Чтение RSS
Рефераты:
 
Рефераты бесплатно
 

 

 

 

 

 

     
 
Передающее устройство одноволоконной оптической сети

Тема проекта:

Передающее устройство одноволоконной

оптической сети

Входные данные к проекту:

- Оптическая мощность 1,5мВт

- Длинна волны 0,85мкм

- Рабочая частота 8,5МГц.

- Пропускная способность 8,5Мбит/сек.

- Уровень входного логического сигнала –0,7 В /5,0 В.

Рецензія

на дипломний проект студента групи РТ-51

Андріюка Ростислава Володимировича

“Передавальний пристрій одноволоконної

оптичної мережі”

Дипломний проект студента Андріюка Ростислава Володимировича присвячений актуальному питанню проектування волоконнооптичних ліній зв’язку. Сучасні засоби телекомунікацій  базуються на широкому впровадженні волоконнооптичних елементів та систем для швидкого обміну великих обсягів інформації між абонентами. Дипломний проект складається з пояснювальної  записки (96 сторінок) та семи листів графічного матеріалу, формату  А1. Пояснювальна записка містить розділи:

- Введення.

- Принципи побудови та основні особливості волоконнооптичних ситем передачі у міських телефонних мережах.

- Вибор та обгрунтування структурної схеми передавача.

- Розрахунок електричної принципової схеми.

- Конструктивний розрахунок печатної плати.

- Розрахунок надійності передавального пристрою.

- Техніко-економічний розрахунок.

- Заходи по охороні праці.

До переваг дипломного проекту відноситься глибокий науково-технічний аналіз сучасних структурних схем волоконнооптичних систем зв’язку та досконалий розрахунок електричної принципової схеми передавального пристрою одноволоконної оптичної мережі. Висока якість оформлення текстової, та графічної документації.

Недоліком проекта є відсутність перевірочних експерементальних досліджень запропонованих електричних схем. Відзначений недолік не знижує загальний високий рівень дипломного проекту.

Вважаю, що дипломний проект  “Передавальний пристрій одноволоконної оптичної мережі” заслуговує оцінки “відмінно”, а студент Андріюк Р.В. присвоєння кваліфікації спеціаліста з радіотехніки.

      

           К.т.н., доцент кафедри КіВРА _____________________ (Богомолов М.Ф.)

