Включения ультрамафитов в базальтоидах островных дуг: к проблеме состава и генезиса переходного слоя "коро-мантийной смеси" в островодужных системах.
Колосков А.В., Пузанков М.Ю., Пирожкова Е.С
Проведено обобщение обширных геолого-петрографических, минера-логических, а также изотопно-геохимических материалов, полученных авторами при многолетних исследованиях ультраосновных включений в вулканитах Камчатки. По особенностям вещественного состава эти включения подразделяются на ассоциации: дунит-гарцбургитовую с минимальным развитием верлитов и пироксенитов; дунит-пироксенитовую и гарцбургит-верлитовую с подчиненной ролью "зеленых" и "черных" пироксенитов. Первые две ассоциации развиты среди вулканитов островодужного типа. Причем ксенолиты первой ассоциации встречаются исключительно на толеитовых вулканах фронтальной зоны (Авачинский, Кроноцкий), а второй - характерны для проявлений известково-щелочного и субщелочного вулканизма на вулканах промежуточной зоны (Шивелуч, Харчинский, Ключевской). Третья ассоциация присутствует в связи с базальтоидами внутриплитного геохимического типа (район вулкана Бакенинг, Ичинский вулкан. Породы всех трех ассоциаций четко различаются по своему минералогическому, а также изотопно-геохимическому составу. При этом ультрамафиты первой ассоциации близки по составу к породам плутонических альпинотипных ультрабазитов верхнемелового-палеогенового возраста, широко развитых в пределах восточной Камчатки. Ксенолиты второй ассоциации сходны по составу с верхнемеловыми-палеогеновыми гипербазитами дунит-верлит-пироксенитовой серии в составе вулкано-плутонической формации пород повышенной щелочности Валагинского и Срединного хребтов Камчатки.
Фациальный анализ этих ксенолитов свидетельствует о том, что они образовались на сравнительно малых глубинах, занимая промежуточное положение между верхнемантийными и нижнекоровыми образованиями. Тонкие, но достаточно существенные минералогические и геохимические различия наблюдаются между ксенолитами ультрамафитов и плутоническими гипербазитами. Ряд особенностей вещественного состава (наличие первичных расплавных включений в шпинелях из ксенолитов гарцбургитов Авачинского вулкана и в клинопироксенах из пироксенитов вулкана Шивелуч, минералогическая зональность многих ксенолитов) свидетельствует о том, что эти породы изначально имеют магматическое происхождение.
Таким образом, ксенолиты ультрамафитов являются плутоническими аналогами вулканитов. Они представляют из себя одну из составляющих переходного слоя между корой и мантией, в котором располагается большинство первичных очагов вулканов. Для верхнемелового-палеогено-вого времени подобную роль играли массивы плутонических гипербазитов, выведенные в настоящее время на земную поверхность.
Введение
Ксенолиты ультраосновных пород в Камчатских базальтоидах широко распространены и детально изучены [3,15,32,33]. Нерешенной, однако, остается проблема генезиса этих образований, а также вопрос о том, какое место они должны занимать в петрологических моделях. Во многих петрологических построениях [11,20,21] ультраосновные включения в камчатских вулканитах традиционно используются для реконструкции состава мантийного субстрата. Фациальный анализ этих образований [15,18,44] свидетельствует, однако, о том, что они характеризуются гораздо меньшими глубинами своих минеральных равновесий, чем это предполагается в петрологических моделях для "продуктивного" мантийного слоя в островодужных системах. Эти глубины соответствуют положению так называемого переходного слоя между корой и мантией, детально изученного на ряде полигонов Камчатки [2,10]. В районе Ключевской группы вулканов он располагается на глубинах от 30 до 40 км, а в районе Авачинской группы - от 20 до 30 км. Хотя этот слой хорошо изучен геофизиками, по поводу его происхождения и особенностей вещественного состава мнения исследователей не однозначны. Одни из них [10] рассматривают его как часть базальтового слоя Земли, а его отличительные сейсмические и плотносные характеристики связывают с наличием многочисленных силлов базит-гипербазитового состава. Другие исследователи [2] считают, что помимо базальтовой составляющей существенную роль в его составе занимает разуплотненная мантия. Наличие в переходном слое высоких скоростей продольных сейсмических волн (V=7,8-7,9 км/сек) хорошо обьясняется присутствием перидотитового материала. Является ли этот материал реститом при выплавлении базальтовых расплавов из мантийного субстрата или имеет магматическое происхождение? Решение этого вопроса, вероятно, тесно связано с проблемой ультраосновных включений. Детальное ее рассмотрение может дать дополнительную аргументацию для понимания особенностей происхождения и эволюции переходного слоя от коры к мантии. При построении вещественных моделей "коро-мантийной смеси" в некоторых континентальных регионах используются данные о составе пироксенит-базитовых нодулей "черной серии" в базальтоидах [22]. Посмотрим, какую информацию в этом плане можно извлечь при изучении включений ультрамафитов в базальтоидах Камчатки.
