Площадь распространения многолетнемёрзлых пород составляетдо 25%всей сушиземного шара и более 65% площади Российской Федерации. Сплошное распространение многолетнемёрзлых пород наблюдается в Антарктиде и наприлегающихк ней островах, в Гренландии, а также на высокогорных участках в Южной Америкеи в Африке. На территории России многолетнемёрзлые породы распространены на побережье европейской части и занимают значительную территорию на Северо-Востоке страны. Австралия является единственным континентом, где не наблюдаетсяраспространения многолетнемёрзлых толщ.
Распространение мёрзлых толщ подчинено широтной и высотной зональности. По среднегодовым температурам, характеру распространенияи мощностина многлетнемёрзлых пород выделяются пять зон. Географическая границараспространения мёрзлых пород на территории России указана на карте (рис1).
Непрерывность мёрзлых толщ по простиранию наблюдается тольков самых северных районах. Но и там под крупными водоёмамии в местах усиленной циркуляции подземных вод можно встретить участки со сквозным протаиванием. Такие участки называются «таликами», при этом различают «сквозные талики» и «несквозные», или «ложные» талики. Количество и площадь таликов возрастают в направлении от северных областей распространения мёрзлых пород к их «южной границе», или, точнее, в направлении, перпендикулярномгеоизотермам в этой области.
Географическая южная граница распространения многолетнемёрзлых пород представляет собой линию, оконтуривающию с юга область распространения мёрзлых толщ, за исключением отдельных высокогорных участковмёрзлых пород в субтропических и тропических зонах. Кратковременное промерзание почвы связано с ночными заморозками; сезонное промерзание пород вызывается наличием среднесуточных отрицательных температур почвызимой в связи с сезонными колебаниями климата, а причиной существования многолетнемёрзлых пород является продолжительное существованиеотрицательных среднегодовых температур пород вследствие многолетних колебаний теплообмена на поверхности Земли, периодическисоздающих отрицательные температуры в верхнем слое литосферы.
По глубине мёрзлые породы могут распространяться неоднородно (рис.2).
Рис.2 Схема вертикального разреза мёрзлых толщ при движении с юга на север:
1-слой сезонного промерзания (протаивания); 2-современные сливающиеся; 3-современные несливающиеся толщи;4-древние сливающиеся и несливающиеся толщи.
В частности, кратковременномёрзлые и сезонномёрзлые толщи представляют собой обычно непрерывные по вертикали слои, верхняя поверхностькоторых совпадает с дневнойповерхностью, а нижняя поверхностьнаходится на некоторой небольшой(от сантиметров до единиц метров) глубине.
Залегание многолетнемёрзлых толщ более сложно. Их верхняя поверхность залегает на различных глубинах ниже дневной поверхностивследствие процессов сезонного или многолетнего протаивания. Многолетнемёрзлые толщи называются «сливающимися», еслиих верхняя поверхность совпадает с нижней поверхностью слоя протаивания; если же их верхняя поверхность находиться глубже подошвы слоясезонного протаиванияили промерзания ,они называются «несливающимися».Наблюдаются также залегания двух и более слоёв многолетнемёрзлых пород друг над другом, разделённых талыми прослоями их называют «многослойными или слоистыми».Такие глубоко залегающие несливающиеся древние мёрзлые толщи могут встречаться значительно южнее южной границы распространения современных или сравнительно молодых мёрзлых толщ.
Зона сплошной мерзлотыхарактеризуется мощностямимёрзлых толщ от 500и более до 300 м и самыми низкими температурами от-10?С и ниже. Островная мерзлота характеризуетсямалыми мощностями вечномёрзлых породот нескольких десятков метров до нескольких метрови температурами, близкими к 0?С.распределение температур многолетнемёрзлых грунов по глубине показано на рис.3.
Рис.3 Распределение температуры грунтов (?) в криолитозоне по глубине(h).
1-поверхность грунта;2-огибающие температуры; ?п- температура на поверхности;?0–температура на уровне нулевых годовых амплитуд(среднегодовая температура грунта); hот –глубина сезонного оттаивания; h0 –глубина уровня нулевых амплитуд.
