Чтение RSS
Рефераты:
 
Рефераты бесплатно
 

 

 

 

 

 

     
 
Системное автоматизированное проектирование
Системное автоматизированное проектирование

ЛЕКЦИЯ №1

Тема: "Системы автоматизированного проектирования и процесс
разработки радиоэлектронной аппаратуры"

ЦЕЛЬ ЗАНЯТИЯ:

1. Ознакомить с основными понятиями системного автоматизированного проектирования. Определить место сис-тем автоматизированного проектирования в процессе проектирования.
2. Изучить структуру системы автоматизированного обеспечения.

Время: 2 часа

Литература: Бутаков Е.А. и др. Обработка изображений на ЭВМ. М.: Радио и связь, 1987, стр. 119-124.

ОБЩИЕ СВЕДЕНИЯ О ПРОЕКТИРОВАНИИ

Предварительно остановимся на рассмотрении ряда понятий.

СИСТЕМА - целостное образование, состоящее из взаимосвязанных (взаимодействующих) компонент, (элементов, частей) и обладающее свойствами, не сводимыми к свойствам этих компонент и не выводимыми из них.
В приведенном определении зафиксировано основное свойство системы - ее целостность, единство, достигаемое через посредство определенных взаимосвязей (взаимодействий) элементов системы и проявляющееся в возникновении новых свойств, которыми элементы системы не обладают. Данное определение включает наиболее характерные особен-ности концепции системы.
Вместе с тем необходимо представлять, что реальные системы существуют в пространстве и во времени и следова-тельно, взаимодействуют с окружающей их средой и характеризуются теми или иными переменными во времени вели-чинами.
Важным шагом на пути от вербального к формальному определению системы является определение понятия моде-ли системы.
МОДЕЛЬ - (некоторой исходной системы) система, в которой отражаются по определенным законам те или иные стороны исходной системы.
Среди различных способов моделирования важнейшее место занимает моделирование с помощью средств матема-тики - математическое моделирование.
Формальное определение системы по существу сводится к определению соответствующей математической модели.
В основу построения математических моделей систем может быть положено следующее определение системы:
СИСТЕМА - определяется заданием некоторой совокупности базисных множеств (элементов, компонент системы), связанных между собой рядом отношений, удовлетворяющих тем или иным правилам (аксиомам) сочетания как элемен-тов множеств , так и самих отношений.
Последнее определение содержит необходимую основу для формализации. В простейших случаях это определение описывает систему как одно или несколько взаимосвязанных отношений, заданных на одном или нескольких множествах. В то же время данное определение допускает возможность нескольких вариантов таких представлений для одной и той же системы, а также использование их композиции. Последнее имеет место в случае необходимости многоаспектного мо-делирования системы.
ПРОЕКТИРОВАНИЕ - комплекс работ по исследованию, расчетам и конструированию нового изделия или нового процесса.
В основе проектирования - первичное описание - техническое задание.
Проектирование называют АВТОМАТИЗИРОВАННЫМ, если осуществляется преобразование первичного описа-ния при взаимодействии человека с ЭВМ, и автоматическим, если все преобразования выполняются без вмешательст-ва человека только с использованием ЭВМ.
СИСТЕМА АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ - организационно-техническая система, представ-ляющая собой подразделения проектной организации и комплекс средств автоматизированного проектирования.
Автоматизация приводит к существенному изменению методов проектирования.
Вместе с тем, сохраняются многие положения и принципы традиционного проектирования, такие как:
необходимость блочно-иерархического подхода,
деление процесса проектирования на этапы,
деление на уровни представления об объектах.

ВЗАИМОДЕЙСТВИЕ РАЗРАБОТЧИКОВ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ С СИСТЕМОЙ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ

Проектирование изделий радиоэлектронной аппаратуры представляет собой многоэтапный процесс (итеративный). В ходе проектирования последовательно уточняется и детализируется описание будущего изделия. Этот процесс пред-полагает наличие многих уровней описания. На рис.1 изображен процесс проектирования в виде совокупности основ-ных этапов и переходов между ними, показаны основные виды документации , получаемые при выполнении этапов.
Например, эскизный проект является результатом эскизного проектирования. С другой стороны, эскизный проект служит исходным документом для технического проектирования.
Переходы от одних этапов проектирования к другим в направлении сверху вниз естественны и соответствуют нормаль-ному ходу. Переходы в противоположных направлениях возникают, когда на последующих стадиях проектирования вы-является невозможность практической реализации решений, принятых на предшествующих этапах. Это заставляет проектировщиков пересматривать ранее принятые решения. Иногда ошибки проявляются на этапах изготовления серийной продукции или даже в ходе эксплуатации.

