ЗАДАНИЕ
ВАРИАНТ № 6 (16)
ПРОЕКТИРОВАНИЕ АВТОМАТИЧЕСКОГО
УСТРОЙСТВА №1
Спроектировать на базе интегральных логических элементов (далее ИЛЭ) серии К155 заторможенный мультивибратор, автоколебательный мультивибратор, электронный ключ на базе высокочастотного транзистора, выбрать управляющий триггер серии К155 и двоичный счетчик на триггерах, комбинационные схемы на базе ИЛЭ серии К155.
|Автоколебательный |Заторможенный |Счётчик |
|мультивибратор |мультивибратор | |
|TU2, |UПФ/UЗФ |Т | tU2 |UПФ/UЗФ |K |
|мкс. | | |мкс. | |кол - во импульсов|
| 6 | 0.79 |12 |1 |0.79 |60 |
| |
|Электронный ключ на транзисторе |
| | | | | | |
|t, |U, |E000|t, |t, |C |
|не менее|В |00[p|град. |мкс. |ключа |
| | |ic] |max | |пФ |
|мкс. | |В | | | |
| | | | | | |
|384 |5 |1,5 |60 |3 |10 |
tU1 — длительность выходных импульсов мультивибратора.
UПФ — напряжение переднего фронта импульса._
UЗФ — напряжение заднего фронта импульса. tU2 — длительность выходного импульса заторможенного мультивибратора.
К — коэффициент пересчёта счётчика. t---длительность импульса на выходе ключа.
U— амплитуда выходного импульса.
E — напряжение базового смещения. t град max---максимальная температура окружающей среды. t---фронт выходного импульса.
C---ёмкость нагрузки ключа.
Uо.выпр. - номинальное выпрямленное напряжение выпрямителя (входное
напряжение стабилизатора);
Iо.max.выпр.- максимальный ток выпрямителя;max
Iо.min.выпр.- минимальный ток выпрямителя;
amin- относительное отклонение напряжения в сторону понижения;
amax- относительное отклонение напряжения в сторону повышения;
Kп.выпр- коэффициент пульсации напряжения на выходе выпрямителя;
Kп.ф. - коэффициент пульсации напряжения на выходе сглаживающего фильтра
должен быть в 10 раз меньше.
В структурную схему входят следующие функциональные блоки:
1- заторможенный мультивибратор ЗМ;
2- RS-триггер;
3- электронный ключ на биполярном транзисторе;
4- схема сопряжения ключа со схемой включения стабилизатора постоянного напряжения;
5- понижающий трансформатор;
6- выпрямитель;
7- сглаживающий фильтр;
8- стабилизатор компенсационного типа для питания автоколебательного мультивибратора;
9- автоколебательный мультивибратор на интегральных логических элементах
(ИЛЭ);
10- двоичный суммирующий счетчик;
11- комбинационная схема КС1, определяющая какое количество импульсов должен подсчитать двоичный счетчик;
12- комбинационная схема КС2, управляющая передачей содержимого счетчика на выходную шину данных BD;
13- стабилизатор компенсационного типа для питания остальных цифровых схем устройства.
Принцип действия .
Автоматическое устройство 3 после включения должно сформировать питающие
схемы напряжение и под управлением запускающего импульса сгенерировать
последовательность прямоугольных импульсов в заданными параметрами.
Количество импульсов задается параметром К счетчика. Результат работы
устройства может быть выведен на схему индикации или на какое-либо
исполнительное устройство через шину данных BD.