По характеру промерзания многолетнемёрзлые породы разделяются на два типа: 1)сингенетически промёрзшие породы, т.е. накапливающиеся и промерзающие в геологическом смысле одновременно, и
2)эпигенетические промёрзшие породы, т.е. те, которые перешли в многолетнемёрзлое состояние послетого, как процесс их накопления завершилсяи они претерпели диагенетические изменения, превратясь из осадка в породу.
В криолитозоне наблюдается ряд геокриологических процессов.
Термокарст -представляет собой образование просадочных и провальных формрельефа вследствие вытаивания подземных льдов или оттаиваниямёрзлого грунта. Механизм процесса заключается в уплотненииоттаявших сильнольдистыхпородили пород, содержащих мономинеральные залежи льда. Причиной возникновениятермокарста является такое изменение теплообменана поверхностипочвы ,при котором глубина сезонного оттаивания начинает превышать глубину залегания подземного люда или сильнольдистого многолетнемёрзлого грунта ,либо происходитсмена знакасреднегодовой температурыи начинаетсяоттаивание мёрзлых толщ.При развитии термокарста по повторно-жильным льдам образуются положителные формы рельефа: байджерахи и бугристые полигоны.
Морозобойное растрескивание. Механизмпроцесса заключается в том, что при охлаждении в соот ветствии с распределением температур по глубине в мёрзлых породах возникают сжимающие и растягивающие напряжения, накопление которых приводит к разрыву пород и образованию трещин.
Морозное пучение-дисперсных породэто поднятие поверхности земли, обусловленное увеличением объёма замёрзшей влагии льдообразованием(вследствие миграции воды) при промерзании. В услових развития отложений, содержащих как мелкозём,так и крупнообломочные грунты, происходит выпучивание крупнообломочного материала и образованиена поверхностикаменных полей (курумов), или сортировка грунтов с образованием каменных полигонов или полос на склонах.
Для прогноза возможности возникновения геокриологических процессов, периода их протекания, а также для оценки мёрзлых грунтов, как оснований сооружений необходимо знание физических, механическихи тепло- массообменных характеристик, основные из которых рассматриваются в настоящей работе.
1-Зона редкоостровного и массивно-островного распространения ММП со среднегодовыми температурами(tср) от +3 до –1С и мощностью мёрзлой толщи(М) от 0 до 100 м;2-5 зона сплошного распространения ММП:2- tср от –1 до –3, М от 50 до 300 м; 3- tср от –5 до –9 Ю, М от 200 до 600 м; 5- tсрот ниже-9С, М от 400 до 900 м и более ;6- граница зон ММП;7 южная граница криолитозоны
Глава 1. Основные физическиехарактеристики мёрзлых грунтов.
1.1Вводные понятия.
Термин грунт вошёл в терминологию грунтоведческих наук в 18 веке. В современном определении(Сергеев, Голодовская и др.1973) грунт-это любые горные породы, почвы и техногенные образования, обладающие определёнными генетическими признаками и рассматриваемые как многокомпонентные динамичные системы, находящиеся под воздействием инженерной деятельности человека.
Порода – естественный минеральный агрегат определённого составаи строения, сформировавшийся в результате геологических процессов, в соответствии с которыми их подразделяют на осадочные, магматические и метаморфические.
Мёрзлыми грунтами, породами и почвами называют грунты, горные породы, почвы и дисперсные материалы, имеющие отрицательную или нулевую температуру, в которых хотя бы часть воды замёрзла, т.е. превратилась в лёд, цементируя минеральные частицы. Скальные грунты, имеющие отрицательную температуру и не содержащие в своём составе воды и льда, называются морозными. Крупнообломочные и песчаные грунты, имеющие отрицательную температуру, но не сцементированные льдом и не обладающие силами сцепления называются сыпучемёрзлыми («сухая мерзлота»).Грунты и породы, в которых, несмотря на отрицательную температуру лёд не кристаллизовался называются охлаждёнными породами и грунтами.