1. Геологическое положение, типовой набор и ассоциации включений.
Рис. 1
Ксенолиты базит-гипербазитового состава, как магматического, так и метаморфического облика широко распространены на вулканах Восточного вулканического пояса, южной Камчатки , Центральной Камчатской депрессии . Во многих работах было показано, что состав включений находится в тесной зависимости от состава вмещающих пород, их сериальной или типовой принадлежности [4,15,17,18,24,26]. Наиболее существенные отличия ультраосновных ксенолитов наблюдаются при сравнительном рассмотрении их ассоциаций в связи с вулканитами островодужного и внутриплитного геохимических типов [18]. Вулканиты островодужного типа содержат включения разнообразных габброидов, амфиболитов, кристаллических сланцев, а также ультрамафитов, доля которых обычно не превышает 10-15%. Они широко распространены на вулканах Ключевской группы (Шивелуч, Заречный, Харчинский, Ключевской, Безымянный, Зимины, Удины), изучены на Авачинском и Кроноцком вулканах. Помимо собственно островодужных вулканитов на Камчатке, как и в некоторых других развитых островодужных сис-темах, проявился особый тип вулканических пород, который по своим петрографическим и геохимическим признакам сходен с внутриплитными базальтоидами, но отличается рядом особенностей (пониженные концентрации высокозарядных элементов, а также боее низкие La/Yb отношения). Он рассматривается в качестве внутриплитного геохимического типа в островодужных системах [4,18]. Базальтоиды этого типа также содержат включения верлитов, пироксенитов, дунитов и очень редко гарцбургитов и габброидов. Метаморфические породы в ассоциации с вулканитами этого типа не встречаются. Подобного рода включения встречены в районах вулканов Бакенинг, Ичинский, в покровных базальтах Валагинского хребта, а также в отдельных конусах и потоках на Чукотке и в Корякии [15,18].
Детальный анализ материалов с учетом новейших данных позволил выявить среди включений ультрамафитов три ассоциации.
1. Дунит-гарцбургитовую с подчиненной ролью верлитов и пироксенитов. Совместно с ними встречаются ксенолиты габброидов, кортландитов и горнблендитов, а также слабо метаморфизованных пород мелового фундамента.
2. Дунит-верлит-пироксенитовую, в которой резко преобладают амфиболсодержащие пироксениты. Сопровождаются ультрамафиты амфиболовыми габброидами, амфиболсодержащими кристаллическими сланцами и гнейсами.
3. Верлит-пироксенитовую, в которой преобладают верлиты, "зеленые" и "черные" пироксениты. Встречаются одиночные ксенолиты гарцбургитов и габброидов. Породы меланократового фундамента отсутствуют.
Как видно на схеме (рис.1 ), первая ассоциация ультрамафитов распространена исключительно на вулканах фронтальной зоны, вторая выявлена среди вулканитов Центральной Камчатской депрессии. Присутствие третьей ассоциации отмечается для некоторых вулканических проявлений различных регионов полуострова, включая и тыловую область. Характерно, что зональность в распространении ассоциаций ксенолитов повторяется в особенностях пространственного распространения сходных по составу пород формационных типов плутонических гипербазитов мелового фундамента островодужной системы. Первые две ассоциации ксенолитов распространены в связи с островодужным типом базальтоидов. Третья ассоциация характерна для вулканитов внутриплитного геохимического типа.
Перейдем теперь к рассмотрению конкретных районов проявления этих образований.
1. Включения ультрамафитов в вулканитах островодужного типа.
