Катастрофическая деформация и последующая эволюция высокотемпературной геотермальной системы, как результат фреато-магматического извержения в Карымском кальдерном озере
Е.А. Вакин, Г.Ф. Пилипенко, ИВГиГ ДВО РАН
В терминальной части Карымского вулкано-магматического центра, в расположенных рядом кальдерах Карымской и Академии Наук, под воздействием близповерхностных магматических очагов сформировалась и длительное время функционирует высокотемпературная гидротермальная система, проявившаяся на поверхности в виде мощных термальных источников. Землетрясение и фреатическое извержение на дне кальдерного озера в 1996 г. привели к резким изменениям гидрохимического и теплового режима гидротермальной системы и озера. Активизировались существовавшие ранее источники и появились новые мощные выходы гидротерм. Массированная инъекция магматических и гидротермальных флюидов превратила озеро в бассейн кислой минеральной воды объемом ~500 млн. м3 - природный химический реактор, в котором перерабатываются продукты извержения, донные осадки и , материал, смытый с берегов.
В статье обсуждается генезис и эволюция состава термоминеральных вод и газов кальдер Академии Наук и Карымская, количественно оценивается их относительная роль в выносе и перераспределении тепла и растворенных веществ. Прослеживается динамика гидрохимических процессов, инициированных извержением. Сложившаяся обстановка сравнивается с существовавшей до извержения.
Введение
Современные гидротермы, всегда были объектом исследований, как агент выноса и перераспределения глубинногоых тепла и вещества, но механизм их связи с процессами, происходящими в магматических очагах, остается неопределенным. Благодаря синхронным извержениям в центре Карымской купольной структуры в 1996 г.оду, впервые в вулканологической практике появилась возможность непосредственно наблюдать возникновение высокотемпературных и высокодебитных термоминеральных источников, как следствие конкретных сейсмических и магматогенных событий, и проследить их дальнейшую химическую и тепловую эволюцию.
Карымская купольная структура (Карымский вулканический центр, в дальнейшем - КВЦ) - одно из звеньев в средней части цепи вулкано-магматических центров, образующих Восточный вулканический пояс Камчатки. Она зародилась в узле пересечения систем транскоровых разломов и развивается в течение 2 млн. лет с тенденцией центростремительного сокращения площадей проявления вулканической активности. Это пологий тектонический купол размером 40 х 50 км, свод которого осложнеен разновозрастными кальдерными депрессиями и образованными в них стратовулканами. В терминальной, самой молодой, части Карымской структуры расположены две сближенные кальдеры: Академии Наук, заполненная озером, и Карымская, с одноименным действующим вулканом в центре. В этих кальдерах под воздействием близповерхностных магматических очагов сформировалась высокотемпературная геотермальная система, проявившаяся на поверхности в виде термальных источников: кипящих - Академии Наук и горячих углекислых - Карымских.
В начале января 199б г. на дне озера в кальдере Академии Наук произошло мощное фреатомагматическое извержение. Одновременно в соседней кальдере началось обычное для вулкана Карымского эффузивно-эксплозивное извержение. Спусковым механизмом извержений послужило сильное землетрясение (магнитуда 6,9) с эпицентром всего в 15 км южнее озера. Гидрологический, гидрохимический и тепловой режим озера претерпел катастрофические изменения. На его берегах активизировались существовавшие ранее термальные источники и появились новые мощные выходы горячих вод. Значительно изменились и условия разгрузки Карымских источников. Подобных явлений в вулканологической хронике Камчатки не отмечено.
В данной статье предпринята попытка описать и количественно оценить наблюдаемые после извержения тепловые и гидрогеохимические феномены, соотнести их с конкретными проявлениями сейсмической и вулканической активности и сопоставить с гидротермальными процессами, протекавшими здесь ранее.
История исследования
Несмотря смотря на удаленность от населенных пунктов и относительную недоступность, КВЦ в геологическом, геофизическом и вулканологическом отношении изучен значительно лучше других территорий Камчатки. Начало исследованиям было положено экспедицией В.И. Влодавца в 1938 г., давшей первые сведения о геологии, вулканизме и термопроявлениях района. Геологии и вулканизму КВЦ посвящены фундаментальные труды Б.В. Иванова и большой группы геологов под руководством Ю.П. Масуренкова. Ценнейший вклад в понимание глубинного строения КВЦ внесли многолетние сейсмологические и геодезические исследования (П.И. Токарев, М.А. Магуськин и др.) .