СОДЕРЖАНИЕ

1. Введение…………………………………………………………………………..4

2.  Принципы построения и основные особенности волокон-

     нооптических  систем передачи в городских телефонных сетях…………..5

     2.1 Линейные коды  в волоконнооптических системах передачи....……………………7

      2.2 Источники излучения  волоконнооптических системах  передачи…………………9

      2.3 Детекторы  волоконнооптических систем передачи……………………………….10

      2.4 Оптические кабели в волоконнооптических системах передачи………………….11

      2.5 Особенности одноволоконных оптических систем передачи……………………...13

      2.6 Построение передающих и приемных устройств в волоконнооптических

           системах передачи……………………………………………………………………..16

          2.6.1 Виды модуляции оптических колебаний………………………………………...16

          2.6.2 Оптический передатчик прямой модуляции…………………………………...18

          2.6.3 Оптический приемник……………………………………………………………20

3.  Выбор и обоснование структурной схемы передатчика…………………..21

3.1 Методы построения структурных схем одноволоконных оптических

      систем передачи………………………………………………………………………..21

          3.1.1 Волоконнооптические системы передачи на основе различных способов        

            разветвления оптических сигналов…………………………………………...21

          3.1.2 Волоконнооптическая система передачи, основанная на использовании 

            разделения разнонаправленных сигналов по времени………………………..24

          3.1.3 Волоконнооптическая система передачи, на основе использования

                    различных  видов модуляции…………..………………………………………...25

          3.1.4 Волоконнооптическая система передачи с одним источником излучения…..28

     3.2 Окончательный выбор структурной схемы передатчика…………………………...30

          3.2.1 Выбор способа организации одноволоконного оптического тракта………...30

          3.2.2 Структурная схема оптического передатчика…………………………….…30

4.  Расчёт электрической принципиальной схемы……………………………32

     4.1 Общие соображения по расчёту принципиальной схемы устройства………...…..32

      4.2 Расчёт мощности излучения передатчика и выбор типа излучателя…………..….34

      4.3 Расчёт выходного каскада…………………………………………………………....35

      4.4 Расчет согласующего усилителя…………………………………………………..…39

      4.5 Расчет устройства автоматической регулировки уровня оптического сигнала…..41

      4.6 Расчёт схемы  термостабилизации……………………………………………...……43

      4.7 Расчёт источника питания одноволоконной оптической системы передачи……..45

      4.8 Расчёт ёмкостей в схеме оптического передающего устройства………………….49

         4.8.1 Расчёт эмиттерной ёмкости……………………………………………………49

         4.8.2 Расчёт разделительной ёмкости………………………………………………..49

         4.8.3 Расчёт ёмкостей фильтров……………………………………………………...50

      4.9 Номиналы элементов схемы……………………………………………………...…..50

            принципиальная схема оптического передатчика………………………..……52

              принципиальная схема источника питания……………………………..……..53

5.  Конструктивный расчёт печатной платы одноволоконной

      оптической системы передачи……………………………………..…………54

       5.1 Выбор материала печатной платы………………………………………….……….54

       5.2 Размещение элементов и разработка топологии печатной платы……..………….55

6.   Расчет надежности волоконнооптического передающего

      устройства………...………………………………………...…….……………..59

7.  Технико-экономический расчет………………………………………………63

      7.1 Анализ рынка……………………………………………………………………….…63

      7.2 Определение себестоимости одноволоконного оптического передатчика…….…65

        7.2.1 Затраты на приобретение материалов…………………………………………65

        7.2.2 Затраты на покупные изделия и полуфабрикаты………………………………66

        7.2.3 Основная заработная плата производственных рабочих…………………...…67

        7.2.4 Калькуляция себестоимости блока волоконнооптического передатчика….…69

      7.3 Определение уровня качества изделия………………………………………………70

      7.4 Определение цены изделия…………………………………………………………..72

        7.4.1 Нижняя граница цены изделия……………………………………………………72

        7.4.2 Верхняя граница цены изделия……………………………………………………73

        7.4.3 Договорная цена……………………………………………………………………73

      7.5 Определение минимального объема производства…………………………………73

8.  Мероприятия по охране труда………………………………………………..75

      8.1 Лазерная безопасность……………………………………………………………….75

       8.2 Требования безопасности при эксплуатации  лазерных изделий…………………78

       8.3 Мероприятия по производственной санитарии………………………………….…79

       8.4 Требование к освещению и расчёт освещённости…………………………………84

       8.5 Мероприятия по улучшению условий труда…………………………………….…90

             8.5.1 Расчёт местного отсоса……………………………………………………...90

       8.6 Мероприятия по пожарной безопасности………………………………………..…91

       8.7 Мероприятия по молниезащите здания………………………………………..……94

9. Литература………………………………………………………………………95

     Приложение…………………………………………………………...…………96

Аннотация

           Объектом исследования являются способы увеличения пропускной способности каналов волоконнооптических систем передачи путём передачи сигналов по одному оптическому волокну в двух направлениях.

           Цель работы – определение способа увеличения пропускной способности каналов, подходящего для использования на соединительных линиях городской телефонной сети. И разработка соответствующего передающего устройства.

           Выбран тип одноволоконнооптической системы передачи, разработана её структурная схема, разработана принципиальная схема передающего устройства и источник питания.

           В процессе работы составлен обзор методов передачи сигналов по одному оптическому волокну в двух направлениях и определён способ увеличения пропускной способности каналов, подходящий для использования на соединительных линиях городской телефонной сети.

