tзс.
n-кол-во аппаратов в групповом стойле; tзс-время занятости стойла.
tзс=tмаш +?tрр+tвпуск группы +tвыпуск.
11.МЖФ Назначение и работа объёмных дозаторов.
Дозирование – процесс отмеривания заданного количества материала с определённой точностью. Основания для выбора точности: зоотехнические требования, технологические требования, экономические соображения.
Различают массовое (погрешность до 2%) и объёмное (до 3%) дозирование. Дозирование устройства обеспечивается самотёком или побудителями.
Типы дозаторов: барабанные, тарельчатые, транспортёрные, ковшовые.
Барабанные:
Ячеистый Гладкий Рифлёный Лопастной
2 и 3 с побудителями, 1 и 4 –сами способны к подаче.
12.МЖФ Определение пропускной способности доильного агрегата типа АДМ-8
Количество аппаратов для всего стада:
nф=mKtд/Тд; m-колич-во коров; К-коэф. дойности стада, t-время доения стада; Т-время доения одной коровы.
Кол-во аппаратов для одного мастера: n=tмаш+ Stручн.работ /Stручн.работ; Stручн.работ=tпод.кор.+ tвкл.аппарата +tпостан.стак. +tперех +tпер.ДА +tзак.операц
Кол-во коров выдаиваемых 1 аппаратом.
q=60/tзан.аппар. tзан.аппар.=tмаш+ Stручн.работ
Пропускная способность: Q=q*n*N; N=Qнеобх /Qфакт Qнеобх =m*K/Tд; Q=60/ n*N* tмаш Stручн.работ
13.МЖФ Смесители кормов.
Классификация: по характеру раб. процесса ( непрерывного и периодического ); по виду смешиваемых компонентов ( а для сухих комп., б влажных и рассыпчатых, в жидких комп. ); по организации раб. процесса ( смесители с вращающейся камерой и с неподвижной камерой ).
Барабанные смесители
Мешалочные смесители: шнековые, лопастные – для сыпучих и вязких кормов; турбинные, пропеллерные – для жидких.
В зависимости от скорости вращения вала: быстроходные (К30). К – показатель кинематического режима.
Мешалочные смесители: одно- и двухвальные.
СМ-1 – 2-х вальный. Q до 20 т/ч
Смеситель-запарник С-12А Смеситель-измельчитель
периодич. действия. ИСК-5
шнек
Одновальные: ВКС-3М – лопастной для обработки пищевых отходов; 3С-6 - смеситель+термическая обработка; РСП-10 – смеситель-раздатчик ( с трактором); АСП-10 - смеситель-раздатчик (с автомобилем)
14.МЖФ Определение производительности вакуумного насоса.
Бывают поршневые, пластинчато-статорные, пластинчато-роторные, водокольцевые.
Необходимая производительность насоса: 1)при работе одного ДА: Q=Кр*V*n*(1-Кп)*Кm; Кр – коэф. компенсирующий работу регулятора, V – объём камер, из которых необходимо откачать воздух, n- частота пульсаций; Кп- коэф. учитывающий неплотности в аппаратуре; Кm – манометрический коэф. 2)для обеспечения работы доильных аппаратов.: Q=Q1 +Q2 +Q3 +…+Qn +Qh; Q1 – для работы доильных аппаратов, Q2 – работа манипулятора, Q3 –работа кормораздатчика,Qn –открывание и закрывание дверей; Qh-работа групповых счётчиков
Производительность ротационного насоса:
Q=D*L*e*Z*?*sin?*Кз*Км/2?; D – диаметр статора. L – длинна статора, e – величина эксцентриситета, Z – кол-во лопаток, ? - угловая скорость, ? - угол обхвата. Кз – коэф. заполнения замкнутого объёма, Км – манометрический коэф.
Водокольцевые насосы.
Нет трущихся поверхностей, не нужна смазка, высокая производительность.
Q=V*Z*n*Кз*Км; Q-подача; V-объём замкнутой ячейки; Z-кол-во ячеек; n-частота вращения ротора; Кз-коэффициент заполнения ячейки (0,6-0,8); Км- манометрический коэф (h/101,3).
V=S*L; S=?*(y2-r2)-Z*(y-r); r-радиус ротора; y- максимальное расстояние от центра вращения ротора до водяного кольца.