Классификациямёрзлых грунтов по гранулометрическому составу определяется как и для немёрзлых грунтов. Выделяют классификации по Охотину, Сергееву. Кроме того, мёрзлые грунты дополнительно классифицируют по ГОСТ 25100-95, также по: времени нахождения в мёрзлом состоянии(табл.1.1); по льдистости(табл.1.2);по засолённости(табл.1.3); по заторфованности(табл.1.4)
Мёрзлые грунтыв зависимости от их температуры, величины и временивнешнего воздействиямогут вести себякак твёрдые или пластичные. Чем меньше и чем длительнее воздействие, тем в большей мере грунт проявляет пластичные свойства. Образование льда при промерзании грунта приводит кповышению прочности и сопротивления деформируемости, что объясняется возникновением связей между минеральными частицами за счёт льда. С понижением дисперсности, засолённости и температуры прочность структурных связей возрастает. При длительном времени действия нагрузки роль льдоцементационногосцепления снижается, что обусловлено проявлением реологических свойств льда. Разработана классификация мёрзлых грунтов по температурно-прочностным свойствам.(табл.1.5)
Заторфованный грунт
Th-температурная граница твёрдомёрзлого сосотояния минеральных грунтов;
Tbf- то же для заторфованных грунтов.
Характер изменения механических свойств грунтов различного состава зависит от вида напряжённо-деформированного состояния и времени действия нагрузки. При инженерных расчётах необходимо знать как прочностные характеристики, так и деформационные: модули общей и упругой деформации, коэффициенты вязкости и сжимаемости, коэффициент Пуассона, характеристики кривых течения и ползучести.
1.2 Грунты как многокомпонентная система.
Мёрзлые и вечномёрзлые грунты являются природными многофазными образованиями, состоящими из различных по своим свойствам компонентов, находящихся в различном фазовом состоянии, поэтому допущение об их однокомпонентности имеет смысл лишь в случае отсутствияв данном объёме грунта перераспределенияво времени отдельных фаз грунта.
Таким образом, механика мёрзлых грунтов есть механика четырёхфазной системы, содержащей :твёрдые минеральные частицы; идеально-пластичные включения льда(лёд-цемент и лёд прослойков);воду в связанном и жидком состояниях; газовые компоненты: пары и газы.
Все перечисленные компоненты находятся в физико-химическом и механическом взаимодействии, интенсивность и формы которого зависят от температуры.
Твёрдые минеральные частицы оказывают существенное влияние на свойства мерзлых грунтов характеристики, которых зависят от размеров и формы минеральных частиц, физико-химической природы их поверхности, определяемой их минеральным составом и составом поглощённых катионов.
Существенно влияет на свойства грунтовформа частиц. Например, при плоской форме зёрен давление в точках контакта частиц практически равно внешнему давлению от нагрузки, тогда какпри остроугольной форме- может достигать огромной величины. И интенсивность протекания физико-химическихповерхностных явлений зависит от удельной поверхности частиц грунта, которая может достигать в глинистых грунтах80 и более м2/г.
Лёд, являясь обязательной компонентой мёрзлых грунтов в противоположность твёрдым минеральным частицам представляет собой мономинеральную криогидратнуюпороду с весьма своеобразнымифизико-механическими свойствами. Кроме льда в грунтахмогут содержаться и другие криогидратные минералы, например, углекислый натрий Na2Co3,хлористыймагний MgCl2. Льдом называют все твёрдые модификации воды, независимо от их кристаллического или аморфного состояния. Различают несколько модификаций льда, образующихся при отрицательных температурах и соответствующих давлениях: трикристаллических модификации: 1,2,3,аморфную модификацию, образующуюся при «глубоком» замораживании и кристаллическую воду, существующуюпри высоких давлениях и положительных температурах. В мёрзлых грунтах содержится лёд 1-й модификации (существующий при температурах до –100?С и при обычных давлениях),он является важнейшей компонентой мёрзлых грунтов. Он имеет высокую анизотропию свойств, например, механические свойства его кристаллов в направлении перпендикулярном главной оптической оси подчиняются законам реологической механики, в параллельном женаправлении–напротив, после упругих деформаций наступает хрупкое разрушение. Крометого, электро- молекулярные связи льда значительно превосходят электро- молекулярные связи свободной воды, чтои обусловливает адсорбцию свободной воды поверхностью льда.