Устройство работает следующим образом. При включении автоматического
устройства напряжение сети ~220 B подается на силовой понижающий
трансформатор 5, выпрямляется выпрямителем 6, сглаживается фильтром 7 и
подает на вход стабилизатора мультивибратора 8 и стабилизатора напряжения
для питания всех цифровых микросхем устройства (блок 13). Напряжение
питания подается на все блоки схемы, кроме мультивибратора. Запускающий
импульс переводит RS-триггер управления 2 в нулевое состояние и гасит
суммирующий двоичный счетчик 10 сигналом R и запускает заторможенный
мультивибратор 1. Выходной сигнал RS-триггера открывает электронный ключ 3
на выходе которого появляется выходное напряжение равное нулю. Это
напряжение с помощью устройства сопряжения 4 формирует сигнал включения
стабилизатора мультивибратора 8. Автоколебательный мультивибратор 9
начинает генерировать последовательность прямоугольных импульсов с
заданными параметрами, которые подсчитываются суммирующим двоичным
счетчиком 10. Двоичный код счетчика анализируется комбинационной схемой КС1
(блок 11), и как только этот код станет равным заданному числу К,
вырабатывается единичный управляющий сигнал, который переключает RS-триггер
в нулевое состояние. При этом ключ закрывается, устройство сопряжения 4
формирует напряжение +2В, которое отключает стабилизатор напряжения 8 и
мультивибратор, счетчик фиксируется в последнем состоянии, а результат
счета через комбинационную схему КС2 (блок 12) выводятся на шину данных BD.
В таком состоянии автоматическое устройство будет находиться до прихода
следующего запускающего импульса.
Uо.выпр. - номинальное выпрямленное напряжение выпрямителя (входное
напряжение стабилизатора);
Iо.max.выпр.- максимальный ток выпрямителя;max
Iо.min.выпр.- минимальный ток выпрямителя;
amin- относительное отклонение напряжения в сторону понижения;
amax- относительное отклонение напряжения в сторону повышения;
Kп.выпр- коэффициент пульсации напряжения на выходе выпрямителя;
Kп.ф. - коэффициент пульсации напряжения на выходе сглаживающего фильтра
должен быть в 10 раз меньше.
1.Заторможенный мультивибратор с резистивно-емкостной обратной связью на элементах. И - НЕ
1.1 Общие сведения. Принцип действия. Методика расчёта.
Мультивибратор — это простой релаксационный генератор прямоугольных
импульсов, к которым не предъявляют жёстких требований по параметрам.
Используется положительная обратная связь. Есть два вида возбуждения :
жёсткое и мягкое. При жёстком — оба плеча в одинаковом состоянии (нет
генерации).
Заторможенный мультивибратор (далее, как ЗМ) предназначен для формирования прямоугольного импульса с заданной амплитудой и длительностью в ответ на один запускающий импульс.
ЗМ можно получать из соответствующих автоколебательных мультивибраторов (далее, как АМ) путем замены одной из ветвей резистивно- емкостной обратной связи цепью запуска.
Длительность импульса запуска, с одной стороны, должна быть достаточной для переключения ИЛЭ, т.е. больше суммарной задержки их переключения (t01зд или t10 зд). С другой стороны, длительности формируемого импульса tU. В противном случае мультивибратор во время действия запускающего импульса будет в неопределённом состоянии.
ЗМ с резистивно-емкостной обратной связью на ИЛЭ И-НЕ ТТЛ получается
из АМ (рис.1.1) путём исключения, например, конденсатора С2, резистора R2 и
диода VD2. При этом резистивно-емкостная обратная связь заменяется
непосредственной связью выхода ИЛЭ DD1.2 с одним из входов ИЛЭ DD1.2.
Запускающие импульсы отрицательной полярности с амплитудой Uвх »Eвых,
подаётся на свободный от триггерного включения вход ИЛЭ DD1.1. В исходном
состоянии ИЛЭ DD1.1 и DD1.2 находятся в нулевом и едином состояниях
соответственно. Под действием запускающего импульса (t=t) логических
элементов изменяют свои состояния на противоположные, времязадающий
конденсатор начинает заряжаться через выход ИЛЭ DD1.1 и резистор R.