15.МЖФ Машины для уплотнения кормов. Грануляторы.
По конструкции раб. органов делятся:
1)поршневые, 2)рулонные, 3)шнековые, 4)вальцовые, 5)транспортёрные, 6) кольцевые
Вальцовые: Шнековые
Поршневые: открытые закрытые
Кольцовые:
Матрица
Траверса
Роллер
Фильеры
Нож
16.МЖФ Технологический расчёт линейной доильной установки
1.Определение общего числа доильных аппаратов.
nфакт=mдк*t/T; mдк-кол-во дойных коров. t-время обслуживания одной коровы; Т-время доения всего стада (90-135 мин.)
mдк=m*к; m-кол-во коров в стаде; к-коэф. дойности стада.
2.Обоснование выбора типа доильной машины.
Привязное содержание - линейная, в вёдра или молокопровод. Беспривязное – ёлочка, тандем.
3.Определение показателей загрузки ДУ.
nопт для 1 оператора=1…5
tцикла=nопт* ?tручн.работ; tцикла =tмаш+ ?tручн.работ +tмашин-ручных
nопт=( tмаш+ ?tручн.работ +tмашин-ручных)/ Stручн.работ.
Q-пропускная способность ДУ.
Q=q* nопт*N; q-кол-во коров выдаиваемаих за 1 час 1 оператором; N-кол-во операторов.
q=60/tзанятости аппарата; tза= tмаш+ ?tручн.работ;
N=Qнеобх /Qфакт; Qфакт = nопт*N*60/ (tмаш+ Stручн.работ);
Qнеобх =m*кд/Т
17.МЖФ Технологические линии раздачи кормов стационарными раздатчиками.
3 варианта: 1)РК-50, ТРП-100А – с верхним расположением; 2)РВК-Ф-74, КРС-15 транспортёр в кормушке, у КЛК-75, КЛО-75 рабочий орган – стальная лента. 3)ТРП-Ф-15 – воздуховод.
РВК-Ф-74.
ЛЕНТА
ЦЕПЬ
Скорость при ручной загрузке 0,13 м/с, при машинной – 0,5 м/с. Q до 25 т/ч. Ширина 1 м.
РК-50 –транспортёр над кормушкой.
Ленточный транспортёр
скребковый трансп.
кормушка
18.МЖФ Расчёт регенератора.
t2
tp
tн
tx
?=(tp-tx)/(t2-tx); ?-коэф. регенерации. tp= t2-?;
?=(1-?)/(t2-tx) ; t=(1-?)*(t2-tx);
Q=M*Cm*(t2-tx)=S*k*?tср=S*k*t; x=S*k/(S*k+M*Cm)
k-коэф. теплопередачи. S-площадь пластин.
]
19.МЖФ Раздача кормов мобильными кормораздатчиками.
Недостатки: непроизводительно используется площадь коровника, в условиях холодных климатических зон понижается тепловой режим, выхлопные газы.
КТУ-10А – любой корм, кроме концентратов и сена. Подаёт в кормушку не выше 0,75 м. Недостаток: ширина колеи не менее 2,4 м, высота – 2,1 м. На основе КТУ созданы КТ-9, КТ-11, КТ-15 с более лёгкой регулировкой нормы выдачи и различным объёмом кузова.
РММ-5,0, РММ-Ф-6,0 – ширина прохода 1,6-1,8 м.
Скорость раздачи: 1,7-2,1 км/ч. Преимущества мобильных: легко заменить, отремонтировать при выходе из строя.
20.МЖФ Расчёт площади поверхности пастеризатора, определение количества пара.
Пастеризация-тепловая обработка молока с целью уничтожения бактерий при условии сохранения свойств и качеств молока.
t пар
tгор
молоко
tхол
S
Q=M*Сm*(tгор-tхол); G=Q/(iп-iк)*?
G-кол-во пара; iп-энтальпия пара; iк-энтальпия конденсатора; h-КПД пастеризатора.
S=Q/(k*?tср); k-коэф. теплопроводности.
21.МЖФ Машины для раздачи кормов на свинофермах.
КУТ-3,0А, КУТ-3Б – мобильные кормораздатчики (Б- с выездом к кормоцеху).
КС-1,5: кузов
шнек
смесительные лопатки
выгруз. транспортёр
V=2 м3; Q=30-70 т/ч
РС-5А: кузов горизонтальный, остальное- так же.