Термальные источники в кальдерах Карымская и Академии Наук открыты в 1938 г.оду экспедицией В.И. Влодавца [5], но в дальнейшем исследования гидротерм предпринимались редко и были скорее попутными,, чем целенаправленными [10]. Лишьь в 1984 г. Г.Ф. Пилипенко провела специальные исследования термальных вод кальдеры Карымская и термопроявлений в кальдере Академии Наук, предложила концептуальную модель Карымско-Академической высокотемпературной гидротермальной системы, определила еее энергетическую мощность [17]. Термальные источники в кальдере Академии Наук описаны также при гидрогеологической съеемке масштаба 1:200000, выполненной в 1989 г. Камчатским территориальным геологическим управлением.
К моменту сейсмических и вулканических событий 1996 г. был накоплен большой объеем знаний по геологическому строению, истории развития, вулканизму, магматизму, гидротермальной активности и сейсмике КВЦ. Исследования процессов извержения и землетрясения и их последствий проводились Институтом вулканологии. Результаты исследований опубликованы в серии статей в журнале "Вулканология и сейсмология" и других изданиях.
В 1996, 97, 99 и 2000 гг.одах авторы изучали гидрогеологические последствия извержений. В 1996 г.оду было сделано детальное описание и составлены крупномасштабные схемы выходов гидротерм, как существовавших ранее, так и появившихся вновь. В последующие годы прослеживались изменения, происходящие на участках их разгрузки гидротерм. Каждый раз обследовались все термопроявления района, измерялись температуры и дебиты источников и водотоков, проводилось повторное гидро - и газохимическое опробование. По этим данным определенаы гидрогеохимическая специфика новых и старых групп гидротерм и их относительная роль в выносе тепла и вещества и формировании аномального гидрохимического стока.
Химический анализ водных проб выполнен в лаборатории Института вулканологии, хроматографический анализ газа - в Научно-исследовательском геотехнологическом центре и в Институте вулканической геологии и геохимии ДВО РАН.
Геологическое строение и история формирования КВЦ.
В геолого-структурном плане КВЦ представляет собой тектонический купол, осложненный в сводовой части кальдерными депрессиями и выросшими в них стратовулканами. Морфологически это дугообразный горный массив с отметками 500 --600 м., протянувшийся в субмеридиональном направлении на 50 км при ширине до 30 км. Над его поверхностью, рассеченной оврагами, долинами рек и уступами кальдер, возвышаются конусы действующих и останцы разрушенных вулканов. Кроме крупных, высотой до 1600 м, стратовулканов здесь множество других вулканических построек: шлаковых и лавовых конусов, и воронок взрывов - мааров, не редко заполненных озеерами.
Геологический разрез купола полностью состоит из вулканогенных (эффузивных и пирокластических) и вулканогенно-осадочных (кальдерно-озеерных) верхнеплиоцен-плейстоценовых отложений от кислого липаритового до основного базальтового состава. Это разнообразные туфы, игнимбриты, агломераты, пемзы, андезитовые и базальтовые лавы, липаритовые и дацитовые экструзивные тела. Характерной особенностью разреза является большое количество кальдерно-озерных отложений: алевролиты, песчаники, гравелиты, пески. Основанием для этих образований служат отложения континентальных и прибрежно-морских и вулканогенных (в верхней части) фаций нижнеплиоценового возраста, мощностью до 1 км (щапинская и сторожевская свиты). Они несогласно залегают на пенепленизированном складчатом основании, сложенном кремнисто-вулканогенными, кремнисто-карбонатными, и вулканогенно-терригенными отложениями мел-палеогенового, и олигоцен-миоценового возраста [19]. Метаморфизованный верхнемеловой фундамент здесь приподнят и залегает на глубине ~3,5 км [18].
КВЦ , как звено в цепи подобных структур, составляющих Восточный вулканический пояс Камчатки, возник на пересечении регионального глубинного разлома с более древней системой крупных дислокаций трансформного направления. Земная кора здесь разорвана на всю глубину и на длительное время открыт путь для движения глубинного тепла и вещества к поверхности. Возникла многоэтажная система внутрикоровых магматических очагов. Крупный "промежуточный" магматический очаг диаметром ~30 км с центром давления на глубине ~ 18 км устанавливается вблизи нижней границы коры [25]. Из него (или сквозь него) магма поступает в близповерхностные очаги меньших размеров. Вторжение магм и образование внутрикоровых магматических очагов привело к общему куполовидному подъеему поверхности, а игнимбритовые извержения - к частичному опустошению периферических очагов и образованию кальдерных депрессий в своде купола. Становление купола сопровождается развитием сложной системы линейных, дуговых и кольцевых разломов образовавших структуру "битой тарелки". КВЦ начал формироваться 2 млн. лет назад. В современном виде купольная структура образована, в основном, за счеет накопления вулканогенного материала и, в меньшей степени, за счеет общего подъеема поверхности.