Последовательность прохождения этапов разработки изделия, цели и задачи, стоящие перед проектировщиками на отдельных этапах, состав проектной документации и требования к ней регламентированы соответствующими ГОСТами.
Кратко охарактеризуем основные этапы проектирования.

ПОДГОТОВИТЕЛЬНЫЙ ЭТАП.

Основная задача - изучение назначения изделия, условий эксплуатации и производств, на которых предполагается его изготовление. Цель этапа - разработка технического задания (ТЗ), в котором содержится информация о назначении , основных технических характеристиках, условиях эксплуатации, транспортировки и хранения.

ЭСКИЗНОЕ ПРОЕКТИРОВАНИЕ.

Основная задача - определение возможности разработки изделия в соответствии требованиям ТЗ. При этом опреде-ляют техническую основу изделия (физические элементы и детали), ориентировочную оценку состава и количест-ва оборудования, разрабатывают структуру, определяют технические характеристики изделия и устройств, входящих в его состав.
При этом может выявиться невозможность построения изделия, отвечающего требованиям ТЗ. В этом случае требуется корректировка ТЗ с последующим его утверждением заказчиком, либо дальнейшая разработка прекращает-ся.
ТЕХНИЧЕСКОЕ ПРОЕКТИРОВАНИЕ
Задачи :
- подробная разработка принципа работы изделия и всех его составных блоков;
- уточнение технических характеристик;
- разработка конструкции блоков, узлов и всего изделия;
- получение конструкторских характеристик;
- согласование взаимодействия всех составных частей изделия;
- разработка технологии их изготовления;
- определение технологии сборки и наладки, методики и программных испытаний.
В результате должно быть подготовлено производство опытного образца.

РАБОЧЕЕ ПРОЕКТИРОВАНИЕ

Основная задача - разработка технологической оснастки и оборудования для серийного выпуска изделия.

Внедрение систем автоматизированного проектирования (САПР) не изменяет сути процесса проектирования. Тем не менее, характер деятельности разработчика с внедрением САПР существенно меняется, так как разработка изделия в автоматизированном варианте предполагает согласованное взаимодействие оператора и ЭВМ. Это обеспечивает суще-ственное повышение производительности труда и повышение качества проекта.
В процессе автоматизированного проектирования на оператора возлагаются творческие функции. Как правило, это связано с выбором варианта решения, определения структуры, метода расчета и др. Эти функции трудно формализо-вать. Здесь опыт и талант конструктора, инженера определяют конечный результат.
ЭВМ поручают рутинную работу. Перечислим ее основные виды:
- хранение и накопление в машинном архиве сведений, необходимых разработчику;
- поиск и выдача информационных справок по запросам пользователя (типовые решения, характеристики узлов, рекомендации по применению, сведения об уровне запасов комплектующих материалов и др.);
- обеспечение редактирования текстовой конструкторской документации, создаваемой инженером;
- автоматическое вычерчивание графической документации (чертежи деталей, схемы электрические и др.);
- решение некоторых частных, хорошо алгоритмизированных задач, которые характерны для автоматизирован-ного проектирования определенного класса изделий. Примененительно к разработке радиоэлектронной аппаратуры хо-рошо алгоритмизированными задачами являются следующие:
- моделирование поведения того или иного узла по описанию его принципиальной электрической схемы при заданном входном воздействии,
- трассировка соединений на этапе конструирования платы печатного монтажа,
- расчет тепловых режимов узлов аппаратуры,
- построение последовательности обхода точек сверления платы и др.

..ПРОЦЕСС ПРОЕКТИРОВАНИЯ ИЗДЕЛИЙ ЭЛЕКТРОННОЙ ТЕХНИКИ
уровней),
- выделения аспектов описания объекта проектирования.
Уровни абстрагирования И РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ

Рассмотрим несколько подвопросов.