КСП-0,8: раздача сухих, влажных и жидких кормов на маточниках. Имеет кузов для влажных мешанок, 2 бункера для сухих кормов, 2 бидона с молоком.
КУС-Ф-2: рельсы под клетками.
Все раздатчики – смесители.
Стационарные:
РКС-3000 – тросошайбовый раздатчик.
Кормопроводы – для кормления жидкими мешанками.
22.МЖФ Определение угла коэф. скольжения при резании стебельчатых материалов.
Отрезок соединяющий центр вращения с исследуемой точкой – радиус вектор, ? - угол скольжения, с- кратчайшее расстояние от центра вращения до лезвия. vн-нормальная скорость, vt- тангенсальная;
vн=v*cos?; vt=v*sin?; cost=c/r; sint=u/r; v=?r; vн=?c; vt=?u. sint/ cost=tg?-коэф. скольжения. При снижения угла скольжения снижается сила внедрения ножа в материал.
Обоснование криволинейности ножа: для того, что бы t удержать около оптимальной точки нож ломают, то есть . При этом рассчитывают каждый участок. Но он не очень удобен в эксплуатации. Поэтому применяют криволинейный нож, изогнутый по окружности. Практически выполнить нож с неизменным t не возможно.
23.МЖФ Механизация раздачи кормов на птицефабриках и птицефермах.
Раздача кормов по кормушкам по всей длине клеточной батареи должна производится за один приём. В возрасте до 140 дней цыплята выращиваются в батареях КБУ-3 (трехъярусная) или БГО-140 (одноярусная), при этом раздача корма производится цепочно-шайбовым транспортёром, а поение – из ниппельных поилок.
Для содержания промышленного стада кур-несушек применяют двухрядные четырёхъярусные батареи КБН или четырёхрядные одноярусные батареи ОБН-1. Бункера в КБН соединены пересыпными патрубками. Выдача корма в желобковые кормушки происходит самотёком и регулируется изменением через общую тягу степени открытия заслонок. Корм выдаётся при прямом и обратном ходе кормораздатчика, который одновременно служит и яйцесборником.
В настоящее время применяются и спирально-винтовые кормораздатчики. Его рабочий орган – гибкий пластиковый кормопровод со спиралью из проволоки. Из расходного бункера корм подаётся спирально-винтовым транспортёром в приёмные бункера кормораздатчиков, питающих бункерные кормушки.
При напольном содержании ремонтного молодняка кур применяют комплекты оборудования КРМ-12 или КРМ-18. Поточные линии раздачи кормов включают наружный бункер для хранения и загрузки сухих кормов в бункер кормораздатчика и цепочно-шайбовый кормораздатчик с бункерными кормушками. Для напольного содержания цыплят мясных пород используют комплексы ЦБК-10В и ЦБК-20В на 10 и 20 тыс. голов. В их комплект входят наружный бункер-хранилище, цепочно-шайбовый кормораздатчик КЦБ с бункерными кормушками, система поения с чашечными поилками и система электрооборудования. Для механизации технологических процессов при выращивании бройлеров выпускаются комплекты оборудования БР10Ц и БР20Ц, отличие от ЦБК – имеют цепной кормораздатчик с желобковыми кормушками, а вместо чашечных поилок – проточные желобковые.
24.МЖФ Определение момента резания стебельчатых материалов.
М=F*r; M=MN+MT( касательная и нормальная силы)
MN=r*N*cos?; MT=r*T*sin?; ? - угол между лезвием и радиус-вектором. М=r*( N*cost+ T*sint).
M=r*N*cost*(1+tgt*T/N); N=q*l; q-нормальное дав-ление; l-длина на которой действует нож.
М=rql*cost(1+f `*tgt); f `-коэф. скользящего резания.
f `=T/N
25.МЖФ Погрузчики кормов, принцип их работы и технология оценки.
погрузчики кормов
ПЭ-Ф-1,0 – универсальный погр. экскаватор (силос, сенаж, грубые корма). Достоинства: универсальность ( грузит практически все корма, может быть использован на погрузке всех других с/х грузов ). Недостатки: погрузка слежавшихся грузов пластами, что влияет на равномерность раздачи).
ПГ-0,2А – то же, но грузоподъемность меньше 200кг за раз.
