МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ
КУРСОВАЯ РАБОТАтема:
«Вычисление определённого интеграла
с помощью метода трапеций
на компьютере»
Выполнил:
студент ф-та
ЭОУС-1-12
Зыков И.
Принял:
Зоткин С. П.
Москва 2001
1. Введение:
Определенный интеграл от функции, имеющей неэлементарную первообразную, можно вычислить с помощью той или иной приближенной формулы. Для решения этой задачи на компьютере, можно воспользоваться формулами прямоугольников, трапеций или формулой Симпсона. В данной работе рассматривается формула трапеций.
Пусть I=ò f(x)dx, где f(x) – непрерывная функция, которую мы для наглядности будем предполагать положительной. Тогда I представит собой площадь криволинейной трапеции, ограниченной линиями x=a, x=b, y=0, y=f(x). Выберем какое-нибудь натуральное число n и разложим отрезок [a,b] на n равных отрезков при помощи точек x0=a