Вулканическая активность
Карымского центра имеет преорывный "ритмичный" характер: периоды интенсивных извержений сменяются периодами покоя. Установлено 4 таких ритма, каждый из которых начинался катастрофическими извержениями с выбросом сотен кубических километров кислого, обычно дацитового, пирокластического материала и образованием игнимбритовых покровов. За этим следует обрушение кровли частично опустошавшихся магматических очагов и образование кальдер. Кальдеры заполняются вулканогенными пирокластическими, флювиальными и озеерными отложениями, внутри них начинается рост стратовулканов андезито-базальтового состава. Далее вулканическая активность снижается. Извержения следующего ритма локализуются внутри построек предыдущего, происходит телескопическое вложение молодых структур в более древние [6].
На позднем этапе развития КВЦ, в конце верхнего плейстоцена -- голоцене, в его юго-западной части образовались две сближенные кальдеры: Академии Наук и Карымская. Расстояние между кальдерами всего 3 км, причеем чеетких структурных границ между ними нет.
Кальдера Академии наук возникла на месте вулканов Однобокий и Академии Наук. По мнению Б.В. Иванова [9] и О.Б. Селянгина [19], они представляли собой единое вулканическое сооружение. Формирование кальдеры началось в начале верхнего плейстоцена 110-8014С тыс. лет назад (л.н.) после катастрофических извержений пирокластических потоков. Кальдерообразующие извержения продолжались десятки тысяч лет. В процессе извержений было выброшено от 8 до 10 км3 туфов и игнимбритов от андезитового до липаритового состава [6]. От вулканов Однобокогийо и Академии Наук сохранились только фрагменты их южных секторов. Кальдерная депрессия была заполнена озером, но вулканическая деятельность в еее пределах продолжалась. В позднем плейстоцене в южной части озера образовался крупный маар диаметром более 1 км. Уже в голоцене, 6500 14С л.ет н.азад, у северного берега озера произошло извержение с образованием маара диаметром 0,8 -- 0,9 км [2]. По другим данным возраст этого ("туфового кольца") ~4800 14C лет [1]. Одновременно сильное землетрясение, вызвало смещение крупного блока западного борта ущелья реки Карымская, перекрывшего сток из озера. В результате, уровень воды, судя по сохранившейся озеерной террасе, поднялся на 80 - 85 м выше современного. Примечательно, что во время этого извержения выбрасывалась ювенильная тефра базальтового состава, аналогичная тефре извержения 1996 г., которое произошло в непосредственной близости [2].
Кальдера Карымская начала формироваться значительно позже - в раннем голоцене. Это небольшая, всего 5 х 6,5 км по верхней кромке, кальдера обрушения с хорошо выраженным уступом, образованная в теле вулкана пра-Карымский. На севере она срезает склоны вулкана Двор, а на юге не имеет чеетких границ. В кальдере расположен действующий вулкан Карымский, лавы которого перекрыли всее дно кальдеры за исключением небольшого участка в юго-западной части - Термальной котловины. Кальдерообразующие извержения (типа Кракатау) начались на вулкане пра-Карымский около 7700 л.ет н.азад и продолжались ~200 лет [6]. За это время было выброшено от 4 до 6 км3 пирокластики от липаритового до липарит-дацитового состава (пемзовые туфы пирокластических потоков, бомбы, лапилли, отложения палящих туч), что привело к обрушению центральной части вулканической постройки [9]. Далее наступил длительный, более 1000 лет, период ослабления вулканической активности и накопления в кальдере озеерных и флювиальных отложений [6]. Судя по гидротермально изменеенным породам (каолинитам), наблюдающимся в эрозионных врезах юго-западного борта кальдеры, в раннем голоцене здесь открыто разгружались воды, подобные современным парогидротермам кальдеры Узон [16].
Около 5300 14С л.ет н.азад в кальдере начался рост стратовулкана Карымский. Состав продуктов его извержений на самых начальных стадиях формирования отвечал андезито-базальтам, на последующих - андезито-дацитам. Высота конуса вулкана над дном кальдеры ~700 м, объеем ~0,8 км3. 500014С лет назад в южной части кальдеры произошло одноактное извержение: образовался лавовый конус "Лагерный" с небольшим потоком андезито-базальтов.