ФН-1,4 – погрузчик навесной, 1,4 м ширина захвата, Для погрузки длинно-стебельчатых кормов из скирд, силоса из траншей, подборка солома со стерни. Производительность на соломе 4 т/ч, подъём стрелы 5,2 м.
ПСС-5,5 более универсален. Силос и сенаж, то есть слежавшийся корм. Достоинство: высокая производительность до 40 т/ч, высота подъёма 5,5 м, ширина захвата 1,4 м, глубина врезки 1м.
ПС-Ф-5 – снабжён измельчителем кормов.
ПРК-Ф-0,4-1 – сочетает в себе РММ-5,0+ПГ-0,2А+бульдозер.
Производительность: Q=V*?/t, т/ч. V-объём корма, срезаемого за час; t – время цикла.
t=t1+t2+t3; t1-время рабочего цикла, t2-время установившегося движения; t3-время подъёма стрелы.
V=?Rh?/1800; R-радиус стрелы, h-глубина фрезерования, ?-угол поворота стрелы.
26.МЖФ Анализ работы дисковой соломорезки.
О1-центр кривизны ножа. ?=0,7-0,8R; ?-рабочий угол
Мрез=r*cos?*l*q(1+f ` tg? )
?ср=( ?max+?min)/2; w-средняя угловая скорость.
Степень неравномерности: ?=( ?max-?min)/2; d=3-7%
Мрез.ср. даёт двигатель; Аизб=I*(?ср)2 d; Аизб=Fизб*?м*?y; I=Mдв/(dw/dt); Мдв=Мрез.ср.*(5/3); Мрез.ср.=F*?м/b` ; N=Mдв/?ср
Мрез
Аизб
Мрез.ср
w y
27.МЖФ Машины для раздачи кормов на малых фермах.
Раздача кормов: вручную, с тракторной телеги, ПРК-Ф-0,4 "Зорька"- погрузчик-раздатчик. Сочетание 3 машин в одной. Это РММ-5,0+ПГ-0,2А+бульдозер спереди. Можно убирать навоз. РММ-5,0 – малогабаритный раздатчик, смонтированный сзади погрузчика ПГ-0,2
28.МЖФ Особенности работы и анализ барабанного измельчающего аппарата.
Располагают горловину так, что бы не выталкивало и был срез, следовательно в верхней части второго квадранта. h=а*D*vn/2vб
горловина
Перекрытие ножей = а (толщине слоя), следовательно ?=? в любом положении ножа и c=24-300. Перекрытие для постоянного момента.
Мрез
Большие динамические преимущества барабанного режущего аппарата обусловлены постоянной нагрузкой на вал и отсутствием необходимости устанавливать маховик. Недостатки: необходимость подавать материал тонким слоем и спиральные ножи сложны в изготовлении и заточке.
29.МЖФ Механизация уборки навоза внутри животноводческих помещений.
Мобильные агрегаты: трактор типа МТЗ или ЛТЗ с бульдозерной навеской для удаления навоза из открытых навозных проходов помещений для КРС и его подачи в поперечный канал или выталкивания в хранилище.
Транспортёры:
1.Цепочно-скребковые транспортёры кругового движения ТСН-2,0Б и ТСН-160Б ( состоит из горизонтального транспортёра и наклонного транспортёра с приводами и шкафа управления ). Горизонтальные транспортёры устанавливают в навозных каналах, проложенных по всей длине помещения рядом со стойлами и соединённых в проходах поперечными каналами в замкнутый четырёхугольник.
2.Скребковые транспортёры ТС-1 с возвратно-поступательным перемещением скребков. Для удаления навоза из свинарников: продольный – из помещений в навозный канал поперечного транспортёра, поперечный – из навозного канала в навозосборник. Состоит из: приводной станции с натяжным устройством, отклоняющего блока, каретки, тяговой цепи, тяг. Рабочий орган – каретки со скребками. При движении каретки навоз перемещается только в одном направлении. При рабочем ходе скребок каретки занимает вертикальное положение и перемещает навоз по каналу, при холостом -–откидывается на шарнирах вверх, оставляя навоз в каналах без движения.
