Чтение RSS
Рефераты:
 
Рефераты бесплатно
 

 

 

 

 

 

     
 
Быстродействующий адаптивный наблюдатель в системе компенсации неизвестного запаздывания

БЫСТРОДЕЙСТВУЮЩИЙ АДАПТИВНЫЙ НАБЛЮДАТЕЛЬ В СИСТЕМЕ КОМПЕНСАЦИИ НЕИЗВЕСТНОГО ЗАПАЗДЫВАНИЯ

Настоящая работа посвящена построению системы компенсации неизвестного запаздывания. Наличие большого запаздывания, как известно [1], отрицательно сказывается на работоспособности системы управления.

Для компенсации неизвестного запаздывания разработана адаптивная система, состоящая из быстродействующего адаптивного наблюдателя, вычисляющего оценки неизвестных параметров и запаздывания системы управления, и прогнозатора Смита, компенсирующего это запаздывание.

Центральным моментом работы является построение алгоритма быстродействующего адаптивного наблюдателя для оценивания неизвестного запаздывания, так как прогнозатор Смита применим лишь в тех случаях, когда запаздывание априори известно. Этот алгоритм основан на использовании метода настраиваемой модели. Суть алгоритма изложена ниже.

Пусть поведение интересующего нас объекта описывается следующим дифференциальным уравнением:

,                                      (1)

;

Здесь a1=3, a0=2 - известные постоянные коэффициенты;  - неизвестные постоянные. Тогда структурная схема соответствующего процесса управления будет иметь вид, представленный на рис. 1. Здесь приборному измерению доступны вход xd(t) и выход x(t) системы управления.

Построим быстродействующий адаптивный наблюдатель для идентификации неизвестных параметров системы , а также прогнозатор Смита для компенсации запаздывания , после чего будем подставлять получаемые наблюдателем оценки  в прогнозатор.

                                                                           

                  –                                                      

Рис 1. Система управления для объекта с неизвестным запаздыванием.

                                                                     

                                                                                                     y(t)

      v(t)                                                                                           –

                                                                                     +

           –

                                              

           –

Рис. 2. Адаптивная система компенсации неизвестного запаздывания.

На каждом из подынтервалов времени функционирования системы Jj настраиваемую модель опишем следующими уравнениями:

                                (2)

,

где  - параметры модели, настраиваемые соответственно на параметры  объекта (1).

Введем ошибку e(t) = x(t) - y(t).

Конечная структурная схема системы управления с адаптивным наблюдателем и прогнозатором Смита показана на рис. 2.

Система уравнений для выходного сигнала прогнозатора Смита v(t) и входного сигнала объекта, прогнозатора и наблюдателя u(t):

Уравнение для ошибки e(t) будет иметь вид (вычитаем (2) из (1) и линеаризуем правую часть):

,                                     (3)

где  

Приведем (3) к системе уравнений первого порядка. Положим

                                          

              

Тогда в векторной форме уравнение (3) будет иметь вид

+                              (4)

или в краткой форме

,

где , , A=, Z= .

Решением (4) будет

                    (5)

или в краткой форме

где Ф(t)= , R(t)=  - решения уравнений

                                                      (6)

.                                             (7)

Перепишем первую строку системы (5) в виде

                                                   (8)

где

.

Здесь w(t) и  - известные величины для любого t; вектор g содержит неизвестные параметры объекта, а векторы bj (j=0,l,...,N-l) являются функциями перестраиваемых параметров эталонной модели .

Набирая данные на каждом из подынтервалов Jj в моменты времени tj1,...,tjm, образуем из (8) алгебраическую систему вида

или в матричной форме

                                                  (9)

Число m выбирается так, чтобы уравнений в (9) было не меньше числа неизвестных параметров. В данном случае m больше или равно 3.

Решение алгебраической системы (9) при этом записывается в виде

                                                 (10)

где  - псевдообратная матрица.

Изменение параметров bj при переходе от подынтервала Jj к Jj+1 осуществляется по рекуррентной формуле

,                                           (11)

где L=diag(l1,....,l3) - вещественная диагональная матрица, все числа li>0. Можно показать [2], что этот процесс перестройки параметров сходится экспоненциально, т.е. значения перестраиваемых параметров модели  сходятся к значениям неизвестных параметров объекта .

Таким образом, для того, чтобы идентифицировать постоянные неизвестные параметры  объекта (1), параметры настраиваемой модели (2)  следует изменять с помощью алгоритма, который описывается уравнениями (6)-(11).

Было проведено численное моделирование этой системы на ЭВМ в среде MATLAB 5.2. Результаты компьютерного моделирования подтверждают эффективность разработанного алгоритма.

Предлагаемый алгоритм адаптивного наблюдателя обладает важными для практики свойствами: заданной длительностью переходного процесса по параметрам и запаздыванию; отсутствием взаимного влияния переходных процессов настройки в разных параметрических каналах и практической независимостью времени переходных процессов по параметрам и запаздыванию от изменения амплитуды входных и выходных сигналов.

Список литературы

 [1] Гурецкий X. Анализ и синтез систем управления с запаздыванием. Пер. с польского. - М.: Машиностроение, 1974.

[2] Копысов О.Ю., Прокопов Б.И. Построение алгоритма перестройки параметров и запаздывания в методе настраиваемой модели. М.: МГИЭМ, 1999.

3. А.В. Старосельский, Московский Государственный Институт Электроники и Математики, быстродействующий адаптивный наблюдатель в системе компенсации неизвестного запаздывания

Для подготовки данной работы были использованы материалы с сайта http://www.refcentr.ru/

 
     
Бесплатные рефераты
 
Банк рефератов
 
Бесплатные рефераты скачать
| мероприятия при чрезвычайной ситуации | Чрезвычайная ситуация | аварийно-восстановительные работы при ЧС | аварийно-восстановительные мероприятия при ЧС | Интенсификация изучения иностранного языка с использованием компьютерных технологий | Лыжный спорт | САИД Ахмад | экономическая дипломатия | Влияние экономической войны на глобальную экономику | экономическая война | экономическая война и дипломатия | Экономический шпионаж | АК Моор рефераты | АК Моор реферат | ноосфера ба забони точики | чесменское сражение | Закон всемирного тяготения | рефераты темы | иохан себастиян бах маълумот | Тарых | шерхо дар борат биология | скачать еротик китоб | Семетей | Караш | Influence of English in mass culture дипломная | Количественные отношения в английском языках | 6466 | чистонхои химия | Гунны | Чистон
 
Рефераты Онлайн
 
Скачать реферат
 
 
 
 
  Все права защищены. Бесплатные рефераты и сочинения. Коллекция бесплатных рефератов! Коллекция рефератов!