На последних этапах формирования вулканического центра особую роль играет мощная субмеридиональная зона дизъюнктивных нарушений, рассекающая западную часть КВЦ [9]. Зона контролирует линейное расположение вулканов и кальдер - центров наиболее мощных проявлений кислого вулканизма в верхнем плейстоцене -- голоцене. Разломы имеют здесь глубокое заложение и являются магмовыводящими. В границах зоны последовательно во времени возникают близповерхностные "кальдерообразующие" магматические очаги. Субмеридиональная тектоническая зона продолжает активно развиваться, в особенности в средней части, на участке кальдер Карымская - Академии Наук, где фиксируется максимальная деформация (растяжение) поверхности [13]. "В осевой еее (зоны) части закладывается грабен протяженностью 15 км. Наиболее чеетко он проявлен на участке сближенных кальдер Академии наук и Карымскойая.. Современная гидротермальная деятельность сосредоточена исключительно в пределах этого участка грабена." [Г.Ф. Пилипенко, 1989, стр. 88].
Гидротермальнаыея система.
Кальдеры Академии Наук и Карымская выделяются среди остальных структур КВЦ мощной современной гидротермальной активностью. В кальдере Академии Наук разгружаются высокотемпературные гидротермы и их менее горячие дериваты, а в кальдере Карымская расположен самый мощный на Камчатке очаг разгрузки углекислых терм. Считается, что эти источники являются поверхностными проявлениями крупной геотермальной системы, заключенной в кальдерных депрессиях].
Молодые кальдерные депрессии благоприятны для формирования гидротермальных систем. С гидрогеологической точки зрения это небольшие наложенные артезианские бассейны с трещинно-пластовыми или трещинными водными резервуарами в погрузившихся блоках докальдерных вулканов и породах взрывного генезиса, заполняющих депрессии. Их инфильтрационное водное питание обеспечивается благодаря обильным атмосферным осадкам (на отметках ~600 м не менее 2000 мм/год), и высокой проницаемости кольцевых разломных зон и вулканитов, слагающих борта и склоны кальдер. Водоупорами, изолирующими артезианские резервуары от поверхностных и грунтовых вод, служат кратерно-озеерные отложения и гидротермально-измененные породы. Водопроницаемость вулканогенных пород резко возрастает в зонах тектонической трещиноватости, которые играют роль основных, часто единственных, каналов миграции гидротерм. Общие представления о природе гидротермальной активности в кальдерах Карымская и Академии Наук были уточнены по данным, полученным путеем исследования естественных термопроявлений. В кальдере Академии Наук до извержения 1996 г. основной участок разгрузки гидротерм находился на южном берегу озера. Здесь, на участке длиной более 1,5 км, наблюдались выходы термальных вод в виде мощных кипящих источников, источников с меньшими температурами, линейного высачивания в каменистом пляже, подводных выходов в прибрежной полосе. В зимнее время вдоль берега наблюдались длинные полыньи шириной до 50 м. Участок максимального прогрева с кипящими источниками и парящими площадками (собственно источники Академии Наук) протягивался на ~250 м вдоль берега и на ~80 м вверх по склону. Самые мощные выходы термальных вод расположены на высоте 10 -- 12 м над уровнем озера, в 40-50 м от берега. Там на площади порядка 2000 м2 насчитывалось до 50 кипящих грифонов и источников с температурой 80-98o С (здесь и далее температура в градусах Цельсия). Два из них работали в пульсирующем режиме и даже получили имена: гейзеры "Сердитый" и "Карлик" [ 10] . Вода источников собиралась в водоеемах -"ваннах", образующих два каскада на ручьях, стекающих в озеро. Ванны большие (28 х 7 м и 15 х 7 м), глубокие (до 1,4 м) и необыкновенно красивые, заполненные прозрачнейшей водой, с розовыми гейзеритовыми стенками и дном. В западной ванне из воронки в дне выбивал мощный пульсирующий грифон с температурой 98o , бросающий воду на высоту более метра. У верхней границы термальной площадки наблюдались выходы пара в виде участков парящего грунта, кипящих бессточных грязевых и водных (конденсатных) котлов. [10,17].
Гидрогеологи А.Л. Булыгин и О.В. Куницын во время съеемочных работ 1989 г. описали термальные источники с температурой 41-80o в 500 м восточнее ванн: "высачивание в травертинах" (?) на урезе воды озера (суммарный дебит 1,5 л/с) и "слабые выходы пара" на склоне на высоте ~40 м. над ними. Далее, в 1200 метрах, они обнаружили грязевой котеел и высачивание из трещин с температурой до 87o и дебитом 0,3 л/с.