Льдонасыщенность и характер распределения льда в разрезе многолетнемёрзлых пород во многом определяются условиями их промерзания. Лёд, распределённый в мёрзлой породе в виде различных по величине, в целом относительно небольших, но видимых глазом линз, пропластков, слоёв, зёрен и включений другой формы, а также заполняющийпоры в породе(лёд-цемент), определяет криогенную текстуру.
Осадочно-метаморфические
В зависимости от заполнения пор льдом различают (Шумский,1957) следующие виды льда цемента: контактный, находящийся в местах контакта частиц скелета; плёночный, обволакивающий поверхность частиц, оставляя часть пор незаполненными; поровый, заполняющий поры целиком; и базальный, образующий основную массу породы и разобщающий частицы минерального скелета.
Вода в жидкой фазе в мёрзлых грунтах, по крайней мере до температуры –70?С содержится в том или ином количестве. Вода бывает в двух состояниях: прочносвязанная поверхностью минеральных частиц, когда в следствие огромных электро- молекулярныхсил, вода не в состоянии перейти в гексагональную кристаллическую решётку льда, даже при очень низких температурах..
Рыхлосвязанная вода переменного фазового состава, замерзающая при температурахниже 0?С. Понижение температуры замерзания воды происходит в следствие того, что между слоем прочносвязанной и более «тёплой воды»существует энергетическая связь, что обусловливает более низкую температуруеё кристаллизации.
Газообразные компоненты в мёрзлых грунтах могут играть в отдельных случаях существенную роль, так как они перемещаютсяот мест с большей упругостьюк местам с меньшей упругостью, и в водо-насыщенных грунтах могут явиться причиной перераспределения влажности. Кроме того, газообразные компоненты претерпевают значительное сокращение в процессе понижения температуры, образуя вакуум обуславливающий миграцию влаги.
1.3 Характеристики физических свойств
При оценке многолетнемёрзлых пород используются те же характеристики физико-механических свойств, что и дляталых пород, а также, необходимыдополнительные характеристики,которые выражают спецификусостава мёрзлых породи особенностейих поведенияпод нагрузками.Общимихарактеристикамиталыхимёрзлыхгрунтов являются:
1. Плотность -масса грунтав единице объёма
?= m/V;?г/см3]
m-массаобразца ненарушенной структуры;
V -объёмгрунта;
2.Плотность частиц грунтав единице объёма при плотной упаковке :
?s ?г/см3],определяемая с помощью пикнометра.
3.Плотность скелета грунта
?d; ?г/см3]
определяемая, как масса частиц грунтав объёмененарушенной структуры;
4. Пористость грунта ,характеризуемая коэффициентом пористости :
?=( ?s -?d)/ ?d ;
5.Суммарная относительная влажность:
Отношение массы воды к массе сухого грунтав единице объёма
Wс=mводы /m сух.гр.
6.Влажность на пределе раскатыванияи на пределе текучести соответсвенно:
Wрас% , Wтек%
7. Число пластичности :
Jчисло пласт= Wтек% -Wрас%:
8.Степень водонасыщения :
Sr=Wс/Wп
Где Wп - полная влагоёмкость, равная влажностигрунта, при полном заполнении пор водой.
К дополнителным характеристикам относятся :
1.Влажность за счёт незамёрзшей воды Wн(в долях единицы);
2.Льдистостьмёрзлого грунтаi,равная отношению массыльдак массевсей воды , содержащийсяв мёрзломгрунте:
i = (Wc-Wн)/Wc;
3.Температура начала замерзания грунтовой влаги?bf ;
4.Засолённость грунта (Dsol) ,либо концентрацияпорового раствораCр :
Dsol=mсоли/mсух.грунта;
Ср=Dsol%/(Dsol% +Wc%) ;
5. Заторфованность :
характеристика, равна отношению массы органического вещества к массе грунта в сухой навеске.
Im =mторфа/mсух.грунта
6.Относителная влажность Wс в мёрзлых грунтах рассматривается как сумма влажности за счёт включений льда (Wв), влажность минеральных прослоек грунта (Wг) , равная суммевлажности за счёт льда цементирующего минеральные частицы(Wц) и влажности за счёт незамёрзшей воды(Wн).