           В дипломном проекте дан обзор существующих методов организации волоконнооптических систем передачи, а также освещены возможные способы построения одноволоконных систем передачи.

В ходе работы осуществлена разработка структурной схемы передающего устройства, кроме того, приведены варианты структурных схем возможных способов построения одноволоконных систем передачи.

1.  Введение

          Цифровая связь по оптическим кабелям , приобретающая всё большую актуальность, является одним из главных направлений научно-технического прогресса .

                  Преимущества цифровых потоков в их относительно лёгкой              обрабатываемости с помощью ЭВМ, возможности повышения отношения  

    сигнал/шум и увеличения плотности потока информации.

          Преимущества оптических систем передачи  перед системами передачи  работающими по металлическому кабелю заключается в:

   -возможности получения световодов  с малым затуханием и дисперсией, а значит увеличение дальности связи;

   -широкой полосе пропускания ,т.е. большой информационной ёмкости;

   -оптический кабель не обладает электропроводностью и индуктивностью, то есть кабели не подвергаются электромагнитным воздействием;

   -пренебрежимо малых перекрестных помех;

   -низкой стоимостью материла оптического кабеля, его малый диаметр и масса;

   -высокой скрытности связи;

   -возможности усовершенствования системы при полном сохранении совместимости с другими системами передачи.

           Линейные тракты волоконнооптических систем передачи  строятся как двухволоконные однополосные одно кабельные, одноволоконные одно полосные однокабельные, одноволоконные многополосные одно кабельные (со спектральным уплотнением).

           Учитывая, что доля затрат на кабельное оборудование составляет значительную часть стоимости связи, а цены на оптический кабель в настоящее время остаются достаточно высокими, возникает задача повышения эффективности использования пропускной способности оптического волокна  за счёт одновременной передачи по нему большего объёма информации.

            Этого можно добиться, например, передачей информации во встречных направлениях по одному оптическому кабелю.

            Цель работы – определение способа увеличения пропускной способности каналов, подходящего для использования на соединительных линиях городской телефонной сети. И разработка соответствующего передающего устройства.

2. Принципы построения и основные особенности   

     волоконнооптических систем передачи в городских телефонных сетях.

Особенностью соединительных линий  является относительно небольшая их длина за счет глубокого районирования сетей. Статистика распределения протяженности соединительных  линий городской телефонной сети в крупнейших городах  свидетельствует, что соединительные линии протяженностью до 6 км составляют 65% от всего числа соединительных линий.

Значительные расстояния между регенерационными пунктами  волоконнооптических систем передачи дают возможность отказаться от оборудования регенераторов в колодцах телефонной канализации, а также от организации дистанционного питания (рис2.1).

                                                                   

                       

                                                                                         

В наиболее общем виде принцип передачи информации в волоконно-оптических системах связи изображен на  рис.2.2.

На передающей стороне на излучатель света, в качестве которого в  волоконнооптической системе связи используется светодиод или полупровод-никовый лазер, поступает электрический сигнал, предназначенный для  передачи по линии связи. Этот сигнал модулирует оптическое излучение источника света, в результате чего электрический сигнал преобразуется в оптический. На прием-ной стороне  сигнал из оптического волокна  вводится в фотодетектор. В современных волоконнооптических системах передачи в качестве фотоде-тектора используют p-i-n или лавинный фото диод.

 Фотодетектор преобразует падающее на него оптическое излучение  в исходный электрический сигнал. Затем электрический сигнал поступает на усилитель (регенератор) и отправляется получателю сообщения.