1. Уровни абстрагирования и аспекты описаний проектируемых объектов.

Большинство видов электронной техники и радиоэлектронной аппаратуры, а также большие и сверхбольшие инте-гральные схемы относятся к сложным системам.
Дадим определение сложной системы.
СЛОЖНАЯ СИСТЕМА - система, обладающая, по крайней мере, одним из перечисленных признаков:
а) допускает разбиение на подсистемы, изучение каждой из которых, с учетом влияния других подсистем в рам-ках поставленной задачи, имеет содержательный характер;
б) функционирует в условиях существенной неопределенности и воздействие среды на нее обусловливает слу-чайный характер изменения ее параметров или структуры;
в) осуществляет целенаправленный выбор своего поведения.
Процесс их проектирования характеризуется высокой размерностью решаемых задач, наличием большого числа возможных вариантов, необходимостью учета разнообразных факторов.
В основе проектирования сложных систем блочно-иерархический подход. Сущность блочно-иерархического состо-ит в уменьшении сложности решаемой проектной задачи. Это осуществляется за счет:
- выделения ряда уровней абстрагирования (иерархических различаются степенью детализации представлений об объекте.
Этапы нисходящего проектирования:
Компоненты объекта, рассматриваемые как элементы на некотором уровне с номером k, описываются как подсис-темы на соседнем уровне с номером k+1.
Относительно аспектов описания объекта.
Аспекты могут быть:
- функциональные,
- конструкторские,
- технологические.
а) Функциональные аспекты можно разделить на:
- системный,
- функционально- логический,
- схемотехнический,
- компонентный.
На системном уровне в качестве систем выделяют комплексы. Примерами комплексов могут быть ЭВМ, радиоло-кационная станция. В качестве элементов выделяют блоки (устройства) аппаратуры процессор, модем, передатчик.
На функционально-логическом уровне эти блоки рассматривают как системы, состоящие из элементов. Элемента-ми являются функциональные узлы - счетчики, дешифраторы, отдельные триггеры, вентили, усилители, модуляторы и др.
На схемотехническом уровне функциональные узлы описываются как системы, состоящие из элементов радио-электронных схем - транзисторов, конденсаторов, резисторов и др.
На компонентном уровне рассматриваются процессы, которые имеют место в схемных компонентах.
б) Конструкторскому аспекту присуща своя иерархия компонент. Она включает различные уровни описания рам, стоек, панелей, типовых элементов замены, дискретных компонент и микросхем, топологических фрагментов функциональных ячеек и отдельных компонент в кристаллах интегральных микросхем.

2. Операции, процедуры и этапы проектирования.

Процесс проектирования делится на этапы.
ЭТАП ПРОЕКТИРОВАНИЯ - условно выделенная часть процесса проектирования, состоящая из одной или не-скольких проектных процедур. Обычно этап включает процедуры, которые связаны с получением описания в рамках одного аспекта и одного или нескольких уровней абстрагирования. Иногда в процессе проектирования выделяют ту или иную последовательность процедур под названием "маршрут проектирования".
Этапы, в свою очередь, делятся на процедуры и операции.
ПРОЦЕДУРА - формализованная совокупность действий, выполнение которых заканчивается проектным решени-ем.
ПРОЕКТНОЕ РЕШЕНИЕ - промежуточное или окончательное описание объекта проектирования, необходимое и достаточное для рассмотрения и определения дальнейшего направления или окончательного проектирования.
При проектировании возможны различные последовательности выполнения процедур и этапов.
Различают два способа проектирования (два типа маршрутов):
- восходящее проектирование,
- нисходящее проектирование.
Восходящее проектирование (снизу-вверх) имеет место, если проектируются типовые объекты, предназначенные для использования в качестве элементов во многих объектах на более высоких уровнях иерархии (например, серийные микросхемы, стандартные ячейки матричных больших интегральных схем).
Нисходящее проектирование охватывает те уровни, на которых проектируются объекты, ориентированные на ис-пользование в качестве элементов в одной конкретной системе.
Проектированию свойственен итерационный характер. При этом приближение к окончательному варианту осуще-ствляется путем многократного выполнения одной и той же последовательности процедур с корректировкой исходных данных. Итерации могут охватывать различные части проектирования, включающие как несколько операций, так и не-сколько этапов.