Wc=Wв+Wг=Wв+(Wц+Wн);
Важными характеристиками мёрзлых грунтов являются текстура и структура. В заваисимости от интенсивности промораживания , наличия подтока водыи задержекв промораживании формируется текстура мёрзлых грунтов. Основными видами стуктуры грунтов являютсяслитная(массивная),слоистая и ячеистая(сетчатая).Также выделяют другие дополнительные виды структур.
1.4 Теплофизические характеристики.
Теплоперенос в горных породах в общем случае осуществляетсятремя механизмами: излучением, конвекцией и кондуктивностью (теплопроводностью).
Теплофизические характеристики оценивают количественную долю тепла:
-коэффициент теплопроводности -?,(Вт/м*К)-выражает количество тепла проходящее в единицу времени через единицу площади и единичную толщину слоя грунта.
-удельная теплоёмкость- С,(Дж /кг*К)- выражает количество тепла ,необходимое для нагревания или охлаждения единицы массы грунта на один градус.
-объёмная теплоёмкость Соб (Дж/м3*К) выражает количество тепла, необходимое для нагревания или охлаждения единицы объёма грунта на один градус.
-коэффициент температуропроводности а (м2/с)– выражает способность грунта изменят свою температуру ,под воздействием изменившегосяградиента температуры.
Между этими характеристиками существует зависимость:
?=Соб ?а ;
Доля тепла переносимого в породе излучением , обычно , не превышает 1% от общего теплопотока поэтому радиационным теплопереносом пренебрегают, а доля конвективной составляющей учитывается лишь при влагопереносе под действием гидростатических сил.
Значения всех теплофизических характеристик зависят от вида грунта, его составных компонентов, как минерального, так и гранулометрического состава и основных физических свойств: плотности и влажности; а также состояния грунта: талого или мёрзлого .Обычнокоэффициент теплопроводности мёрзлых грунтов в 1.1-1.5 раза больше коэффициента теплопроводности грунтов в талом состоянии, что связано с большей теплопроводностью льда, по сравнению с незамёрзшей водой. Объёмная теплоёмкость грунтов при промерзании стремится к бесконечно большому значению, в связи с затратами тепла на фазовые переходы влаги.
1.5 Массообменные характеристики.
Перемещение влаги и пара вдисперсных породахосуществляется по причине неравновесного состояния системы грунт-вода, вызываемого изменением в пространстве и во времени термодинамических параметров. В случае нарушения равновесных условийв грунтовой системе влага может находиться как в неподвижном состоянии, так и испытывать перемещение в виде молярного переноса пара, объёмно протекатьпо капиллярам, подчиняясь капиллярному давлению, кроме того, вода и пар могут взаимодействовать порождая комбинированный перенос влаги.
Влагоперенос зависит от гранулометрического состава породы. С ростом дисперсности породы возрастает количество незамёрзшей воды, но уменьшается поток её миграции.
Влагоперенос обусловлен градиентом температуры в грунте.
В равновесном состоянии каждому значению отрицательной температуры образца мёрзлой породы соответствует строго определённоесодержание незамёрзшей воды, поэтому возникновение и поддержание в мёрзлой породе градиента температуры приводят к возникновению градиента потенциала влагипо жидкой и парообразной фазам.
Характеристикой влагопереноса является коэффициент потенциалопроводности
a?=??/(C?? ск) м2 /ч
??-коэффициент влагопроводности кг/м?ч?град;
C?-удельная влагоёмкость грунта.
Знание коэффициента потенциалпроводности позволяет расчитывать миграцию влаги при промерзании.
1.6Механические характеристики.
Механические характеристики мёрзлых грунтов изучаются для назначения расчётных характеристик прочности и деформируемости, получения зависимостей, описывающих поведение грунтов под нагрузками , при изменении температуры, воздействии криогенных процессов и др.
Мёрзлые грунты по агрегатному состоянию относят к твёрдым телам, однако, наличие в них незамёрзшей воды и льда обуславливает проявление реологических свойств. Поэтому в механикемёрзлых грунтов используются представления , развивающиеся на основе теории упругости, пластичности и вязкости сплошных сред, исходя из которых создаётся подходк выбору характеристик прочностных и деформационных свойств и методов их определения.
К основным характеристикам прочностных свойств мёрзлыхгрунтов относятся: сопротивление сдвигу грунта по грунту и по поверхностям смерзания; сопротивление сжатию, растяжению; сцепление и угол внутреннего трения, эквивалентное сцепление.