 Выбор элементной базы при реализации  волоконнооптических  систем передачи  и параметры её линейного тракта зависят от скорости передачи символов цифрового сигнала. Существуют установленные правила объединения цифровых сигналов и определена иерархия аппаратуры временного объединения цифровых сигналов электросвязи. Сущность иерархии состоит в ступенчатом расположении указанной аппаратуры, при котором на каждой ступени объединяется определённое число цифровых сигналов, имеющих одинаковую скорость передачи символов, соответствующую предыдущей ступени. Цифровые сигналы во вторичной, третичной, и т.д. системах получаются объединением сигналов предыдущих иерархических систем. Для европейских стран установлены следующие стандартные скорости передачи для различных ступеней иерархии (соответственно ёмкости в телефонных каналах): первая ступень-2.048 Мбит/с (30 каналов), вторая-8.448 Мбит/с (120 каналов),  третья-34.368 Мбит/с (480 каналов), четвертая-139.264 Мбит/с (1920 каналов). В соответствии с приведенными скоростями можно говорить о первичной, вторичной, третичной и четвертичной группах цифровых сигналов электрической связи (в этом же порядке присвоены названия системам ИКМ).

Аппаратура, в которой выполняется объединение этих сигналов, называется аппаратурой временного объединения цифровых сигналов. На выходе этой аппаратуры цифровой сигнал обрабатывается скремблером, то есть преобразуется по структуре без изменения скорости передачи символов для того, чтобы приблизить его свойства к свойствам случайного сигнала (рис.2.3). Это позволяет достигнуть устойчивой работы линии связи вне зависимости от статистических свойств источника информации. Скремблированный сигнал может подаваться на вход любой цифровой системы передачи, что осуществля-ется при помощи аппаратуры электрического стыка.

Аппаратура оптического линейного тракта Аппаратура стыка


Для каждой иерархической скорости рекомендуются свои коды стыка, например для вторичной – код HDB-3, для четверичной – код CMI и т.д. Операцию преобразования бинарного сигнала, поступающего от аппаратуры временного объединения в код стыка, выполняет преобразователь кода стыка. Код стыка может отличаться от кода принятого в оптическом линейном тракте. Операцию преобразования кода стыка в код цифровой  волоконнооптической системы передачи выполняет преобразователь кода линейного тракта, на выходе которого получается цифровой электрический сигнал, модулирующий ток излучателя передающего оптического модуля. Таким образом, волоконно-оптические системы передачи строятся на базе стандартных систем ИКМ заменой аппаратуры электрического линейного тракта на аппаратуру оптического линейного тракта.

2.1 Линейные коды  в волоконнооптических системах передачи

Оптическое волокно, как среда передачи, а также оптоэлектронные компоненты фотоприёмника и оптического передатчика накладывают ограничивающие требования на свойства цифрового сигнала, поступающего в линейный тракт. Поэтому  между оборудованием стыка и линейным трактом волоконнооптической системы передачи помещают преобразователь кода. Выбор кода оптической системы передачи сложная и важная задача. На выбор кода влияет, во-первых, нелинейность модуляционной характеристики и температурная зависимость излучаемой оптической мощности лазера, которые приводят к необходимости использования двухуровневых кодов.

 Во-вторых, вид энергетического спектра, который должен иметь минимальное содержание низкочастотных (НЧ) и высокочастотных (ВЧ) компонент. Энергетический спектр содержит непрерывную и дискретную части. Непрерывная часть энергетического спектра цифрового сигнала зависит от информационного сигнала и типа кода. Для того, чтобы цифровой сигнал не искажался в усилителе переменного тока фотоприёмника, желательно иметь низкочастотную составляющую непрерывной части энергетического спектра подавленной. В противном случае для реализации оптимального приёма перед решающим устройством регенератора требуется введение дополнительного устройства, предназначенного для восстановления НЧ составляющей, что усложняет оборудование линейного тракта. Существует ещё одна причина для уменьшения низкочастотной составляющей сигнала  -  оптическая мощность, излучаемая полупроводниковым лазером, зависит от окружающей температуры и может быть легко стабилизирована посредством отрицательной обратной связи (ООС) по среднему значению излучаемой мощности только в том случае, когда отсутствует НЧ часть спектра, изменяющаяся во времени. Иначе в цепь ООС придется вводить специальные устройства, компенсирующие эти изменения.