Опубликованные разными авторами анализы воды и свободного газа источников Академии Наук показывают, что по комплексу признаков они близки к водам, типичным для высокотемпературных гидротермальных систем [5, 10, 11]. Это углекисло-азотные хлоридно-натриевые воды с относительно низкой (~1,5 г/л) общей минерализацией . Такой состав имели бы гидротермы Долины гейзеров, вдвое разбавленные пресными водами [20]. Все без исключения анализы свободного газа источников Академии Наук обнаруживают высокое, до 24% объеема, содержание кислорода, что является признаком подмешивания насыщенных кислородом воздуха холодных поверхностных вод . По N2/O2 отношению в равновесной с воздухом газовой смеси, раствореенной в холодной воде (1,79), можно вычислить "воздушную" составляющую спонтанного газа. Выделяющийся при выходе гидротерм Академии Наук на поверхность газ, ~ на 50% состоит из воздуха, а его "глубинная" часть имеет типичный для высокотемпературных гидротерм состав: N 2 - 59, CO2 - 36, CH4 - 3,4, Ar - 1,0 % объеема. В свободном газе отмечена повышенная концентрация Rn ~960 Бк/л [21], что также обычно для двухфазных (вода и пар) очагов разгрузки гидротерм. Источники Академии Наук выделяются очень высоким содержанием кремниевой кислоты (>0.,3 г/л), это также свойство высокотемпературных гидротерм. Опаловые отложения кипящих источников - гейзериты распространяются далеко за пределы участков современной разгрузки источников Академии Наук. Под гейзеритами залегают грубообломочные туфобрекчии, сцементированные кремнезеемом и гидроокислами железа. Такие "гидрохимические" брекчии встречаются в береговых обрывах по всему амфитеатру вулкана Академии Наук. Это прямое свидетельство очень продолжительной и существенно более мощной, чем современная, гидротермальной активности в южной части кальдеры. Расход источников Академии Наук в 1984 г., рассчитанный гидрохимическим методом, ~50 л/с, вынос тепла - ~20 МВт. [17]. Глубинная, "базовая" температура термального резервуара по показаниям гидрохимических геотермометров - 240-285о. Восходящие гидротермы здесь примерно на ~50% разбавлены инфильтрационными водами, а вскипание их смеси идеет на поверхности или на глубине всего несколько метров.
На северном берегу озера, в 1 км восточнее истока реки Карымская, на протяжении 200 м были отмечены признаки разгрузки термальных вод: полынья шириной до 50 м, свободная от снега сухая полоса песчаного пляжа шириной 3-7 м, струйки газовых пузырьков, идущие из песчаного дна. У истоков реки также наблюдалась обширная полынья в форме полукруга с радиусом около 100 м. [17]. Эти термоаномалии располагаюется в непосредственной близости от места извержения, происходившего здесь 6500 - 4700 л.ет н.азад [1, 2].
В кальдере Крымскойая в конце плейстоцена -- нначале голоцена открыто разгружались парогидротермы, и обстановка здесь напоминала современную кальдеру Узон с горячими озеерами, кипящими источниками и сольфатарными полями. Кальдерные отложения длительное время подвергались гидротермальной переработке. По мере роста в кальдере конуса вулкана условия разгрузки и инфильтрационного питания подземных термальных вод менялись. Выходы гидротерм были перекрыты лавами и "задавлены" холодными водами, накапливающимися в конусе вулкана.
Современные термопроявления сосредоточились в Термальной котловине, в юго-восточной части кальдеры, на единственном не перекрытом молодыми лавами участке ее дна площадью 2 км2. Сюда же направлен сток термальных вод, разгружающихся под лавами современного вулкана, а также грунтовый и поверхностный стоки метеорных вод кальдеры с площади ~ 40 км2, поэтому котловина сильно обводнена и заболочена. Через котловину протекает река Карымская, дренирующая сток термальных и холодных вод. Это определило специфику условий разгрузки Карымских терм, большая их часть разгружается в тееплых болотах. Преобладают два основных типа источников.
1. Восходящие газирующие источники с температурой от 25 до 42o С и дебитами 0,15 - 0,51 л/с. На выходе их воды отлагают большое количество гидроокислов железа, образуя лимонитовые конусы с газирующими грифонами на вершинах, глубокие водяные воронки и озерки с плоским дном. Суммарный видимый дебит таких источников ~75 л/с.
2. Нисходящие источники с температурой 10-20oС, вытекающие из-под лав Карымского вулкана, в виде мощных родников и обильных ручьев. Такие выходы часто сопровождаются истечением углекислого газа (мофетами). Суммарный дебит этих источников очень велик: ~ 500 л/с.