Напряжение Uвх2 на выходе ИЛЭ DD1.2 при этом экспоненциально
изменяется от Emax, стремясь к нулю. Формирование рабочего импульса
длительностью tU заканчивается при Uвх2 (tU)=U1n (t=t), так как
дальнейшее уменьшение входного напряжения приводит к увеличению выходного
напряжения ИЛЭ DD1.2. При t > t2 в мультивибраторе развивается
регенеративный процесс, по окончании которого ИЛЭ возвращается в исходное
состояние, а напряжение Uвх2 уменьшается скачком от U1n до (U1n -
E1вых). Далее мультивибратор в два этапа возвращается в исходное состояние.
Сначала конденсатор С разряжается через смещенный в прямом направлении диод
VD, а затем, после запирания диода, конденсатор перезаряжается входным
вытекающим током Iвх ИЛЭ DD1.2, а напряжение Uвх2 стремиться к значению
U. Если пренебречь временем разряда С через диод VD, то tB (R || R )*С* ln [ 10 + ].
Длительность импульса равна: tU2 = (R + R)*С * ln
Если период запускающих импульсов Т > tU + tB, то мультивибратор успеет восстановиться.
Для получения почти прямоугольной формы выходных импульсов заторможенного мультивибратора при Т >= tU + t B сопротивление времязадающего резистора R выбирается таким образом:
R < R1вх *[(I1вх * R1вх / U0n) - 1]
1.2 Расчёт заторможенного мультивибратора.
Произведём расчёт заторможенного мультивибратора на ИЛЭ И - НЕ серии
К155(стандартной).
Основные параметры серии К155:
| Параметры | | Параметры | |
|I1ВХ, mА | - 0,8 |R1ВХ, кОм | 10 |
|I0ВХ, mА | 0 |R0ВХ, кОм | Ґ |
|E ,В | 4,2 |R, Ом | 200 |
|E ,В | 0 |R, Ом | 0 |
|U , В не | 2,4 |K, не менее | 8 |
|менее | |UВХ MAX, В |5,5 |
|U ,В не |0,4 | | |
|более | | | |
|U ,В | 1,5 |UВХ MIN, В | - 0,4 |
|U ,В | 0,5 |I MAX, mА | 10 |
|U ,В | 1 |f MAX, МГц | 10 |
| | |PПОТ, мВт, не более | |
Проверяем условие:
R < R1ВХ*[(I 1ВХ * R1ВХ / U0П)-1]-1=666,7(Ом) (1.1)
Uпф/Uзф=R=752,38(Ом)
R не удовлетворяет условию (1.1)
Берем Uпф/Uзф=0,76 Ю R=633,33(Ом)
Из шкалы номинальных значений берём R=620(Ом)
Найдём ёмкость конденсатора С: tU2 = (R + R)*С * ln
С = =
= =
=1,626*10(Ф)
Выбираем С =1,5*10-9 (Ф)
Рассчитаем время восстановления мультивибратора: tB (R || R )*С* ln [ 10 + ] =
=(1,613*10+5*10)*1,5*10*ln[10+] =
=1,383*10(c)
Общая характеристика:
Резистор: R = 620 Ом, тип МЛТ, номинальная мощность Р =.........Вт, предельное напряжение -.........В
Конденсатор: С = 1,5 пФ, тип......., предельное напряжение -.........В.
2. Автоколебательный мультивибратор на базе
ИЛЭ И -НЕ.
2.1 . Общие сведения. Принцип действия. Методика расчёта.
Автоколебательный мультивибратор (далее АМ) генерирует последовательность прямоугольных импульсов с заданной длительностью, амплитудой и частотой повторения.
Рассмотрим методику проектирования АМ с перекрёстными резисторно -
ёмкостными обратными связями на элементах И – НЕ. В состав мультивибратора
входят: два инвертора на двухвходовых ИЛЭ И - НЕ DD1.1 и DD1.2, резисторы
R1 и R2, конденсаторы C1 и C (рис.2.1).