В-третьих, для выбора кода, высокое содержание информации о тактовом синхросигнале в линейном сигнале. В приёмнике эта информация используется для восстановления фазы и частоты синхронизи-рующего колебания, необходимого для управления принятием решения в пороговом  устройстве. Осуществить синхронизацию тем проще, чем больше число переходов логического уровня в цифровом сигнале. Лучшим с точки зрения восстановления тактовой частоты и простоты реализации схемы выделения синхронизирующей информации,  является сигнал, имеющий в энергетическом спектре дискретную составляющую на тактовой частоте.

В-четвертых, код не должен иметь каких-либо ограничений на передава-емое сообщение и обеспечивать однозначную передачу любой последовательно-сти нулей и единиц.

В-пятых, код должен обеспечивать возможность обнаружения и исправления ошибок. Основной величиной, характеризующей качество связи, является частость появления ошибок или коэффициент ошибок, определяемый отношением среднего количества неправильно принятых посылок к их общему числу. Контроль качества связи необходимо производить, не прерывая работу линии. Это требование предполагает использование кода, обладающего избыточностью, тогда достаточно фиксировать нарушение правил формирования кода, что бы контролировать качество связи.

Кроме вышеперечисленных требований на выбор кода оказывает влияние простота реализации, низкое потребление энергии и малая стоимость оборудования линейного тракта.

В современных оптоволоконных системах связи для городской телефонной сети ИКМ-120-4/5 и ИКМ-480-5 для передачи в качестве линейного кода используется код CMI, отвечающий большинству вышеперечисленных требований. Особенностью данного кода является сочетание простоты кодирования и возможности выделения тактовой частоты заданной фазы с помощью узкополосного фильтра. Код строится на основе кода HDB-3 (принцип построения представлен на рис.2.4). Здесь символ +1 преобразуется в кодовое слово 11, символ –1 –в кодовое слово 00, символ 0 -в 01. Из рисунка 2.4 видно, что для CMI характерно значительное число переходов, что свидетельствует о возможности выделения последовательности тактовых импульсов. Текущие цифровые суммы кодов имеют ограниченное значение. Это позволяет контролировать величину ошибки достаточно простыми средствами. Число одноименных следующих друг за другом символов не превышает двух – трех. Избыточность кода CMI можно использовать для передачи служебных сигналов.


2.2 Источники излучения  волоконнооптических систем  передачи

Источники излучения  волоконнооптических систем передачи должны обладать большой выходной мощностью, допускать возможность разнообразных типов модуляции света, иметь малые габариты и стоимость, большой срок службы, КПД и обеспечить возможность ввода излучения в оптическое волокно с максимальной эффективностью. Для  волоконнооптических систем передачи  потенциально пригодны твердотельные лазеры, в которых активным материалом служит иттрий алюминиевый гранат, активированный ионами ниодима с оптической накачкой, у которого основной лазерный переход сопровождается излучением с длиной волны 1,064 мкм. Узкая диаграмма направленности и способность работать в одномодовом  режиме с низким уровнем шума являются  плюсами данного типа источников. Однако большие габариты, малый КПД, потребность во внешнем устройстве накачки являются основными причинами, по которым этот источник не используется в современных  волоконно- оптических системах передачи. Практически во всех волоконнооптических системах передачи, рассчитанных на широкое применение, в качестве источников излучения сейчас используются полупроводниковые светоизлучающие диоды и лазеры. Для них характерны в первую очередь малые габариты, что позволяет выполнять передающие оптические модули в интегральном исполнении. Кроме того, для полупроводниковых источников излучения характерны невысокая стоимость и простота обеспечения модуляции.