Рис 2
Авачинский вулкан располагается в ряду среднеплейстоцен-голоценовых вулканов, образующих цепь северо-западного простирания [12]. С одной стороны, вулканами Авачинской группы на юго-востоке Камчатки начинается Восточный вулканический пояс, а с другой - его можно рассматривать в качестве крайнего юго-восточного звена поперечной цепи активных вулканов Авачинско-Корякско-Бакенингской вулканической зоны. Базит-гипербазитовые ксенолиты здесь известны давно и хорошо изучены [13,16,23,33]. Находки включений наиболее часты среди пемзово-шлаковой пирокластики, возраст которой датируются 4 и 5 тыс. лет. (C14) [37]. Размер отдельных блоков включений гарцбургитов доходит здесь до 50-60 см. В меньшем количестве и меньших размеров (1-3 см) ультраосновные ксенолиты встречаются в андезито-базальтах потоков Авачинского вулкана, а также в базальтах отдельных конусов (в потоках и пирокластике), в андезитах экструзивных куполов (в краевых зонах), а также в базальтовой пирокластике краевых фаций некоторых экструзий. Ксенолитсодержащие вулканиты в целом принадлежат к низкокалиевой островодужной вулканической серии, но широко варьируют по содержанию кремнезема и по магнезиальности пород. Они обладают типичными для подобных серий геохимическими характеристиками (обеднены Rb, Ba, Sr, Zr, Hf и обогащены Cr) при близкой калиевой щелочности и магнезиальности по сравнению с толеитовыми базальтами континентальных и океанических областей. В состае включений преобладают разнообразные габброиды, кортландиты, зеленокаменно измененные орто- и парапороды мелового фундамента. Доля пород ультраосновного состава не превышает 10-15%. Преобладают (90-95%) включения гарцбургитов с переходом к энстатитсодержащим дунитам и лерцолитам, реже встречаются верлиты, ортопироксениты, вебстериты. По внешнему виду породы довольно однообразны: отдельные крупные (от 2-3 до 5-6 мм) кристаллы голубовато-зеленого высокомагнезиального (Fo=88-91) оливина и желтовато-зеленого энстатита (En=91-92) погружены в белесый средне- или мелкозернистый существенно оливиновый агрегат. В нем встречаются отдельные зерна хромистого диопсида, а также хромистой (вплоть до пикотита) шпинели. В некоторых ксенолитах присутствует бесцветный обычно интерстициальный амфибол паргаситового ряда и очень редко - плагиоклаз (An=72-73,5) в виде мелких зерен в промежутках между кристаллами оливина. Было встречено также несколько образцов гарцбургитов с крупными (до 3-4 мм) кристаллами шпинели в среднезернистом оливин-пироксеновом агрегате. Шпинель этих гарцбургитов содержит многочисленные мелкие (от 20-30 до 100 мк) округлые микровключения. Одни из них содержат минералы-узники: клино- и ортопироксены, реже оливин, участки стекла, а также реликты флюидной фазы в виде темного пузырька (рис.2 , а, б). Другие микровключения кроме стекла и флюидной фазы характиризуются наличием вторично образованных дочерних минералов - пироксенов и оливина (рис.2 , в). По своей морфологии и особенностям состава эти микровключения сходны с расплавными включениями в минералах вулканических пород, изучение которых интенсивно проводится в последние годы [25,29]. Подобные микровключения в крупных зернах клинопироксена были обнаружены также в одном из образцов верлитов. Структуры большинства образцов гарцбургитов протогранулярные, бластопорфировые, иногда эквигранулярные с приближением к роговиковым. Широко проявлены катаклаз и перекристаллизация, так что некоторые разности напоминают типичные роговики. В отдельных случаях отмечены полосы и прожилки, выполненные мелкозернистым существенно оливиновым агрегатом или, наоборот, крупнозернистым пегматоидным диопсидом и энстатитом. Существует представление, что эти пегматоидные образования имеют инфильтрационно-метасоматическое происхождение [32]. На контакте с вмещающими вулканитами гарцбургиты содержат черную оторочку размером до 3-4 мм. Обычно эта оторочка имеет мономинеральный состав и представлена амфиболом паргаситового ряда. Иногда встречаются оторочки верлитового или верлит-кортландитового состава. Верлиты, кортландиты и горнблендиты присутствуют также в виде отдельных образцов ксенолитов размером до 8-10 см. Это черная существенно клинопироксеновая или амфиболовая порода, содержащая от единичных зерен до 10-15% желтоватого относительно железистого оливина (Fo=75-80).