Различают простое и сложное напряжённые состояния в мёрзлом грунте.
Простое напряжённое состояние соответствует проявлениюодного из видов напряжений: сжатия, растяжения, сдвига. Напряжённое состояние в массиве грунта, соответствует сложному напряжённому состоянию, когда проявляются одновременно при различном сочетании все виды простых напряжённых состояний.
Определение прочностных и деформационных характеристик выполняются как в лабораторных, так и в полевых условиях, при простом и сложном напряжённом состояниях. Основными видами испытаний являются:
Одноосное сжатие; разрыв; сдвиг; кручение; компрессия; осесимметричное трёхосное сжатие вертикальной и радиальной нагрузкой; осесимметричное трёхосное сжатие с кручением; осесимметричное сжатие полого цилиндра с кручением; трёхосное сжатие с независимым заданиемвсех трёх главных направлений; динамометрическое испытание в релаксационно-ползучем режиме.
Испытания, с помощью которых оцениваются деформационные свойства: вдавливание сферического штампа;. сдвиг на срезном приборе; сдвиг на клиновидном приборе; сдвиг по поверхности смерзания; сдвиг мёрзлого грунта по поверхности модели сваи; раздавливание образца.
Глава 2.Реологические аспекты механикимёрзлых грунтов.
По классическим теориям пластичности и упругостинапряжённо-деформированное состояние тела вполне определяетсявеличинойнагрузкии способом её приложения; если эта нагрузка не меняется ,то остаются неизменными ивозникшие в теле напряжения и деформации. В реальных телах напряжённо-деформированное состояние меняется со временем и зависит отистории предшествующего загружения. Соответственно, соотношение между напряжением и деформациейнеявляется однозначным, а изменяется, даже если одна из этих величин –напряжение или деформация –остаётся постоянной, другая будет изменяться во времени. Изучением закономерностей напряжённо-деформированного состояния занимается наука, называемаяреологией.
Исследованиями Н.А.Цытовича и его сотрудников в 30-х годах, а несколько позже М.Н.Гольдштейном было обнаружено наличиеу мёрзлых грунтов свойства текучести. Затем, в 50-х годах20-го века С.С Вяловым был выполнен большой объёмэкспериментов в Игарской подземной лаборатории по определению деформируемости и прочности мёрзлых грунтов. Их результаты позволили выявить основные закономерности поведения мёрзлых грунтов под нагрузками: проявление ползучести, снижение прочностиво времени , релаксацию напряжений. Данныеисследованийобобщены в монографии(Вялов,1959).В дальнейшем, под его руководством создано реологическое направление в механике мёрзлых грунтов, которое завоевало мировое признание и получило развитие в трудах отечественных и зарубежных учёных.: Ю.К.Зарецкого, С.Э.Городецкого, Н.К.Пекарской, Р.В.Максимяк, Ю.С.Миренбурга, Е.П.Шушериной, A.M.Fish, O.B.Anderslaud, D.M.Anderson, J.F.Nixon, R.Pusch, F.M.Sayles, B.Ladanyi, E.Penner и др.
На основании полученных закономерностей проявленияреологическихсвойств мёрзлых грунтов разработанырешения, позволяющиепо данным испытанийпрогнозировать длительную прочностьи деформации мёрзлых грунтов на основе теорий ползучести. Показана также применимость для этих целей методов временных аналогий. Их суть основана на интенсификации процесса разрушения, влияющими на него факторами(повышением температуры, увеличением нагрузки, льдистости, засолённости, заторфованности и т.д.) и на идентичности влияния времени и перечисленных факторов на прочность и ползучесть, что позволяет осуществлять прогнозы деформации и прочности на длительное время.(Роман,1987)
В целом реология мёрзлыхгрунтов рассматривает проявление ползучести, релаксации напряжений и снижения прочности тел при длительном воздействии нагрузок.
Ползучесть- процесс деформирования, развивающийся во времени, даже при постоянной нагрузке. Обычно в процессе испытаниймёрзлых грунтовпри всех напряжённых состояниях определяют семейство кривых ползучести. В зависимости от напряжения проявляются затухающая, либо незатухающая ползучесть. Выделяют три стадии ползучести, показанные на (рис.2.1)При инженерных изысканиях важно учитывать, что третья стадия ползучести не допускается при использовании грунтов в качестве оснований.