2.3 Детекторы  волоконнооптических систем передачи

Функция детектора волоконнооптической системы передачи сводится к преобразованию входного оптического сигнала, который затем подвергается усилению и обработке схемами фотоприемника. Предназначенный для этой цели фотодетектор должен воспроизводить форму принимаемого оптического сигнала, не внося дополнительного шума, то есть обладать требуемой широкополосностью, динамическим диапазоном и чувствительностью. Кроме того, фотодетектор  должен иметь малые размеры (но достаточные для надежного соединения с оптическим волокном), большой срок службы и быть не чувствительным к изменениям параметров внешней среды. Существующие фотодетекторы далеко не полно удовлетворяют перечисленным требованиям. Наиболее подходящими среди них для применения в волоконнооптических системах передачи являются полупроводниковые p-i-n фотодиоды и лавинные фотодиоды. Они имеют малые размеры и достаточно хорошо стыкуются с волоконными световодами.

Достоинством лавинных фотодиодов является высокая чувствительность (может в 100 раз превышать чувствительность p-i-n фотодиода), что позволяет использовать их в детекторах слабых оптических сигналов. Однако, при использовании лавинных фотодиодов нужна жесткая стабилизация напряжения источника питания и температурная стабилизация, поскольку коэффициент лавинного умножения, а следовательно фототок и чувствительность лавинного фотодиода, сильно зависят от напряжения и температуры. Тем не менее, лавинные фотодиоды успешно применяются в ряде современных  волоконнооптических системах связи, таких как ИКМ-120/5, ИКМ-480/5.

2.4 Оптические кабели в волоконнооптических системах передачи

Оптический кабель предназначен для передачи информации, содержащейся в модулированных электромагнитных колебаниях оптического диапазона. В настоящее время используется диапазон длин волн от 0.8 до 1.6 мкм, соответствующий ближним инфракрасным волнам. оптического диапазона.

Передача света по любому световоду может осуществляться в  двух режимах: одномодовом и многомодовом.

  


где l - длина волны передаваемого излучения, n1 и n2 – показатели преломления материалов световода.

Если неравенство (1.1) не удовлетворено, то в световоде устанавливается многомодовый режим. Очевидно, что тип модового режима зависит от характеристик световода (а именно радиуса сердцевины и величины показателей преломления) и длины волны передаваемого света.

Различают световоды со ступенчатым профилем, у которых показатель преломления сердцевины n1 одинаков по всему поперечному сечению, и градиентные  - с плавным профилем, у которых n1 уменьшается от центра к периферии (рис.2.6).

Фазовая и групповая скорости каждой моды в световоде зависят от частоты, то есть световод является дисперсной системой. Вызванная этим волноводная дисперсия является одной из причин искажения передаваемого сигнала. Различие групповых скоростей различных мод в многомодовом режиме называется модовой дисперсией. Она является весьма существенной причиной искажения сигнала, поскольку он переносится по частям многими модами. В одномодовом режиме отсутствует модовая дисперсия, и сигнал искажается значительно меньше, чем в многомодовом, однако в многомодовый световод можно ввести большую мощность.


На сегодняшний день промышленностью выпускаются оптические кабели имеющие четыре и восемь волокон(марки ОК). Конструкция ОК-8 приведена на рис.2.7. Оптические волокна 1 (многомодовые, ступенчатые) свободно располагаются в полимерных трубках 2. Скрутка оптических волокон – повивная, концентрическая. В центре – силовой элемент 3 из высокопрочных полимерных нитей в пластмассовой трубке 4. Снаружи – полиэтиленовая лента 5 и оболочка 6. Кабель ОК-4 имеет принципиально те же конструкцию и размеры, но четыре ОВ в нем заменены пластмассовыми стержнями.


К недостаткам волоконнооптической технологии следует отнести:

    А. Необходимость использования оптических коннекторов  с малыми оптическими потерями и большим ресурсом на подключение-отключение. Точность изготовления таких элементов линии связи очень высока. Поэтому производство таких компонентов оптических линий связи очень дорогостоящее.

   Б. Монтаж оптических волокон требуется прецизионное, а потому дорогое, технологическое оборудование.