При использовании m - входовых ИЛЭ И - НЕ ТТЛ (m -1) незадействованных входов подключается к источнику питающего напряжения через резистор 1 кОм или объединяются все m входов (при m 3), т.к. объединение входов при m > 3 приводит к снижению входных сопротивлений элементов (в m раз). При заземлении хотя бы одного из входов ИЛЭ будет постоянно находиться в единичном состоянии.
При работе мультивибратора в автоколебательном режиме инверторы DD1.1
и DD1.2 поочерёдно находятся в единичном и нулевом состояниях. Время
пребывания инверторов в нулевом или единичном состоянии определяется
временем заряда одного из конденсаторов С1 или С2. Если ИЛЭ DD1.1 находится
в единичном состоянии, а DD1.2 в нулевом (t =0), то конденсатор С1 заряжен
током, протекающим через выход ИЛЭ DD1.1 и резистор R1. Этот ток, как и
входной ток ИЛЭ DD1.2,пренебрежимо мал и не оказывает существенного влияния
на процесс заряда конденсатора. По мере заряда конденсатора C1, входное
напряжение UВХ2 инвертора DD1.2 уменьшается по экспоненциальному закону с
постоянной времени t1 , стремясь к нулевому уровню. Когда напряжение UВХ2
достигнет порогового напряжения U, ниже которого дальнейшее уменьшение
входного напряжения приводит к уменьшению выходного напряжения инвертора
ТТЛ, в мультивибраторе развивается регенеративный процесс, при котором
состояния элементов DD1.1 и DD1.2 изменяются на противоположные (t = t1).
Скачкообразное уменьшение выходного напряжения UВЫХ1 вызывает уменьшение
входного напряжения UВХ2, что приводит к быстрому разряду конденсатора C1,
а затем к его перезаряду вытекающим током DD1.2 через резистор R1. Входное
напряжение UВХ2 при этом возрастает до значения UВХ(t),
определяемого моментом окончания процесса заряда конденсатора C2 с
постоянной времени t2 в противоположной ветви мультивибратора (t= =t2).
Таким образом, процессы периодически повторяются, и на выходах ИЛЭ
DD1.1 и DD1.2 формируется два изменяющихся в противофазе импульсных
напряжения с длительностями t U1 и t U2.
Так как на протяжении всего времени заряда конденсатора С2 (С1) и перезаряда конденсатора С1(С2) ИЛЭ DD1.2 (DD1.1) должен находится в единичном состоянии, его входное напряжение UВХ2(UВХ1) не должно превышать порогового уровня U, следовательно, сопротивление времязадающего резистора R1 (R2) должно быть достаточно малым. При этом необходимо вычислить минимальное и максимальное значение резисторов R1 и R2.
Максимально допустимое значение резистора вычисляется по следующему неравенству:
R < R1ВХ *[( I1ВХ * R1ВХ / U) - 1] - 1 (2.1)
Если при выборе сопротивления навесных резисторов R1 и R2 ограничиваться выражением (2.1), то при определённых условиях в мультивибраторе может наступить жёсткий режим возбуждения, когда после включения источника питающего напряжения оба инвертора оказываются в единичном состоянии. Для устранения такого режима необходимо выполнить условие:
R > R1ВХ * [( I1ВХ*R1ВХ / U- 1] - 1 (2.2)
При выполнении (2.2) рабочие точки обоих ИЛЭ оказываются на
динамических участках передаточных характеристик и, следовательно, даже
небольшое различие в коэффициентах усиления К приводит к одному из двух
квазиустойчивых состояний, когда на выходе одного ИЛЭ устанавливается
высокий уровень выходного напряжения, а на выходе другого — низкий.
Самовозбуждение мультивибратора в этом случае будет мягким.