По химическому составу воды восходящих источников углекислые SO4-HCO3-Cl / Mg-Na-Ca, с минерализацией до 2,8 г/л и рН 6-7. В повышенных концентрациях в них содержатся раствореенный CO2 (~1г/л), SiO2, B, F, Li. В составе спонтанных газов доминирует CO2 ,~90 %. Это ярко выраженные углекислые термы. Высокие концентрации Mg2+ выделяют эти воды в особый, редко встречающийся в природе и очень ценный в бальнеологическом отношении подтип магниевых углекислых вод. Условно они названы "теплыми нарзанами". Воды нисходящих источников относятся к тому же гидрохимическому типу, но они в разной степени разбавлены инфильтрационными водами и частично дегазированы. В их газовой фазе повышается содержание N2 и О2, т. е. появляется воздушная составляющая.
Общая разгрузка термоминеральных вод в кальдере Карымская, с учеетом скрытого стока, составляла 770 л/с, а вынос тепла ~136 МВт . Удельный вынос тепла (плотность конвективного теплопотока), в Термальной котловине 73 Вт/м2, что на три порядка интенсивнее среднего для вулканических областей Камчатки. Такие высокие энергетические параметры типичны для высокотемпературных гидротермальных систем, но не характерны для месторождений углекислых вод.
Г.Ф. Пилипенко была предложена следующая модель формирования Карымских термоминеральных вод, . Гидротермы в кальдере Карымская не выходят на поверхность в виде гейзеров или кипящих источников, и не вскипают на глубине, формируя паро-конденсатную зону, как это происходит на многих геотермальных месторождениях. Восходящий поток перегретых вод из основного геотермального резервуара с температурой 200 -- 250o на глубине 150 -- 400 м (при давлении 15 - 40 атмосфер), минуя процесс вскипания, смешивается с инфильтрационными водами. Возникает промежуточный резервуар - реактор, в котором насыщенные СО2 и Н2S глубинные гидротермы взаимодействуют с обогащенными О2 инфильтрационными водами. Образовавшаяся агрессивная смесь реагирует с водовмещающими породами, претерпевшими гидротермальную переработку на более ранних, высокотемпературных, этапах гидротермальной активности. Тогда в метасоматитах, особенно в приповерхностной зоне аргиллизации, происходило накопление Mg, Fe, Ca, S. Преобразование их в новые минералы идеет при температутурах 140-70o. Магнийсодержащие минералы (хлориты, монтморилониты) образуют разного рода скопления в ассоциации с другими родственными минералами. При температурах ниже 70o в зоне аргиллизации начинается интенсивное выщелачивания минеральных новообразований. В растворы переходят сульфаты и гидрокарбонаты кальция и магния, формируются воды "нарзанного" типа [17].
В составе Карымских нарзанов отчеетливо различаются две компоненты: "глубинная", аналогичная высокотемпературной составляющей терм Академии Наук, и "нарзанная", близкая по составу низкотемпературным углекислым водам, формирующимся в толщах метасоматитов. Их макрохимический состав соответственно: M 2,2 г/л; Cl75 SO415 / Na95 % мг-экв; SiO2>300 мг/л и M 2,9 г/л; HCO360 SO440 / Mg60 Ca25 Na15 % мг-экв; SiO29 баллов. Произошла тектоническая активизация меридиональной разломной зоны. В верховьях р. Карымская на протяжении 2,5 - 3 км заложились новые трещины с раскрытием на поверхности до 2,5 м и амплитудой вертикального смещения 0,5 - 1,5 м [12]. На полуострове Новогоднемий на новых трещинах расположились воронки малых фреатических взрывов и выходы высокотемпературных гидротерм. В Термальной котловине вдоль новых трещин появились мощные газирующие источники и протяжеенные линейные выходы термоминеральных вод (см. рис. 1). Главные удары стихии в январе 1996 г. приняло на себя озеро Карымское.
Карымское озеро после извержения.
Извержение и инициированные им экзогенные процессы привели к катастрофическим изменениям гидрологического, гидрохимического и температурного режима озера. Чистейший абсолютно пресный водоеем диаметром 3,5 км и глубиной до 70 м в считанные часы превратился в резервуар кислой (рН9), высококремнистые (H4SiO4>400 мг/л) источников Академии Наук (см. табл. 3); 2) - азотно-углекислые, сульфатно-хлоридные, натриевые слабо щелочные и нейтральные, высококремнистые (H4SiO4>300 мг/л) новых источников (см. табл. 4 )); 3) - углекислые, хлоридно-гидрокарбонатно-сульфатные, натриево-магниевые, высококремнистые (H4SiO4>200 мг/л), слабокислые (рН 6 - 7) Карымских источников .