Современный Ключевской вулкан находится в одноименной группе вулканов и располагается в северной части Центральной Камчатской депрессии. В составе продуктов извержений выделяются два типа базальтов - магнезиальные и глиноземистые известково-щелочного типа [12]. В обоих типах пород встречаются ксенолиты оливинитов, гарцбургитов, пироксенитов, а также габброидов, однако в глиноземистых базальтах их значительно меньше. Подробное петрографическое описание различных типов ксенолитов проведено Б.И.Пийпом [27]. Среди ксенолитов преобладают включения размером до 2,5-3 см мелкозернистых перекристаллизованных гарцбургитов. Кроме того, встречено несколько образцов зеленых пироксенитов, а также мегакристов диопсида размером до 1-1,5 см. В гарцбургитах отмечается тонкая полосчатость, вызванная преобладанием в отдельных зонах оливина или ортопироксена, иногда встречаются вытянутые скопления зерен шпинели. В одном из образцов был обнаружен прожилок (шириной около 500 мк) титанистого гастингсита, железистость которого в центральной части прожилка в 2 раза выше, чем в краевой части. Ранее присутствие амфибола подобного состава отмечалось [5] в вебстеритах этого вулкана. Контакты ксенолитов с вмещающей породой всегда четкие, резкие, без видимых преобразований или новообразований.
Плейстоценовый Харчинский вулкан располагается несколько особняком в северной части Центральной Камчатской депрессии. В составе его продуктов также выделяются два типа базальтов - магнезиальные и глиноземистые известково-щелочной серии. Ксенолиты были изучены в дайке, которая располагается в северо-западном борту вершинной кальдеры вулкана и имеет простирание на восток-северо-восток. Мощность ее 4-5 м, прослежена по простиранию на расстоянии 100-150 м. Сложена она субафировыми биотит-амфиболовыми субщелочными базальтами повышенной магнезиальности. Ксенолиты в этой дайке достаточно обильны, размер их колеблется от нескольких мм до 10-12 см. По составу они распределяются следующим образом: 1) дуниты, гарцбургиты, лерцолиты - до 70%; 2) зеленые пироксениты - 30%; 3) амфиболовые пироксениты, кортландиты - единичные образцы. Первую группу включений характеризует обычный четерехминеральный парагенезис: умеренно магнезиальные оливин и ортопироксен, хромистый диопсид, широко варьирующая по составу шпинель. В некоторых образцах гарцбургитов был обнаружен интерстициальный амфибол паргаситового ряда с высоким содержанием Cr2O3 (до 1,8%), а в перекристаллизованном гарцбургите - мелкое зерно титано-магнетита. В ксенолитах пироксенит-кортландитового состава помимо преобладающего клинопироксена или амфибола присутствует ортопироксен и оливин, а также шпинель и магнетит. Амфибол здесь представлен низко хромистым паргаситом. В участках интенсивной перекристаллизации было обнаружено несколько зерен полевых шпатов. Это почти чистый анортит (An=96%) в кортландите, зональный битовнит (An77-48) и зерно ортоклаза в пироксените.
Шивелуч является одним из самых крупных активных стратовулканов Камчатки. Располагается он в северной части Центральной Камчатской депрессии. В составе пород преобладают амфиболсодержащие андезиты и андезито-базальты, относящиеся к умеренно калиевой известково-щелочной серии [12]. Ксенолиты чаще всего встречаются в отложениях пирокластических потоков и взрывных отложениях, реже в породах экструзий и даек и очень редко в лавовых потоках. Размеры ксенолитов от 1-2 до 20-25 см. Оценка характера распространенности различных типов включений [12] дает следующие результаты: амфиболсодержащие кристаллические сланцы и амфиболиты (до 33% выборки), амфиболовые и амфибол-пироксеновые диориты и габбро-диориты "гомеогенного" типа (до 27%), амфиболовые и амфибол-пироксеновые габброиды (до 25%), амфиболовые пироксениты (около 6-10%), дуниты и гарцбургиты (не более 1-1,5%).
Преобладающим типом пород ультраосновной ассоциации являются в различной степени амфиболитизированные клинопироксениты. Их облик обычно определяется грубозернистым агрегатом клинопироксена, проросшего темными кристаллами амфибола. Однако встречаются и не содержащие амфибол разности пироксенитов. В некоторых образцах пироксен содержит лишь мелкие включения зерен амфибола, но характеризуется наличием многочисленных мелких микровключений довольно кислого стекла и кварца. В центральной части одного из ксенолитов пироксенита было обнаружено белесое мелкозернистое обособление (размером несколько сантиметров), сложенное относительно железистым ортопироксеном (En=81). Преобладающим типом амфиболов является обыкновенная роговая обманка, паргасит встречается во внутренних частях ксенолитов в виде пойкилитовых или интерстициальных образований. Этот тип включений характеризуется отсутствием шпинели, по границам зерен встречаются мелкие образования хромистых магнетитов. В ряду наиболее магнезиальных пород - дунитов-гарцбургитов-вебстеритов первые преобладают. Облик всего ряда пород определяется наличием желтоватого мелкозернистого существенно оливинового агрегата с примесью пироксенов и единичными зернами шпинели. Вебстериты характеризуются возросшей ролью ортопироксена, главным образом за счет оливина. В некоторых дунитах и вебстеритах, в основном в зонах перекристаллизации, появляется амфибол паргаситового ряда, а также флогопит. В одном из образцов гарцбургита были обнаружены мелкие зерна хромистого титано-магнетита в виде микровключений в клинопироксене.