3.Скребковые транспортёры с возвратно-поступательным движением скребков (штанговые ) – конвейерные установки с возвратно-поступательным движением скребков. Благодаря возвратно-поступа-тельному движению навоз подаётся кратчайшим путём. При двух- и четырёхрядном расположении стойл коровников применяют навозоуборочную установку УН-3,0, в которую входят два горизонтальных штанговых транспортёра возвратно-поступательного действия с общим приводом.
4.Скреперные установки с возвратно-поступательным движением рабочих органов ( дельта-скреперов ) обеспечивают механическую транспортировку навоза из животноводческих помещений и его подачу с помощью специальных поперечных навозоуборочных конвейеров в навозосборники или транспортное средство. Основные сборочные единицы УС-Ф-170: рабочий контур, скреперы, промежуточные штанги, поворотные устройства, привод. Установка работает в автоматическом режиме. При нажатии кнопки "Вперёд" в движение приводится рабочий контур. Перемещаясь по навозному каналу, скребки раскрываются, захватывают находящийся в навозном канале навоз и подают его в сторону поперечного канала. В это время скреперы, находящиеся в соседнем навозном проходе со сложенными скреперами совершают холостой ход. При подходе переднего скрепера к люку сбрасывания в поперечный канал включается механизм реверсирования. При рабочем ходе передний скрепер сбрасывает навоз в поперечный канал, а задний подводит порцию только до середины навозного прохода.
5.Навозоуборочный конвейер КНП-10. Принимает навоз от навозоуборочных транспортёров ТСН-160А, ТСН-160, ТСН30,Б И ТСН-2Б, скреперных установок УС-15, УС-250, УС-Ф-170, а также мобильных средств уборки навоза АМН-Ф-20; транспортирует навоз любой консистенции на расстояние до 80 м.; направляет навоз на наклонный транспортёр. Конвейер состоит из приводной и поворотной секции, круглозвенной цепи со скребками, металлических корыт, пускозащитной аппаратуры.
Гидравлические системы.
При всех системах кроме бесканального смыва в станках для содержания животных устраивают заглублёные продольные каналы, которые сверху перекрывают решётками. Через них навоз поступает в продольные каналы, соединённые с поперечными каналами. Последние расположены на 300-350 мм ниже первых и выходят за пределы животнов. фермы в коллектор. Поперечные каналы и коллектор имеют уклон 0,01-0,03.
1.Самотечная система непрерывного действия основана на принципе самопередвижения смеси. Система действует непрерывно по мере поступления навозной массы через щели надканальных решёток и её стекания через открытый конец канала. Навозная смесь непрерывно вытекает из канала.
2. Самотечная система периодического действия отличается от предыдущей тем, что в ней предусмотрено накопление навоз в навозоприёмных каналах, выход которых перекрыт шиберами. Навозная масса накапливается в течение нескольких суток. Каналы выполнены с углом не менее 0,005. Для периодического спуска массы открывают шибера.
3.Система прямого гидросмыва навоза. Продольные каналы устраивают с углом 0,007-0,01, а поперечные – 0,02-0,03. За пределами жив. помещений и на участке до приёмного резервуара-усредителя поперечные каналы заменяют трубами. Для удаления массы вода подаётся под давлением 0,2-0,3 Мпа.
4.Рециркуляционная система предусматривает ежедневную промывку навозоприёмных каналов жидкой фракцией навоза, предварительно отстоянной, обеззараженной и дезодорированной, или жидкой фракцией, прошедшей биологическую очистку и предварительное карантирование.
5.Бесканальный гидросмыв навоза с напольных мест дефекации проводят с помощью гидросмывных установок, значительно сокращающих по сравнению с прямым гидросмывом количесво расходуемой воды, эксплуатационные расходы и капитальные вложения на строительство. При таком способе не требуется устройства каналов и решётчатых полов, так как зона дефекации примыкает непосредственно к полу логова, а гидросмывные установки монтируют в проёмах разделительных установок.
30.МЖФ Анализ работы пульсатора доильного аппарата ( на примере АДУ-1 )
III
II
насос I КОЛЛЕКТОР
VI
Сосание: FIV-I – СНИЖАЕТСЯ; FIII-II – const; в IV – h1
Массаж: h1 h2; FIV-I – возрастает; FII-I – const;
Стакан:
ПК
МК
сосание
h
h
массаж
h
0
h=46-48кПа; n=70?5 min-1; С:М = 70:30; t=5мин.