Длительности импульсов на выходе мультивибратора можно определить по следующим выражениям:
t (R1 + R1ВЫХ)*С1*ln
t(R2 + R1ВЫХ)* С2* ln
Выходные импульсы рассматриваемого мультивибратора по форме близки к прямоугольным. Отношение амплитуд переднего и заднего фронтов выходного напряжения определяется соотношением:
UПФ / UЗФ = R / (R + R) где R = R1 для ИЛЭ DD1.1., R = R2 для ИЛЭ DD1.2.
Скважность генерируемых импульсов:
Q = 1 + tU2 / tU1
Если t =t ,то C=C.
2. Расчёт автоколебательного мультивибратора.
Произведем расчёт автоколебательного мультивибратора на ИЛЭ И - НЕ серии К155:
Проверяем условия :
R < R1ВХ*[(I 1ВХ * R1ВХ / U)-1] = 230,47(Ом)
R > R1ВХ*[(I 1ВХ * R1ВХ / U)-1]-1 = 666,67(Ом)
Uпф/Uзф= 0,79= R / (R + 200)
R - 0,79*R = 0,79*200
R = 752,38 (Ом)
Условия выполняются.
Выбираем из шкалы номинальных значений R = 750 Oм.
Рассчитаем ёмкость конденсаторов.
Т.к. t =T - t=12-6=6=t ,то мультивибратор симметричный, и C =C
C= =
= =6,76*10(Ф)
Выбираем из шкалы номинальных значений
C = C= 6,8*10Ф.
3. Электронный ключ на транзисторе.
3.1. Общие сведения. Принцип действия.
Электронный ключ –основной функциональный узел дискретной схемотехники для переключения токов или потенциалов на нагрузке. []
В импульсных устройствах очень часто требуется коммутировать
(включать и выключать) электрические цепи. Эта операция выполняется
бесконтактным способом с помощью транзисторных ключей.
Ключевые схемы используются для построения генераторов и формирователей импульсов , а также различных логических схем цифровой вычислительной техники. Ключ выполняет элементарную операцию инверсии логической переменной и называется инвертором.
В статическом режиме ключ находится в состоянии «включено» (ключ замкнут), либо в состоянии «выключено» (ключ разомкнут).
Переключение ключа из одного состояния в другое происходит под
воздействием входных управляющих сигналов : импульсов или уровней
напряжения. Простейшие ключевые схемы имеют один управляющий вход и один выход.
Основу ключа составляет транзистор в дискретном или интегральном исполнении.
В зависимости от состояния ключ шунтирует внешнюю нагрузку большим или малым выходным сопротивлением. В этом и заключается коммутация цепи, производимая транзисторным ключом.
Основными параметрами ключа являются :
--быстродействие, определяемое максимально возможным числом переключений в секунду ; для интегральных ключевых схем оно составляет миллионы коммутаций ;
--длительность фронтов выходных сигналов ;
--внутренние сопротивления в открытом и закрытом состоянии ;
--потребляемая мощность ;
--помехоустойчивость, равная уровню помехи на входе, вызывающей ложное переключение ;
--стабильность пороговых уровней, при которых происходит переключение ;
--надежность работы в реальных условиях старения радиодеталей, изменения источников питания и т.д.
В ключевых схемах в общем случае используются все основные схемы включения транзисторов: с общей базой (ОБ), с общим коллектором (ОК), ключ-«звезда», с общим эмиттером (ОЭ). Наибольшее применение получили транзисторные ключи по схеме с ОЭ.
Статические характеристики.
Поведение ключа в статическом режиме определяется выходными
I и входными I характеристиками транзистора по схеме с
ОЭ.
На выходных характеристиках выделяются три области, которые определяют режим отсечки коллекторного тока, активный режим и режим насыщения ключевой схемы.
Область отсечки определяется точками пересечения линии нагрузки
R с самой нижней кривой семейства выходных характеристик с
параметром I= - I. Этой области соответствует режим
отсечки, при котором:
--транзистор закрыт, т.к. оба его перехода смещены в обратном направлении
U>0, U