В. При аварии (обрыве) оптического кабеля затраты на восстановление выше,

чем при работе с медными кабелями.

Тем не менее, преимущества от применения волоконнооптических линий связи  настолько значительны, что, несмотря на перечисленные недостатки оптического волокна, эти линии связи все шире используются для передачи информации.

2.5 Особенности одноволоконных оптических систем передачи

Широкое применение на городской телефонной сети волоконно-оптических систем передачи для организации меж узловых соединительных линий позволяет  решить проблему увеличения пропускной способности сетей. В ближайшие годы потребность  в увеличении числа каналов будет  быстро расти. Наиболее доступным способом увеличения пропускной способности  волоконных оптических систем передачи в два раза является передача по одному оптическому волокну двух сигналов в противоположных направлениях. Анализ опубликованных материалов и завершенных исследований и разработок одноволоконных оптических  систем передачи позволяет определить принципы построения таких систем.

Наиболее распространенные и хорошо изученные одноволоконные оптические системы передачи, работающие на одной оптической несущей, кроме оптического передатчика и приемника содержат пассивные оптические разветвители. Замена оптических разветвителей на оптические циркуляторы позволяет уменьшить потери в линии 6 дБ, а длину линии – соответственно увеличить. При использовании разных оптических несущих и устройств спектрального уплотнения каналов можно в несколько раз повысить пропускную способность и соответственно снизить  стоимость в расчете на один канало- километр.

Увеличить развязку между противонаправленными оптическими сигналами, снизить требования к оптическим разветвителям, а следовательно, уровень помех и увеличить длину линии можно путем специального кодирования, при котором передача сигналов одного направления осуществляется в паузах передачи другого направления. Кодирование сводится к уменьшению длительности оптических импульсов и образованию длительных пауз, необходимых для развязки сигналов различных направлений. В  волоконнооптических системах передачи, построенных подобным образом, могут быть использованы эрбиевые волоконнооптические усилители. Дуплексная связь организуется по принципу разделения по времени, которое изменяется с помощью изменения направления накачки.

Развязку между оптическими сигналами можно увеличить,  не прибегая к сужению импульсов, если для передачи в одном направлении используется когерентное оптическое излучение и соответствующие методы модуляции, а в другом – модуляцию сигнала по интенсивности. При этом существенно уменьшается влияние как оптических разветвителей, так и обратного рассеяния оптического волокна.

Если позволяет энергетический потенциал аппаратуры, на относительно коротких линиях может быть использован только один оптический источник излучения на одном конце линии. На другом конце вместо модулируемого оптического источника применяется модулятор отраженного излучения. Такой метод дуплексной связи по одному оптическому волокну обеспечивает высокую надежность оборудования и применение волоконнооптических систем передачи в экстремальных условиях эксплуатации.

По достижении высокого уровня развития волоконнооптической техники, когда станет практически возможным передавать оптически сигналы на различных модах оптического волокна с достаточной для  волоконнооптической системы передачи развязкой, дуплексная связь по одному оптическому волокну  может быть организована на двух разных модах, распространяющихся в разных направлениях, с использованием модовых фильтров и формирователей мод излучения.

Каждая одноволоконная оптическая система передачи  из рассмотренных типов имеет достоинства и недостатки. В таблице 2.1 показаны достоинства (знаком «+») систем, их возможности в отношении достижения наилучших параметров.

Таблица 2.1  - Сравнительная характеристика принципов построения одноволоконных  оптических систем передачи.

Тип  волоконно- оптической системы передачи Минимальное затухание, максимальная длина РУ Защищен-ность сигналов Большой объем передаваемой информации Относи-тельно низкая стоимость Высокая надежность и стойкость к внешним воздействиям С оптическими разветвителями + С оптическими циркуляторами + Со спектральным уплотнением + + С разделением по времени с использованием оптических переключателей + С разделением по времени с использованием оптических усилителей + + С когерентным излучением в одном направлении и модуляцией интенсивности в другом + + С одним источником излучения + + С модовым разделением + С когерентным излучением для обоих направлений с разными видами модуляции + + + 2.6 Построение передающих и приемных устройств в волоконнооптических системах передачи

2.6.1 Виды модуляции оптических колебаний.