31.МЖФ Условия применения транспортёра типа УС, их конструкция.
Скреперные установки с возвратно-поступательным движением рабочих органов ( дельта-скреперов ) обеспечивают механическую транспортировку навоза из животноводческих помещений и его подачу с помощью специальных поперечных навозоуборочных конвейеров в навозосборники или транспортное средство.
Скреперная установка УС-Ф-170 предназначена для уборки бесподстилочного навоза влажностью до 90% из открытых навозных проходов длинной до 80 м. при боксовом и комбибоксовом содержании. Она может работать как в ручном, так и автоматическом режиме. Основные сборочные единицы УС-Ф-170: рабочий контур, скреперы, промежуточные штанги, поворотные устройства, привод. Тяговый орган – рабочий контур, состоящий из двух отрезков цепи, двух промежуточных штанг и четырёх скреперов. Складывающийся скрепер предназначен для захвата, перемещения по каналу и возвращения навоза в исходное положение. Он состоит из ползуна, шарнира, натяжного устройства и двух скребков. Шарнир приварен к ползуну. К шарниру присоединены два скребка, каждый из которых связан с ползуном цепью. На конце скребков болтами прикреплены чистики для очистки стенок навозного канала.
Установка работает в автоматическом режиме. При нажатии кнопки "Вперёд" в движение приводится рабочий контур. Перемещаясь по навозному каналу, скребки раскрываются, захватывают находящийся в навозном канале навоз и подают его в сторону поперечного канала. В это время скреперы, находящиеся в соседнем навозном проходе со сложенными скреперами совершают холостой ход. При подходе переднего скрепера к люку сбрасывания в поперечный канал включается механизм реверсирования. При рабочем ходе передний скрепер сбрасывает навоз в поперечный канал, а задний подводит порцию только до середины навозного прохода. . М
32.МЖФ Расчёт питающего механизма соломорезки, практич. применение расчёта при регулировке длины резания.
А а а`
Fn dFn
h=r*cos?; A+2h=a+2r; A-a=2r- 2r*cos?
D=(A-a)(1- cos?); cos?=1/ ?(1-tg2?)
tg?=tg?=f `;
По данной формуле D очень большой, поэтому вальцы изготавливают зубчатые или поджимают один из них ( при этом а/А=0,4-0,6).
Питающий механизм должен выполнять функции: затягивать, уплотнять, проталкивать слой к режущему аппарату.
Что бы было затягивание, vб?vn.
33.МЖФ Машины для транспортировки навоза по трубам.
Поршневая установка для транспортировки навоза по трубам из животноводческих помещений в навозохранилище. Она работает с подстилочным и бесподстилочным навозом, с влажностью >= 78%, длина соломы менее 10 см.
Состоит из корпуса, поршня, гид-
ропривода, цилиндра, клапана,
загрузочной воронки, трубопровода.
Дальность – 300-350 метров. Начало: поршень в исходном положении, клапан закрывает вход в навозопровод, окно загрузочной воронки закрыто. При движении поршня вправо клапан открывается и навоз поступает в камеру. При движении поршня в исходное состояние в камере создаётся давление, под действием которого навоз проталкивается по трубопроводу.
34.МЖФ Условия работы барабанной и кулачковой моек. Определение производительности корнеклубнемоек.
Барабанная мойка: Q=Sl??k1k2; k1-коэф. заполнения барабана; k2-коэф. учитывающий пустоты между клубнями. S – площадь сечения барабана.
Кулачковая мойка: Q=0.5*?(dш2-dв2)l n ? k1k2k3;
dш;dв – диаметры шнека и вала. l-шаг шнека. k3-коэф. снижения производительности от разорванного шнека.
Шнековая: Q=0.5*?(dш2-dв2)l n ? k1k2k4; k4-из таблиц.
35.МЖФ Механизация работ в навозохранилищах.
ККС-Ф-2. – козловой кран для выгрузки навоза и компоста из хранилища, погрузки на транспортное средство, послойной укладки навоза с торфом и их перемещения. Состоит из моста с опорами, перемещающихся по рельсам, подъёмника с грейфером, кабины управления и эл. оборудования. На площадке компостирования – погрузчик ПНД-250 навешанный на ДТ-75М. Он предназначен для рыхления и погрузки из буртов органоминеральных смесей, навоза, торфа, компоста. Состоит из рамы, выгрузного и приёмного транспортёра. Заборный рабочий орган с фрезой и ковшом. Q=150-210 т/ч, В=2,4 м. h=3м.