Рис.2.1 Зависимостьдеформации (?) от времени (t) с проявлением затухающей ползучести при напряжёнии(?1)и незатухающей ползучести при напряжении(?2).Стадии незатухающей ползучести: I-неустановившаяся ползучесть; II-ползучесть с постоянной скоростью; III-прогрессирующее течение.
Виды кривых ползучести зависят от величины нагрузки. Длянагрузок: ?1 >?2 >?3 >… >?nкривые ползучести образуют семейство кривых для определённого вида грунта(рис.2.2). Представленный на рис. 2.2ахарактер развития деформаций при разных нагрузках во времени является идентичнымдля всех способов нагружения: одноосного сжатия; растяжения; сдвига грунта по грунту или по поверхности смерзания; при сложном напряжённом состоянии. По результатам испытаний на ползучесть определяется кривая длительной прочности(рис2.2-б), с помощью которойпрогнозируется времядо разрушения приданной нагрузке, что очень важно для решения инженерных задач, касающихся вопросов длительной прочности и длительной деформации. Для получения кривой длительной прочности строится график зависимости напряжений от соответствующего времени перехода ползучести в третью стадию.
Способы прогноза длительной деформации мёрзлых грунтов разработаны на основетехнических теорий ползучести; теории старения; упрочнения; течения; наследственной ползучести.Общий закон развития деформаций, по которому производится прогноз, имеет вид(Вялов,1978):
?t=(?/A(t, ?)1/m (2.1)
где?t – деформация за период времени t при напряжении; ?, A(t, ?) и m –опытные параметры; ? - температура грунта.
Рис.2.2 Семейство кривых ползучести (а);кривая длительной прочности (б).
?0- условно-мгновенная прочность;?t–длительная прочность;??-предельно-длительная прочность.
Глава 3.Влияние температуры иосновных физических характеристик на проявлениереологических свойств мёрзлых грунтов.
3.1 Влияние минерального и гранулометрического состава.
При прочих равных условиях длительные деформациимёрзлых пород уменьшаются , а прочность увеличиваетсяв ряду: лёд> глина> суглинок> супесь> песок. Увеличение деформируемости грунтов с ростом дисперсности вызвано, прежде всего, увеличением содержания незамёрзшей воды, а большие деформации льда связаны с особенностями его структурной решётки, которые придают свойства идеального реологического тела.
Деформируемостьи прочность крупнообломочных мёрзлых грунтов обусловлена мелкодисперсными минеральными заполнителями, либо ледяными включениями. При этом необходимо учитывать вид напряжённого состояния. Если при плотной упаковке минеральных частиц сопротивление сжатию мёрзлых крупнообломочных грунтов может превышать прочность мелкодисперсных грунтов за счёт жёсткости скелета, то сопротивление растяжению, либо сдвигу может быть весьма незначительным в связи с низкимицементационными связями между отдельными обломками.
3.2 Влияние льдистости.
В целом, мёрзлые грунты обладают более высокой прочностью (в несколько раз, порой даже в несколько десятков) по сравнению с талыми .Это обусловлено цементацией льдом частиц грунта, превращение его по агрегатному состоянию в твёрдое тело.
В зависимости от интенсивности промораживания (величины температурного градиента) и граничных условий(одностороннего промораживания или промораживанияс нескольких сторон), наличия подтока воды и задержек в продвижении границы промораживания, в процессе промерзания грунтовформируется своеобразнаякриогенная текстура, существенно определяющая и свойства (рис 3.1)
Рис 3.1 Основные виды криогенной текстуры вмёрзлых грунтах.
(Цытович,1973)
а- слитная(массивная); б-слоистая; в-ячеистая.