Ксенолиты нередко несут следы перекристаллизации и частичного плавления. Вокруг них на границе с вмещающей породой иногда наблюдаются контактово-реакционные оторочки амфибола или амфибол-плагиоклазовых пород, а вокруг некоторых ксенолитов дунитов или гарцбургитов - маломощные (не более 1-2 мм) каемки столбчатых (поперек контакта) кристаллов ортопироксена.
2. Ультраосновные включения в базальтах внутриплитного геохимического типа.
Район вулкана Бакенинг (юго-восточная Камчатка). Рассматриваемый район составляет крайнее северо-западное звено цепи активных вулканов, которые относятся, вероятно, к единой Авачинско-Корякско-Бакенингской вулканической зоне - секущей по отношению к простиранию Курило-Камчатского глубоководного желоба, а также большинства главных вулканических поясов региона. В фундаменте активного вулкана Бакенинг помимо миоцен-плиоценовых вулканогенно-обломочных пород обычного для островных дуг известково-щелочного типа (паратунская свита и алнейская серия) встречаются реликтовые останцы покровов субафировых субщелочных базальтов и андезито-базальтов позднеплиоценового или раннечетвертичного возраста. От обычных островодужных вулканитов эти базальты отличаются повышенной титанистостью, а также более высокими концентрациями высокозарядных элементов (Zr, Nb, Ta), и также повышенным La/Yb отношением. Включения ультрамафитов были обнаружены здесь в нескольких потоках субщелочных базальтов и андезито-базальтов мощностью около 15-20 м в нижней части разреза покровных образований с общей мощностью порядка 60-100 м. Включения размером от нескольких мм до 10-15 см достаточно обильны (в некоторых местах на 1 кв2 приходится от 5 до 10 ксенолитов) и состав их своеобразен.
Резко преобладает (до 90-95%) группа "зеленых" ксенолитов: верлитов, пироксеновых дунитов, оливинсодержащих клинопироксенитов, единичных гарцбургитов. В этой группе наиболее обычны средне- и крупнозернистые оливин-клинопироксеновые срастания с варьирующим содержанием компонентов. Они либо не содержат ортопироксена, либо он появляется только в структурах распада. Такой же ортопироксен обычен и в оливинсодержащих клинопироксенитах. Только в единичных образцах ортопироксен присутствует в качестве самостоятельной, конкурирующей с оливином и клинопироксеном фазы. Полностью отсутствуют лерцолитовые, габброидные, также ксенолиты метаморфических пород. Встречаются образования сложного состава, когда ядро представлено гарцбургитом, а оторочка ортопироксенитом. Единичные зерна интерстициального амфибола относятся к обыкновенной роговой обманке.
Обнаружены также (5-10%) "черные" пироксениты. Нередко они содержат небольшое количество ортопироксена (в структурах распада и в виде мелких зерен), иногда единичные зерна оливина и титанистого паргасита.
Ксенолиты сопровождаются обычным набором ксенокристов (оливин, титан-авгит, шпинель, плагиоклаз), но очень мелких - не более первых мм, хотя отдельные кристаллы плагиоклаза достигают 2-3 см.
2. Особенности вещественного состава ультраосновных ксенолитов.
1. Валовый состав и геохимические особенности ксенолитов.