ПРИМЕР 1.

- системотехническое проектирование (анализ тактико-технических требований на проектируемый комплекс, определение основных принципов функционирования, разработка структурных схем);
- схемотехническое проектирование ( разработка функциональных и принципиальных схем);
- конструкторское проектирование ( выбор формы, компоновка и размещение конструктивов, трассировка межсоединений, изготовление конструкторской документации);
- технологическое проектирование ( разработка маршрутной и операционной технологии, определение техноло-гической базы).

ПРИМЕР 2.
Этапы восходящего проектирования БИС:
- приборно-технологическое проектирование (выбор базовой технологии, выбор топологии компонентов, рас-чет диффузионного профиля);
- схемотехническое проектирование ( синтез принципиальной электрической схемы, оптимизация параметров элементов, статистический анализ применительно к типовым ячейкам БИС);
- функционально-логическое проектирование (синтез комбинационных схем, реализация памяти, синтез контро-лирующих и диагностических тестов);
- конструкторско-топологическое проектирование (размещение элементов, трассировка меж- соединений, про-верка соответствия топологической и электрической схем , расслоение, вычерчивание послойной технологии).

3. Классификация параметров проектируемых объектов.

В описаниях проектируемых объектов фигурируют переменные и их параметры. Среди переменных выделяют:
- фазовые переменные - характеризуют физическое или информационное состояние объекта.
Параметры разделяют на ряд групп. К их числу можно отнести следующие:
- внешние параметры - характеризуют свойства внешней по отношению к исследуемому объекту Сравнение нескольких полиномиальных и экспоненциальных функций

Таблица 1 позволяет сравнить скорости роста нескольких типичных среды;

Полиномиальные алгоритмы и труднорешаемые задачи

Разные алгоритмы имеют разную временную сложность и выяснение того, какие алгоритмы достаточно эффективны и какие совершенно не эффективны будет всегда зависеть от конкретной ситуации. Для решения этой задачи предлагается следующий подход - вводятся понятия:
•полиномиальный алгоритм;
•экспоненциальный алгоритм.
Полиномиальный алгоритм (полиномиальной временной сложности) - это алгоритм, временная сложность которого определяется выражением O[p(n)], где p(n) - полиномиальная функция, n - входная длина.
Алгоритм, временная сложность которого не поддается такой оценке называется экспоненциальным.

Различие между типичных полиномиаль-ными и экспоненциаль-ными алгоритмами про-является более убеди-тельно, если проанализи-ровать влияние увеличе-ния быстродействия ЭВМ на время работы алго-ритма. Таблица 2 показы-вает, насколько увеличит-ся размер задач, решае-мой за 1 час, если быст-родействие возрастет в 100 и 1000 раз. Видно, что для функции 2n увеличе-ние скорости вычислений в 1000 раз приводит лишь к тому, что размер зада-чи, решаемой на ней за 1 час возрастет на 10.

Выделено 2 класса трудно решаемости:
1.Для отыскания решения требуется экспоненциальное время.
2.Искомое решение настолько велико, что не может быть представлено в виде выражение, длина которого ограни-чена некоторым полиномом. Эти задачи в курсе рассматриваться не будут.
Первые результаты о трудно решаемых задачах были получены Тьюрингом. Он доказал, что некоторые за-дачи “неразрешимы” в том смысле, что вообще не существует алгоритма их решения. Некоторые задачи по теории ав-томатов, теории формальных языков и математической логики являются трудно решаемыми.
NP-полная задача - это задача, к которой сводится за полиномиальной время любая задача из класса NP-задач. Фундаментальные исследования и теорию NP-задач разработал С.Кук в 1971 году. Им определено понятие своди-мости за полиномиальное время. Если одна задача сводится за полиномиальное время к другой, то любой полиномиаль-ный алгоритм - решение другой задачи может быть превращен в полиномиальный алгоритм первой задачи.
Выделен класс задач распознавания свойств, которые могут быть решены за полиномиальное время на не-детерминированном вычислительном устройстве. Доказано, что любая задача из класса NP-задач может быть сведена к задаче выполнимой за полиномиальное время.