36.МЖФ Определение производительности шнековых корнеклубнемоек. Обоснование работы камнеуловителя.
Q=0.5*?(dш2-dв2)l n ? k1k2k4; k4-из таблиц.
37.МЖФ Переработка навоза методом биогазового сбраживания.
1.Получение энергии, 2.Переработка загрязняющих окружающую среду веществ, 3.Получение эффективного безопасного удобрения.
Из 1 тонны 350-600 м3 газа. 1м3 биогаза = 1,6 кВт электроэнергии. Биогаз – продукт анаэробного сбраживания исходного материала без О2.
Условия: 1)отсутствие свободного О2; 2)высокая влажность (>50%); 3)определённая температура; 4)малая освещенность; 5)щелочная среда; 6) достаточное кол-во азота.
3 этапа: 1.кислотообразующий; 2.метановые бактерии синтезируют из кислот и кислотообразующих бактерий. 3.
Состав биогаза: 60% метана, 36,6% СО2; 3% Н2; 0,2% О2; 0,2% Н2S.
Бактерии: психрофильные бактерии при 150С; мехирильные бактерии при 350С; термофильные бактерии при 550С. Условия: бактериям нужна зона прилипания, исходную массу измельчают и перемешивают во время, температурный режим ( до 350С), определённое соотношение С и N.
38.МЖФ Элементы расчёта дозаторов. Обоснование способов регулировок.
Q=Vn?Z; V-объём сыпучего материала снимаемого одним чистиком за один оборот. V=2?RS; S=h2/2tg?
Q=2?Rn?Zh2/2tg?
Дозаторы непрерывного действия:
ДАЧ-1 - дозатор ковшового типа.
Дозирование жидких компонентов:
Дозаторы длинно-стебельчатых кормов:
КТУ-10; РММ-6; РММ-5; ПДК-10.
39.МЖФ Организация технического обслуживания машин животноводческих ферм.
ТО проводится по системе ППРТОЖ. Виды ремонтно-технических обслуживаний: 1) ЕТО; 2) ТО-1(всё оборудование) и ТО-2 ( сложные машины ). 3) обслуживание при хранении; 4) техосмотр; 5) Ремонт.
Группы оборуд. по ППРТОЖ:
1.обор. для водоснабжения и поения
2.обор. для транспортировки и раздачи кормов
3.доильные машины и машины по первичной обработке молока.
4. обор. для уборки и утилизации навоза
5.обор. для обеспечения микроклимата
6.обор. для стригальных пунктов
7. обор. для птицефабрик и птицеферм
8.стойло-станочное оборуд.
9.ветеринаро-санитарное обор. по уходу за жив-ми.
10. обор. для кормоцехов.
ТО при хранении в соответсвии с рекомендациями заводов изготовителей и правилами хранения с/х техники.
Техосмотр – 2 раза в год. Ремонт – в кратчайшие сроки.
Принципы и формы организации ТО: принципы:
Разделение, специализация и концентрация труда; Обязательная окупаемость; Высокая мобильность и оперативность. формы:
1.Силами хозяйства; 2.Часть работ - силами хоз-ва, часть – сторонними организациями. 3. сторонними организациями (собственными – только ЕТО )
40.МЖФ Смесители кормов. Анализ процесса смешивания двух- и многокомпонентных кормов. Качество смеси.
Барабанные смесители
Мешалочные смесители: шнековые, лопастные – для сыпучих и вязких кормов; турбинные, пропеллерные – для жидких.
В зависимости от скорости вращения вала: быстроходные (К30). К – показатель кинематического режима.
Мешалочные смесители: одно- и двухвальные.
СМ-1 – 2-х вальный. Q до 20 т/ч
Смеситель-запарник С-12А Смеситель-измельчитель
периодич. действия. ИСК-5
шнек
ВКС-3М – смеситель для обработки пищевых отходов.
Для оценки качества смеси различают 4 вида смеси: хорошая ( отклонение конкретного компонента в пробах от содержание его в смеси до 8%), удовлетворительная ( от8 до 10), неудовлетв. ( 10-15), плохая ( более 15 %).