В таблице 1 представлены валовые составы пород включений. Дуниты и гарцбургиты ксенолитов вулканов Шивелуч и Харчинский отличаются чрезвычайно низкими содержаниями Al2O3 и CaO по сравнению с аналогичными породами Авачинского вулкана (табл.1 , NN11,6 и 1-3). В этом они сходны с плутоническими дунитами Центральной Камчатки (табл.1 , N23). Однако, в лерцолитах и тем более в пироксенитах эти отличия нивелируются. По содержанию CaO некоторые гарцбургиты ксенолитов Авачинского вулкана (табл.1 , N3), близки к плутоническим гарцбургитам Восточной Камчатки (табл.1 , N22), но отличаются от них повышенной глиноземистостью. Повышенной железистостью и титанистостью характеризуются гарцбургиты района вулкана Бакенинг (табл.1 , N17). Пироксениты первых четырех вулканов имеют широко варьирующий состав и не отличаются друг от друга. Аномально высокими содержаниями Al2O3, TiO2 и Na2O при пониженной кальциевости характеризуется один из амфиболитизированных пироксенитов Шивелуча (табл.1 , N16). По ряду характеристик он приближается даже к составу черных пироксенитов района вулкана Бакенинг (табл.1 , NN20,21). Пироксениты этого района составляют особую группу. Обычно они отличаются повышенной железистостью, высокими содержаниями Al2O3, TiO2 и Na2O (особенно - в некоторых "черных" пироксенитах), низкими значениями для SiO2 и CaO. Плутонический пироксенит Центральной Камчатки (табл.1 , N24) при высокой магнезиальности (такой же как в ксенолитах гарцбургитов) обладает низкой глиноземистостью и натровостью, но повышенной кальциевостью.
Данные о редкоэлементном составе рассматриваемых пород представлены в таблице 2 . Уменьшение магнезиальности ксенолитов обычно сопровождается возрастанием концентраций Zr, Y, Sr, V, Sc и уменьшением Ni, Co, Cr. Однако встречаются и аномальные образцы. Например, резко повышенными концентрациями Ni, Co и V отличается интенсивно амфиболитизированный пироксенит Шивелуча (табл.2 , N16). Гарцбургиты Авачинского вулкана (табл.2 , NN1-3) по сравнению с дунитами и гарцбургитами вулканов Шивелуч и Харчинский (табл.2 , NN6,11) характеризуются повышенными концентрациями Ni, Cr, V, соизмеримыми с таковыми в альпинотипных гарцбургитах (табл.2 , N22). Содержания микрокомпонентов в плутоническом пироксените Центральной Камчатки (табл.2 , N24) близки к подобным концентрациям в наименее амфиболитизированном пироксените Шивелуча (табл.2 , NN 15).
2. Особенности состава минералов.
Рис. 3
Минералогические особенности ксенолитов гипербазитов в лавах Камчатских вулканов уже рассматривались в ряде публикаций [15,16,18,21,32,33,44]. Поэтому подробно остановимся на характеристике только наиболее информативных минералов - шпинелей и пироксенов. Минералы рассматриваемых включений были проанализированы с использованием рентгеновского микроанализатора "Camebax" в Институте вулканологии ДВО РАН (аналитик В.М.Чубаров), а также в Геттингенском университете (аналитик Т.Г.Чурикова).
Рис.4
Шпинелиды. Ксенолиты ультрамафитов характеризуются наличием как собственно шпинелей, так и титано-магнетитов. Первые распространены в дунитах, гарцбургитах, верлитах всех трех ассоциаций, а также в пироксенитах, ассоциирующих с базальтоидами внутриплитного геохимического типа (район вулкана Бакенинг). Вторые встречаются преимущественно в пироксенитах дунит-верлит-пироксенитовой ассоциации. Кроме того, титано-магнетиты в виде минералов-узников в оливине были обнаружены в некоторых гарцбургитах Харчинского вулкана, а хромистые титано-магнетиты - в клинопироксенах из гарцбургитов вулкана Шивелуч. Составы шпинелей варьируют в широких пределах от глиноземистых герцинитов до хромистых пикотитов (табл.3 ). Обычно в ксенолитах одного и того же состава могут присутствовать несколько разновидностей шпинели. По размерности можно выделить три генерации этого минерала: 1)порфировидную (порфиробластовую?) с размером зерен до 3-4 мм, резко выделяющуюся на фоне средне - или мелкозернистого оливин-ортопироксенового агрегата (некоторые гарцбургиты Авачинского вулкана); 2) "акцессорную", зерна которой размером от долей мм до1-1,5 мм заполняют промежутки между образованиями других минералов; 3) реликтовую, заключенную в зернах других минералов (оливинов, клинопироксенов) или шпинелей более поздних генераций и имеющую размеры от 20-30 мк до 100-150 мк. Различаются составы минерала не только разных ассоциаций включений, но и различных генераций. Как видно на рисунке 3, поля фигуративных точек шпинелей из ксенолитов различных ассоциаций группируются в виде трех рядов, для каждого из которых с ростом железистости намечается тенденция перехода от более глиноземистых к менее глиноземистым шпинелям, титано-магнетитам и магнетитам. Первый ряд отражает изменение состава этого минерала в "черных" пироксенитах. Второй ряд характеризует эволюцию состава шпинелей в гарцбургитах и верлитах района Бакенинга и реликтовых герцинитов из ксенолитов Харчинского вулкана. Сюда же попадают также точки составов шпинелей из плутонических альпинотипных гипербазитов восточной Камчатки. Глиноземистые шпинели этих двух рядов проходят сравнительно простой путь эволюции. С ростом железистости минерала уменьшается количество глинозема и магния, увеличивается содержание железа, марганца и титана. При этом степень окисленности железа возрастает незначительно, либо даже уменьшается (табл.3 , NN13-14,25-32). Поэтому здесь проявляется главным образом замещение типа Al+3 Cr3.