Существуют 6 основных классов NP-полных задач:
1. Задачи выполнимости.
2. Трехмерное сочетание.
3. Вершинное покрытие.
4. Поиск клики.
5. Гамильтонов цикл.
6. Разбиение.

- внутренние параметры - характеризуют свойства элементов ;
- выходные параметры - характеризуют свойства систем;
- ограничения выходных параметров.

ПРИМЕР 3.

Применительно к операционному усилителю:
а) переменные
- фазовые переменные - напряжение и токи всех ветвей (рассматриваются как функции времени или частоты);
б) параметры
- внешние параметры - напряжения источников питания, параметры входных сигналов и нагрузки, температура окружающей среды;
- внутренние параметры - номиналы резисторов, барьерные емкости и тепловые токи переходов в транзисторах, емкости конденсаторов;
- выходные параметры - коэффициент усиления на средних частотах, полоса пропускания, потребляемая мощ-ность, динамический диапазон;
- ограничения - верхние границы допустимых значений коэффициентов усиления, полосы пропускания, дина-мического диапазона.

Применительно к вычислительной системе:
а) переменные
- фазовые переменные - состояния отдельных устройств;
б) параметры
- внешние параметры - параметры входных источников заявок;
- внутренние параметры - емкости запоминающих устройств, быстродействие процессоров, число каналов;
- выходные параметры - производительность системы, коэффициент загрузки оборудования, вероятность реше-ния поступающих задач, средние длины очередей заявок на обслуживание;
- ограничения - нижние границы допустимых диапазонов значений производительности, коэффициентов загруз-ки оборудования, вероятности обслуживания заявок.
При блочно-иерархическом подходе внутренние параметры k -го уровня являются выходными параметры (k+1) -го уровня. При многоаспектном рассмотрении систем, включающих физически разнородные подсистемы, роль внешних переменных для данной подсистемы играют фазовые переменные других подсистем. Они влияют на рассматриваемую подсистему.
Внутренние параметры являются случайными величинами из-за разброса параметров комплектующих изделий, материалов и нестабильности условий изговления. Выходные параметры также имеют случайный характер следствие случайных значений внутренних параметров.
Задачи многовариантного анализа заключаются в определении изменений вектора Y при заданных изменениях век-торов X и Q.
К типовым процедурам многовариантного анализа относятся следующие:
- анализ чувствительности - оценка влияния внутренних и внешних параметров на выходные. При этом осущест-вляется расчет коэффициентов чувствительности;
- статистический анализ - оценка закона и (или) числовых характеристик распределения вектора Y при заданных статистических сведениях о распределении случайного вектора Х.
При синтезе выделяют процедуры параметрического и структурного синтеза. При параметрическом синтезе опре-деляются числовые значения параметров элементов при заданных структуре объекта и диапазоне возможного измене-ния внешних переменных. Если при этом ставится задача достижения экстремума некоторой целевой функции, то вы-полняется процедура оптимизации.
При оптимизации параметров определяются номинальные значения внутренних параметров, при оптимизации до-пусков - дополнительно допуски на внутренние параметры, при оптимизации технических требований решается задача оптимального назначения технических требований к выходным параметрам объекта.
В большинстве маршрутов проектирования процедуры синтеза и анализа находятся во взаимосвязи. На рис. 2 пока-зана схема типового маршрута проектирования.
После формирования ТЗ (исходного описания объекта проектирования) и выбора (синтеза) первоначального вари-анта структуры и значений параметров элементов следует анализ объекта. Если при анализе необходимо установить со-ответствие синтезированной структуры исходному описанию, то анализ называют верификацией проекта.
Различают верификацию параметрическую и структурную. При параметрической верификации устанавливается соответствие областей работоспособности двух сравниваемых вариантов объекта. Примером параметрической верифи-кации является процедура установления работоспособности типового элемента замены (ТЭЗа). При структурной вери-фикации проверяется соответствие структур объекта, представленных двумя различными описаниями. Пример струк-турной верификации - установление изоморфизма графов, которые описывают топологию и принципиальную электри-ческую схему типового элемента замены.
Обычно по результатам анализа принимается решение относительно улучшения первоначального варианта. Это выполняется путем изменения числовых значений параметров элементов. Данный процесс можно формализовать и представить как решение задачи параметрической оптимизации.
Если после завершения оптимизации требования ТЗ не выполнены, то принимается решение на изменение структу-ры. После этого осуществляется указанная последовательность операций.
Если не удается получить удовлетворительные результаты, ставится вопрос относительно коррекции ТЗ.
Полный и тщательный анализ требует больших материальных и временных затрат. Поэтому на первых итерациях в маршруте, показанном на рис.2, выполняют упрощенный анализ.
Использование сложных моделей, проведение параметрической верификации и всестороннего многовариантного анализа целесообразно лишь на завершающих итерациях.
Для функционального проектирования характерны большие затраты на анализ. Примерами подобных задач являют-ся такие как определения состава устройств вычислительной системы и способов их взаимодействия или задач разработки принципиальных электрических схем. Для этих задач обычно применяют эвристические способы синтеза структуры с перебором небольшого числа вариантов. Основные усилия затрачиваются на выполнение многовариантно-го анализа и оптимизации.
Если удается организовать приближенную оценку вариантов структуры на основе легко проверяемых критериев, то возможен просмотр большого числа вариантов структуры. Это дает возможность формализовать процесс решения за-дачи синтеза.
С подобным сталкиваются при решении коммутационно-монтажных задач конструкторского проектирования и за-дач функционально-логического проектирования комбинационных схем цифровой автоматики.