Рис. 5
Воды Карымского озера также превратились в минеральные, типа "фумарольных терм": кислые (рН700 л/с) делает месторождение термоминеральных вод кальдеры Карымская уникальным. Это самое большое на Камчатке и в России месторождение углекислых термоминеральных вод.
Механизм единовременной инъекции в озеро почти 70 тысяч тонн серы заслуживает специального обсуждения. Самым простым объяснением этого явления может быть привнос в виде SO2 эруптивными газами. В большинстве опубликованных анализов высокотемпературных вулканических и теоретически рассчитанных "магматических" газов весовая концентрация соединений серы (S+SO2+SO3+H2S) составляет n . 10-4 и, очень редко, 10-3. Более 0,95 массы газов приходится на Н2О, остальное - СО2, Н2, галогеноводороды и т. п. [15, 22]. Если эруптивные газы извержения 1996 г. имели аналогичный состав и также более чем на 95% состояли из Н2О, то вместе с 7.107 кг серы в озеро должно было поступить (сконденсироваться) n.1010 -1011 кг водяного пара(107 -108м3 конденсата), что сопоставимо с объемом озера (4,6.108м3). Тепловая энергия этого количества пара, принимая минимально возмможную энтальпию ~2,5.106 Дж/кг, будет составлять n.1016 -1017Дж. С.М. Фазлуллин оценил поглощенную озером энергию в 1016 Дж [24]. Казалось бы, что эта величина близка к вычисленной нами по геохимическим данным, но, в отличие от нашей, она "по умолчанию" включает тепло, отданное твердыми продуктами извержения. При сопоставлении оценок это тепло надо приплюсовать и к нашим цифрам и тогда разница далеко выходит за пределы одного порядка. Не решенной остаеется и проблема водной составляющей (конденсата) гипотетического эруптивного газа: из его объеема n.107 - 108 м3 только n .106 м3 можно было бы "списать" на эруптивные облака (1,3 .106 м3 [14]) и катастрофический паводок (1,1.104 м3 [24]). Следовательно, либо концентрация серы в газе была в десятки раз больше принятой нами, либо привнос серы одновременно осуществлялся и другим агентом.
Одновременно с 70 тыс. тонн серы в 1996 году в озеро поступило 20,4 тыс. тонн Cl-. Это в ~30 раз больше, чем в предыдущие годы, и в ~20, чем в последующие (см. табл. 2, рис. 2 ). Концентрации хлора в магматических газах обычно на 1 - 2 порядка ниже концентрации серы, поэтому его вынос в газовой фазе в больших количествах мало вероятен. Для транспортировки такого количества хлорида в растворе потребовалось бы (2- 4)107м3 воды (0,1 - 0,2 объемаобъема озера), аналогичной по составу парогидротермам Академии Наук.
Приходится предполагать, что при извержении в озере в транспортировке серы и хлора участвовала какая то высококонцентрированная субстанция, возможно, высоко минерализованный флюид глубинных околомагматических зон геотермальной системы.
Тепловая мощность является самым объективным показателем состояния гидротермальной системы, а тепло остаеется единственны бесспорно глубинным компонентом гидротерм. В таблице 8 показаны итоговые величины выноса тепла естественными термопроявлениями Карымско-Академической геотермальной системы. Цифры округлены до мегаватт, поскольку точность измерений не велика. Тем не менее, масштабы и тенденции изменений для всех очагов разгрузки проявляются весьма отчеетливо.
Основной вынос тепла (~85%) раньше происходил в кальдере Карымская. В этой кальдере гидротермальная система отреагировала на извержение и землетрясение несущественным, на 20%, увеличением выноса тепла с последующим сокращением почти до начального уровня в 2000 г. И это несмотря на продолжающееся извержение вулкана Карымскогоий, от кратера которого до источников меньше 3 км. При этом кардинально перераспределились участки разгрузки: большая часть тепла выносится теперь водами через систему трещин, вскрывшихся у восточной границы термального поля. Гидротермические и гидрохимические показатели позволяют уверенно утверждать, что на данном этапе развития магмовыводящая система вулкана не оказывает заметного влияния на состояние гидротермальной системы в кальдере Карымская и, следовательно, не является для неее поставщиком тепла и вещества.