Три вида смесей: сухие комбикорма (W=13-15%); влажные мешанки (40-75%), жидкие смеси (75-85).
Виды смешивания: срезываемое смешивание, конвективное, дифузионное, смешивание ударом, смешивание измельчением.
Показатели, оценивающие процес смешивания.
1.Степень однородности ( отклонение содержания компонентов в пробе к содер. комп. в смеси.)
Q=(1/n)*(?Bi/B0)*100, при условии BI
n-кол-во проб, BI-содерж. комп. в пробе, B0-сод. комп. в смеси.
Q=(1/n)*(? 2B0-Bi/B0)*100, при условии BI>B0. Bi=0, следов. Q=1 – идеальная смесь.
2.Среднеквадратичное отклонение ? и коэф. вариации ?. sтеор=? ?[(xi-p)/(n-1)]; n – кол-во проб, xi – содержание конкретного комп. в пробе. р- содержание конкретного комп. в заданной смеси.
x – среднеарифметическое содержание компонента в пробе.
?=sтеор/s0пост; с=(s0пост/ x) *100%
41.МЖФ Пастбищные доильные установки УДС-3А, УДЛ-12, особенности их комплектации доильными аппаратами.
УДС-3А –использую на пастбищах, выполненных на базе параллельно-проходных станков, оснащены унифицированным доильно-молочным оборудованием: счётчиками, кормораздатчиками, циркуляционной моечной, охладителями. Основной доильный аппарат АДУ-1. По заказу может поставляться с трёхтактным ДА Волга..
УДС-12 –модификация УДС-3А и предназначена для использования в условиях высокогорья от 1 до 1000 и более метров над уровнем моря.
42.МЖФ Определение производительности смесителей.
Барабанный: Q=Vk?/?t; V-объём смесителя; k-коэф. заполнения (0,6-0,7); r-плотность кормов; ?t-сумма времени на загрузку и выгрузку кормов.
Лопастные: Q=D2Sr?k/8; D-диаметр лопатки; S-лобовое сечение лопатки; k-коэф. заполнения (0,3 );
S=Rh*sin?; h-высота лопатки; b-угол наклона лопатки.
43.МЖФ Условия применения доильного агрегата УДА-8А.
Используется для доения в доильных залах. Состоит из 8 индивидуальных станков, расположенных с двух сторон траншеи. Стойла оборудованы кормушками с кормораздатчиком, ДА с манипулятором МД-Ф-1; агрегат снабжён групповым и индивидуальными счётчиками, системой подкачки тёплой воды, автоматической мойкой. Пропускная способность 70 коров в час. Сокращена сумма времени ручных работ.
Автомат доения осуществляет: машинный додой, снятие доильных стаканов, отвод доильных стаканов.
44.МЖФ Уплотнение кормов, элементы расчёта грануляторов.
Уплотнение-процесс сближения частиц волокнистого или зернистого материала путем приложения внешних сил с целью увеличения плотности.
Виды:
1.Прессование – в закрытой камере сжимают пока между частицами не появятся внешние силы взаимодействия. ? до 200кг/м3
2.Брикитирование – при длине резки 5-50 мм, ?=400-900 кг/м3
3.Гранулирование – процесс превращение сыпучих или тестообразных кормов в шарики или столбики. r=1200-1300 кг/м3; l=0,3-9 мм.
Двумя способами – прессованием или окатыванием.
4.Экструдироваие. Применяются карбомиды для выделения белка (компенсация протеина). АКД- аминоконцентрированные добавки. Концентраты (70-75%)+карбомиды(20%)+бентонид натрия (5%) = АКД. Массу пропускают через шнековый пресс. t=400-430 К; давление 1,4-1,5Мпа.
Расчёт: длина фильеры
d – диаметр фильеры; f-коэф-т трения материала о стенки фильеры; ?-коэф. бокового расширения; m-табл. коэф. для определённого материала; ?-степень уплотнения.
Время нахождения материала в фильере.
t=l*Sm*?*?/q; Sm- площадь живого сечения матрицы; r- плотность массы; b-коэф. бокового расширения материала; q – пропускная способность.
Производительность:
Q=Vk* r*zф*z*K3*n; Vk-объём корма в фильере; r-плотность корма; zф-кол-во фильер; z-кол-во бегунов; K3-коэф. учитывающий особенности