Рис. 5
Третий ряд эволюции образован полями хром-алюминиевых или хромистых шпинелей дунитов, гарцбургитов и вебстеритов, а также титано-магнетитами и магнетитами из пироксенитов вулканов Авачинский, Харчинский, Ключевской и Шивелуч. Сюда же попадают точки магнетитов из плутонических гарцбургитов.
Картина изменения составов хромсодержащих шпинелей более сложная. В общем случае наблюдаются следующие закономерности. С ростом железистости минерала происходит уменьшение содержания в нем глинозема (рис.4 ), количество хрома при этом сначала возрастает, затем в области значений F/FM=45-60% стабилизируется и при дальнейшем возрастании этой характеристики резко падает (рис.5 ). Инверсия в поведении хрома отражается и в характере изменения глиноземистости минерала. Одновременно меняется и степень окисленности железа. Возрастание хромистости в шпинелях из авачинских гарцбургитов происходит на фоне уменьшения степени окисленности железа от 0,4-0,45 до 0,1-0,3 (табл.3, NN1-4). Резкое падение содержания Cr2O3 в шпинелях верлитов сопровождается возрастанием отношения Fe2O3/FeO до 0,9-1 (табл.3 , N7). В шпинелях из ксенолитов Шивелуча это отношение сначала убывает от 0,5 до 0,3, а затем резко возрастает до 1,1 при железистости около 65% и до 1,5 в хромистых магнетитах при F/FM=75-76%. Очевидно, здесь меняется характер замещения трехвалентных компонентов: на ранней стадии при низкой активности кислорода оно происходит преимущественно по схеме Al+3 Cr+3 , а затем в связи с возрастанием окисленности шпинели по схеме Cr+3 Fe+3 и в меньшей степени для Al и трехвалентного железа. В "доинверсионной" шпинели содержание титана очень низкое и значительно возрастает при уменьшении хромистости и росте отношения Fe2O3/FeO, особенно в титано-магнетитах (табл.3, NN7,9,10,16,17,22-24). Содержание MgO во всех случаях уменьшается с ростом железистости минерала.
Рис. 6
Попытаемся теперь разобраться в столь сложном вопросе о том, какие причины вызывают изменение состава шпинелей. Прежде всего, необходимо помнить, что наблюдаемые на рис.3 ряды, в первую очередь, отражают характер изменения состава минералов при переходе от фации шпинелевых лерцолитов (поле шпинелей из ксенолитов в базанитах Вьетнама в верхней части диаграммы) к условиям оливин-плагиоклазового равновесия. Подобного рода преобразования шпинелей подробно были изучены одним из авторов настоящей статьи [15]. На рис.4 и 5 показан характер изменения глиноземистости и хромистости шпинелей из лерцолитов Вьетнама при их декомпрессионной перекристаллизации вплоть до плавления образца ксенолита. Переход от центральных, практически неизмененных частей зерен, к краевой каемке и далее - к обособленной, расположенной уже в стекле реликтовой или новообразованной фазе в этих ксенолитах сопровождается уменьшением глиноземистости и возрастанием хромистости минерала. Одновременно возрастает содержание TiO2 (от 0,01-0,3 до 0,9-1,0%) и степень окисленности железа (от 0,1 до 0,5). Такой путь эволюции можно предположить для обьяснения особенностей изменения состава шпинелей первых двух рядов на рис.3 , а также для наиболее глиноземистых шпинелей Шивелуча (с изменением содержания Al2O3 от 34 до 24%, рис.4 ), если сравнивать их с менее глиноземистыми и более хромистыми генерациями (табл.3 , NN18,19). Связаны ли тренды изменения составов всех "доинверсионных" шпинелей с их декомпрессионной перекристаллизацией? Например, поля составов этого минерала в авачинских гарцбургитах также характеризуются уменьшением глиноземистости и возрастанием хромистости по мере увеличения его железистости (рис.6 и 7 ) Зональность большинства зерен шпинелей здесь, однако, принципиально другая, чем это проявлено в минералах вьетнамских ксенолитов. Она идет "от стекла", а не "к стеклу", как в случае с вьетнамскими шпинелями. Такая зональность не могла образоваться в результате декомпрессионной перекристаллизации и плавления ксенолитов. Практически весь ряд генераций шпинелей авачинских гарцбургитов содержит многочисленные округлые микровключения