СТРУКТУРА САПР

Подсистемы САПР

проектирующих подсистем.
- подсистема проектирования деталей и сборочных единиц,
- подсистема проектирования топологии БИС ,
- подсистема технологического проектирования.
Примеры обслуживающих подсистем:
- подсистема графического отображения объектов проектирования,
- подсистема документирования,
- подсистема информационного поиска.
В зависимости от отношения к объекту проектирования проектирующие подсистемы делят на:
- объектно-ориентированные,- объектно-независимые.
В Выделяют подсистемы проектирующие и обслуживающие. Проектирующие подсистемы выполняют проектные процедуры и операции. Обслуживающие подсистемы предназначены для поддержания работоспособности объектно-ориентированных подсистемах выполняются процедуры и операции, непосредственно связанные с конкретным типом объектов проектирования; в объектно-независимых - унифицированные процедуры и операции.

Виды обеспечения САПР

В САПР выделяют следующие виды обеспечения:
- методическое,
- математическое,
- программное,
- техническое,
- лингвистическое,
- информационное,
- организационное.
Методическое обеспечение - документы , в которых определены состав, правила отбора и эксплуатации средств автоматизации проектирования.
Математическое обеспечение - совокупность математических методов и моделей, необходимых для выполнения процесса автоматизированного проектирования.
Программное обеспечение - совокупность программ, представленных в заданной форме, вместе с программной до-кументацией.
Техническое обеспечение - совокупность взаимосвязанных и взаимодействующих технических средств для ввода, хранения, переработки, передачи программ и данных, организации общения оператора с ЭВМ , изготовления проект-ной документации.
Информационное обеспечение - совокупность представленных в заданной форме сведений, необходимых для вы-полнения автоматизированного проектирования, в том числе описания стандартных проектных процедур, типовых проектных решений, типовых элементов, комплектующих изделий, материалов и др.
Организационное обеспечение - совокупность документов, определяющих состав проектной организации и ее подразделений, их функции, связи между ними и комплексом средств автоматизации.

Уровни САПР
Техническое обеспечение современных САПР имеет иерархическую структуру. Принято выделять следующие уровни:
- центральный вычислительный комплекс (ЦВК ),
- автоматизированные рабочие места ( АРМ ),
- комплекс периферийного программно-управляющего оборудования.