В Кальдере Академии Наук в 1996 г. действующие источники резким скачком вдвое нарастили и продолжают увеличивать вынос тепла. Одновременно у северного берега озера и в истоках реки Карымская феноменальные сейсмо-вулканические явления привели к возникновению новых мощных очагов разгрузки парогидротерм. В результате общая тепловая мощность гидротерм в кальдере Академии Наук увеличилась в 5 раз, с 21 до 113 МВт, и продолжает расти. За 4 года источники Академии Наук усилились на 7 МВт, а новые источники - на 28 МВт. Повсюду, кроме кратера Токарева наблюдается рост температуры выходов и количества кипящих источников. Карымско-Академическую геотермальную систему можно было и раньше относить к"крупным" (157 МВт)1. После событий 1996 г. еее общая тепловая мощность стабилизировалась на новом высоком уровне - 290 МВт. Напомним естественную тепловую мощность крупнейших гидротермальных систем Камчатки: Узонская - 270, Кошелевская - 314, Мутновская - 130 МВт. [3, 77].
Выводы
1. В кальдерах Академии Наук и Карымскаяий в течениие тысяч лет функционирует мощная высокотемпературная геотермальная система. Эксплозивное извержение произошло при внедрении магмы в еее геотермальный резервуар. Огромная масса газо-водного флюида и его тепловая энергия, аккумулированная в геотермальном очаге на относительно небольшой глубине, неизбежно повлияли на подготовку и ход извержения. Извержение 1996 года правильнее относить к типу гидротермально-магматических, а не фреатомагматических.
2. Судя по соотношению количеств серы, хлора и тепловой энергии, поступивших в Карымское озеро во время подводного извержения, в эксплозивном процессе участвовал высокоминерализованный теплоноситель с энтальпией ниже, чем у водяного пара.
3. Извержение вулкана Карымскогийо не повлияло на состав и тепловую мощность источников у его подножия. Следовательно, промежуточный магматический очаг и магмовыводящая система вулкана не связаны непосредственно с гидротермальной системой и не являются для неее поставщиками тепла и вещества.
4. Феноменальным гидрогеологическим результатом сейсмо-вулканических событий 1996 г. стало появление нового мощного очага разгрузки высокотемпературных гидротерм в истоках реки Карымская.
5. В результате событий 1996 года суммарная тепловая мощность геотермальной системы почти удвоилась, при этом вынос тепла в кальдере Карымскойая остался на прежнем уровне, а в кальдере Академии Наук возрос в 7 раз, в основном, за счеет новых источников на северном берегу озера и в истоках реки Карымская . По естественному выносу тепла геотермальная система кальдер Академии наук и Карымская относится к категории крупных и стоит в одном ряду с самыми мощными месторождениями парогидротерм Камчатки.
6. Во все годы, включая экстремальный 1996, вынос вещества (макрокомпонентов минерализации вод) гидротермами кальдеры Карымскойая был в 2 - 4 раза выше, чем в кальдере Академии Наук.
7. В кальдере Карымская заключено крупнейшее на Камчатке и в России месторождение ценных и редких по составу углекислых термоминеральных вод, заслуживающее специального бальнеологического исследования.
Авторы глубоко признательны дирекции Природных парков Камчатки и всем остальным, кто способствовал, или хотя бы не мешал, проведению исследований на КВЦ.
Список литературы
Вакин Е.А., Кирсанов И.Т., Кирсанова Т.П. Термальные поля и горячие источники Мутновского вулканического массива // Гидротермальные системы и термальные поля Камчатки. Владивосток: ДВНЦ АН СССР. 1976. C. 85-114.Белоусов А.Б. Комментарий к статье О.А. Брайцевой "Фреатомагматическое извержение в озере Карымское (Восточная Камчатка) приблизительно 6500 14С -лет назад и импульсы подачи базальтового вещества в районе Карымского вулкана в голоцене" // Вулканология и сейсмология. 1998. N2. C. 107-109.
Брайцева О.А. Фреатомагматическое извержение в озере Карымское (Восточная Камчатка) приблизительно 6500 14С- лет назад и импульсы подачи базальтового вещества в районе Карымского вулкана в голоцене // Вулканология и сейсмология. 1997. N5. C. 138 - 134.
Вакин Е.А., Пилипенко Г.Ф. Мутновский геотермальный район на Камчатке // Изучение и использование геотермальных ресурсов в вулканических областях. М.: Наука, 1979. 267 С. 36 - -46.
Вакин Е.А., Пилипенко Г.Ф., Гидротермы Карымского озера после подводного извержения 1996г // Вулканология и сейсмология. 1998. N 2.Пономарев В.В. и др. Возникновение новой группы термальных источников на вулкане Ала