Увлажнение дисперсных грунтов до влажности соответствующей примерно 0.8-0.9 от полной влагоёмкости увеличивает их прочность при промерзании. Это обусловлено возрастанием количества цементационных связейльда с частицами грунта, вместе с тем формируется монолитная криогенная текстура. Однако, показано, что прочность льдистых грунтов зависит не только от общей льдистости, но и от количества и толщины ледяных шлиров,а также влажности грунтовых прослоев, а поскольку дальнейшее увлажнение приводит к распучиванию, образованию ледяных прослоек и включений, тоувеличение льдистости за счёт включений приводит к уменьшению прочности. В свою очередь, расположение прослоев льда имеет влияние на предельно длительную прочность. Противоречивые результаты получались у разных авторов при исследовании зависимости площади контакта минеральных частиц грунтаи льда: в одних случаях большая площадь, достигаемая большим количеством ледяных прослоев, обусловливала большую прочность, в сравнении с образцами грунта имеющими меньшее количество ледяных прослоев большей величины, при одинаковой льдистости. Тем не менее незатухающая ползучесть льдавне зависимости от расположенияшлиров и их размеров приводит к длительным деформациям, протекающим в процессе всего срока эксплуатации мёрзлого грунта.
Однако, характер влияния влажности-льдистости на прочность грунтатесно связан с дисперсностью грунта, его минеральным составом, температурой.
3.3 Влияниезасолённости.
Присутствие легкорастворимых солей в грунтовой влаге существенно влияет на механические свойства грунтов. В засолённом грунте наблюдаются снижение прочности и увеличение деформируемости(Ю.Я.Велли1990,В.И.Аксёнов,1978 и др.).Это обусловлено, в основном, изменением состава порового раствора, что обусловливает понижение температуры его замерзания и увеличение количества незамёрзшей воды. Экспериментально установлено влияние на механические свойства мёрзлых засолённых грунтов не только количества солей, но и их химического состава.(Роман,1994;Роман,Свинтицкая,1996).
Засоление мёрзлых пород обусловлено их генезисом, специфической геохимической обстановкой, различной для эпигенетического и сингенетического способов промерзания пород. Однако , для всех типов пород будут присущи все типы элементарных реакций: растворение, гидратация, гидролиз, замещение , окисление –восстановление. Различают морской, континентальный и техногенный типы засоления.
Морской тип засоления наблюдается в мёрзлых грунтах самых северных территорий- вдоль арктического побережья России и на островах. Для морского типа засоления характерно наличие хлоридов, в частности NaCl.Наименьшее значение Dsal =0.2-0.5% отмечается в песках; в супесях, суглинках и глинах засолённость колеблется от 0.4 до 2.1 %.
Континентальный тип засолениянаблюдается в областях, где сочетание высоких летних температур воздуха с отрицательным балансом влаги способствовало соленакоплению в почвах и подстилающих грунтах. Всолевом составе грунтов континентального типа засоления присутствуют ионы:SO42-Cl-, HCO3-,Na2+,Ca2+, Mg2+.
При промерзании рыхлых отложений в первую очередь происходит образование твёрдой фазы воды -льда. Морские воды с минерализациейболее 30 г/л кристаллизуются при температурах, близкихк –1.5….-2?С, а рассолы могут не замерзать при температурах –20?С и ниже., образуя криопэги. Процессзамерзания воды сопровождается сильной дифференциацией солей между твёрдой и жидкой фазами воды. Часть солей, растворённыхв воде, оказывается вовлечённой в лёд, часть менее растворимых вводе солей выпадают в осадок, а часть отжимается в нижележащие слои воды, что приводит к увеличению минерализации этих вод.
Постепенное промерзание приводит к образованию слабоминерализованных льдов, а ниже границы промерзания-высококонцентрированных вод порядка 200 г/л и более, что обеспечивает существование горизонтов воды приотрицательной температуре. Процесс засоления породы характеризуется возникновением особенностейфизико-механических свойств.
Следует отметить, что степень влияния растворённых солей обусловлена не характеристикой засолённости Dsal, а концентрацией порового раствора Кпр, формирующегося в процессе промерзания.
При одной и той же засолённости концентрация порового раствора будет снижатьсяс увеличением влажности. А, значит, и влияние засолённостина сопротивление мёрзлых грунтов нагрузкам будет снижатьсяс увеличением суммарной влажности. Посколькув природных грунтах очень частовлажностьгрунта близка к полной влагоёмкости, то в ряду, в котором увеличивается влагоёмкость: песок