частично раскристаллизованного и закаланного с образованием силикатных стекол материала. Судя по их морфологии, характеру распространенности и составу мы имеем здесь дело с первичными расплавными включениями. Тренд изменения составов шпинелей, содержащих эти включения, и их зональность в общих чертах согласуются с общим трендом эволюции этого минерала в большинстве авачинских гарцбургитов. Следовательно, этот тренд характеризует изменение составов минерала в ходе его магматической кристаллизации. Возрастание глиноземистости и уменьшение хромистости здесь сопровождается некоторым увеличением степени окисленности железа (от 0,1 до 0,4-0,5) и возрастанием содержания MgO в минерале. Как правило, величина отношения Fe2O3/FeO обратно коррелируется с величиной содержания MgO в шпинелях. Возрастание этого отношения с ростом железистости минерала обычно обьясняется понижением температуры и возрастанием фугитивности кислорода fO2. В данном случае мы имеем дело либо с повышением температуры, либо с внедрением новой порции более магнезиального расплава. Сходные с только что рассмотренными тренды наблюдаются также для некоторых "доинверсионных" шпинелей в гарцбургитах Шивелуча и Ключевского вулкана (рис.4 и 5). Этим доказывается и здесь возможная изначально магматическая природа некоторых наиболее ранних генераций этого минерала. Возвращаясь опять к рис.6 , можно заметить присутствие среди авачинских шпинелей небольшого числа генераций с обратной по отношению к общему тренду зональностью по глинозему. Анализ поведения хрома при этом показывает (рис.7 ), что зональность эта бывает двух типов. В одном случае уменьшение глиноземистости сопровождается возрастанием хромистости минерала. Отношение Fe2O3/FeO при этом немного уменьшается от 0,48 до 0,36, и состав шпинели стремится приблизиться к наиболее хромистым и наименее глиноземистым генерациям этого минерала в интенсивно перекристаллизованных ксенолитах с роговиковой текстурой (табл.3 , N6). Степень окисленности железа здесь также сравнительно невысокая 0,40-0,47. Это относительно "сухой" путь вторичной перекристаллизации рассматриваемого минерала. Второй тип зональности характеризуется тем, что уменьшение глиноземистости шпинели сопровождается падением содержания хрома и значительным возрастанием степени окисленности железа от 0,39 до 0,95. Это относительно "мокрый" путь вторичной перекристаллизации минерала. Только в этом случае составы шпинелей ксенолитов приближаются к составам подобных минералов альпинотипных гипербазитов. Последние, правда, при этом имеют степень окисленности железа не более 0,2. Второй тип зональности авачинских шпинелей, с тем же уровнем нарастания степени окисленности железа, характерен для всех постинверсионных шпинелей, широко представленных среди высокомагнезиальных ксенолитов на вулкане Шивелуч, встречающихся на Харчинском и Ключевском вулканах. Такой тип зональности обычно наблюдается в шпинелях при падении температуры и увеличении фугитивности кислорода. Эта зональность может быть первичной, образовавшейся при росте шпинели из расплава, либо быть связанной с процессами перекристаллизации этого минерала при меняющейся физико-химической обстановке. Несколько слов следует сказать в отношении акцессорных шпинелей, которые были встречены в одной из пироксенитовых жил, секущих авачинский гарцбургит (табл.3 , N5).
Рис.7
По сравнению с "магматическими" шпинелями, содержащими расплавные включения, шпинели из жилы несколько обеднены Al2O3 и характеризуются повышенной степенью окисленности железа (0,4-0,5), так же, как и шпинели гарцбургитов с роговиковой структурой (табл.3 , N 6). Таким образом, жильные шпинели весьма схожи с теми генерациями рассматриваемого минерала, которые испытали "мокрый" путь вторичной перекристаллизации.
Клинопироксены. Являются также сквозными минералами почти во всех типах включений. Содержание его в зависимости от типа породы колеблется от единичных зерен до 99-100%. В наиболее распространенных среди магнезиальных разностей ксенолитов - гарцбур