Центральный вычислительный комплекс предназначен для решения сложных задач проектирования. Представляет собой ЭВМ средней или высокой производительности с типовым набором периферийных устройств. Возможно расши-рение этого набора некоторыми средствами обработки графической информации. Для повышения производительно-сти в ЦВК могут использоваться многопроцессорные или многомашинные комплексы.
АРМы предназначены для решения сравнительно несложных задач и организации эффективного общения пользо-вателя САПР с комплексом технических средств. Включает в свой состав мини-ЭВМ и (или) микро-ЭВМ , графические и символьные дисплеи, координатосъемщики, устройства символьного и графического документирования и другие с со-ответствующим базовым и прикладным программным обеспечением. Для некоторых АРМ характерен интерактивный режим работы с обработкой графической информации.
Комплекс периферийного программно-управляющего оборудования предназначен для получения конструкторско-технологической документации и управляющих программ на машинных носителях для исполнительных технологических автоматов. В его составе исполнительное программно-управляющее оборудование , средства диалогового взаимодейст-вия. В составе ЭВМ с большим объемом внешней памяти. Подобные комплексы обычно называют технологическими. На данном оборудовании решаются задачи редактирования, тиражирования, архивного сопровождения документации и др.
Наличие указанных уровней приводит к соответствующей структуре программного и информационного обеспече-ния САПР. В результате уровни ЦВК, АРМ и ТК , первоначально выделяемые как уровни технического обеспечения, становятся уровнями САПР.

Существующие САПР делятся на одно-, двух- и трехуровневые. В одноуровневых САПР, построенных на основе ЦВК, выполняются процедуры, характеризующиеся высокой трудоемкостью вычислений при сравнительно малых объ-емах исходных данных. В одноуровневых САПР на основе АРМ выполняются процедуры, в которых объемы вычисле-ний и выпускаемой документации сравнительно невелики. В одноуровневых технологических комплексах содержание проектной документации определяется в результате неавтоматизированного проектирования, а изготовление ее авто-матизировано. При этом объем выпускаемой документации может быть большим.
В двухуровневых САПР возможны сочетания ЦВК-АРМ, ЦВК-ТК, АРМ-ТК.
В наибольшей степени возможности автоматизированного проектирования сложных объектов реализуются в трех-уровневых САПР, включающих ЦВК , АРМы и ТК.

Связь с гибким автоматизированным производством.

Автоматизированное проектирование изделий заканчивается изготовлением конструкторской документации и управляющих программ на машинных носителях. На завершающих этапах проектирования вносятся технологические дополнения и коррекции. Далее изготавливается пробный образец. После его анализа осуществляется аттестация проек-та. Это обеспечивается на основе введения автоматизированных производственных линий в состав технологического комплекса.
Аттестованные машинные носители с управляющими программами в дальнейшем копируются. На их основе вы-полняется перестройка исполнительного оборудования на изготовление другого изделия. Отмеченное является одним из основных условий реализации гибкого автоматизированного производства.

ВЫВОДЫ:

1. Рассмотрены основные этапы процесса проектирования радиоэлектронной аппаратуры. Показана необходимость автоматизации процессов проектирования.
2. Определены понятие системы автоматизированного проектирования, ее назначение, структура, связь с гибким автоматизированным производствам.

ЛЕКЦИЯ №2

Тема: “Вычислительные сети и АРМы”

НЕОБХОДИМОСТЬ СОЗДАНИЯ

Территориальное разнесение отдельных ЭВМ и комплексов САПР вызывает необходимость включения в состав технических средств аппаратуры сопряжения, передачи данных и телеобработки. При этом технические средства круп-ных САПР структурно объединяются в вычислительные сети. Преимущества организации вычислительных сетей САПР заключаются в следующем:
1 . Пользователи, работающие на аппаратуре в конкретном подразделении предприятия, получают доступ к базам данных и программным средствам, которые имеются в других территориально разнесенных узлах вычислительной сети. Это расширяет функциональные возможности САПР.
2. Появляется возможность оптимального распределения нагрузки между различными ЭВМ, а также возможность предоставления конкретному пользователю в случае необходимости значительных вычислительных ресурсов.
3. Повышается надежность функционирования технических средств САПР.