Для передачи информации по оптическому волокну необходимо изменение параметров оптической несущей в зависимости от изменений исходного сигнала. Этот процесс называется модуляцией.

     Существует три вида оптической модуляции:

Прямая модуляция. При этом модулирующий сигнал управляет интенсивностью (мощностью) оптической несущей. В результате мощность излучения изменяется по закону изменения модулирующего сигнала (рис.2.9).


Внешняя модуляция. В этом случае для изменения параметров несущей используют модуляторы, выполненные из материалов, показатель преломления которых зависит от воздействия либо электрического, либо магнитного, либо акустического полей. Изменяя исходными сигналами параметры этих полей, можно модулировать параметры оптической несущей (рис.2.10).

Внутренняя модуляция. В этом случае исходный  сигнал управляет параметрами модулятора, введённого в резонатор лазера (рис.2.11).

Для внешней модуляции электрооптические (ЭОМ) и акустооптические (АОМ) модуляторы.

Принцип действия электрооптического модулятора основан на электрооптическом эффекте – изменении показателя преломления ряда материалов под действием электрического поля. Эффект, когда показатель преломления линейно зависит от напряженности поля, называется эффектом Поккельса. Когда величина показателя преломления нелинейно зависит от напряженности электрического поля, то это эффект Керра.

Акустооптические модуляторы основаны на акустооптическом эффекте – изменении показателя преломления вещества под воздействием ультразвуковых волн. Ультразвуковые волны возбуждаются в веществе с помощью пъезокристалла, на который подается сигнал от генератора с малым выходным сопротивлением и большой акустической мощностью.

Наиболее простым с точки зрения реализации видом модуляции является прямая модуляция оптической несущей по интенсивности на основе полупроводникового источника излучения. На рис.2.12 представлена схема простейшего прямого модулятора. Здесь исходный сигнал через усилитель подаётся на базу транзистора V1, в коллектор которого включен излучатель V2. Устройство смещения позволяет выбрать рабочую точку на ваттамперной характеристике излучателя.


2.6.2 Оптический передатчик прямой модуляции

Структурная схема оптического передатчика прямой модуляции приведенная на рис.2.13, является  оптимальной, т.к. наиболее рационально реализует все функциональные возможности и достоинства выбранного вида модуляции.

  Преобразователь кода ПК преобразует стыковой код, в код, используемый в линии, после чего сигнал поступает на модулятор. Схема оптического модулятора исполняется в виде передающего оптического модуля (ПОМ), который помимо мо

 
     
Бесплатные рефераты
 
Банк рефератов
 
Бесплатные рефераты скачать
| мероприятия при чрезвычайной ситуации | Чрезвычайная ситуация | аварийно-восстановительные работы при ЧС | аварийно-восстановительные мероприятия при ЧС | Интенсификация изучения иностранного языка с использованием компьютерных технологий | Лыжный спорт | САИД Ахмад | экономическая дипломатия | Влияние экономической войны на глобальную экономику | экономическая война | экономическая война и дипломатия | Экономический шпионаж | АК Моор рефераты | АК Моор реферат | ноосфера ба забони точики | чесменское сражение | Закон всемирного тяготения | рефераты темы | иохан себастиян бах маълумот | Тарых | шерхо дар борат биология | скачать еротик китоб | Семетей | Караш | Influence of English in mass culture дипломная | Количественные отношения в английском языках | 6466 | чистонхои химия | Гунны | Чистон
 
Рефераты Онлайн
 
Скачать реферат
 
 
 
 
  Все права защищены. Бесплатные рефераты и сочинения. Коллекция бесплатных рефератов! Коллекция рефератов!