КЛАССИФИКАЦИЯ ВЫЧИСЛИТЕЛЬНЫХ СЕТЕЙ

Вычислительные сети САПР классифицируются по ряду признаков. В таблице 2 представлена эта классификация.
Признак классификации
вычислительных сетейТип связейПримечание
Топология
связейРадиальная (звездообразная)
Кольцевая
Радиально-кольцевая

Распределенная (децентрализо-ванная)Обычные двухуровневые САПР, в которых имеется центральный
вычислительный комплекс и несколько АРМов

Состав средств передачи данныхОднороднаяСостоит из программно-совместимых ЭВМ. Способ передачи
данныхС некоммутируемыми каналами
С коммутацией каналов
С коммутацией сообщений
С коммутацией пакетов
Со смешанной коммутацией

В сеансах связи образуются транзит-ные каналы между связываемыми узлами сети
Поэтапная передача сообщений через центры коммутации сообщений
Поэтапная передача пакетов информации определенной длины
Сочетание коммутации каналов сообщений, пакетов
Способ управленияЦентрализованная

ДецентрализованнаяУправление потоками данных осуществляется центральным узлом связи
Управление потоками данных распределено по узлам сети
Удаленность узловЛокальная

ДистанционнаяРасстояния между узлами ог-раничены заданной величиной L
Расстояния превышают вели-чину L

Устройства телеобработки, сопряжения и передачи данных

Эти устройства предназначены для организации связи с удаленными рабочими местами и для межмашинного об-мена данными в многоуровневых и сетевых САПР. Различают системы связи (телефонные и телеграфные каналы, релей-ные и кабельные линии), мультиплексоры передачи данных (МПД), аппаратуру передачи данных(АПД), абонентские пункты (АП) и интерфейсы (И).
устройства:
- КЭВМ - коллективная ЭВМ,
- ПК - персональный компьютер,
Мультиплексор передачи данных подключается к мультиплексному каналу ввода-вывода через стандартный интер-фейс и управляет передачей и частичной обработкой информации от ЭВМ на абонентские пункты и другие ЭВМ. Воз-можно снижение нагрузки на центральный процессор ЭВМ, если обработка выполняется частично в МПД. В этом слу-чае он ставится процессором телеобработки данных (процессором передачи данных).
Аппаратура передачи данных обеспечивает сопряжение мультиплексоров передачи данных и абонентских пунктов с каналами связи. Абонентские пункты передают ЭВМ и принимают от нее информацию.
Если абонентские пункты проводят предварительную обработку получаемых и передаваемых данных, их называют "интеллектуальными" абонентскими пунктами.

Аппаратура передачи данных включает следующие устройства:
- модемы и устройства преобразования сигналов,
- вызывные устройства для коммутируемых линий связи,
- устройства защиты от ошибок.
Модем (устройство модуляции и демодуляции) преобразует двоичные сигналы от мультиплексора или абонентско-го пункта в модулированные сигналы на несущей частоте для их передачи по линиям связи, а при приеме осуществ-ляют обратное преобразование (демодуляцию).
Абонентский пункт состоит из одного или нескольких периферийных устройств со специальным устройством управления. Устройство управления обеспечивает работу периферийных устройств, как автономную так и под управле-нием ЭВМ. Интерфейсы согласуют работу отдельных блоков по уровням логических сигналов и конструкциям разъе-мов. Аппаратура передачи данных бывает:
- низкоскоростная (со скоростями передачи информации - до 200 бит/сек (по стандартным телеграфным кана-лам),
- среднескоростная - до 4800 бит/сек (по каналам тональной частоты),
- высокоскоростная - более 4800 бит/сек (по широкополосным каналам).

РАСПРЕДЕЛЕННЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СЕТИ

Пример распределенной вычислительной сети САПР приведен на рис 4.
Распределенная сеть содержит локальную вычислительн
 
     
Бесплатные рефераты
 
Банк рефератов
 
Бесплатные рефераты скачать
| мероприятия при чрезвычайной ситуации | Чрезвычайная ситуация | аварийно-восстановительные работы при ЧС | аварийно-восстановительные мероприятия при ЧС | Интенсификация изучения иностранного языка с использованием компьютерных технологий | Лыжный спорт | САИД Ахмад | экономическая дипломатия | Влияние экономической войны на глобальную экономику | экономическая война | экономическая война и дипломатия | Экономический шпионаж | АК Моор рефераты | АК Моор реферат | ноосфера ба забони точики | чесменское сражение | Закон всемирного тяготения | рефераты темы | иохан себастиян бах маълумот | Тарых | шерхо дар борат биология | скачать еротик китоб | Семетей | Караш | Influence of English in mass culture дипломная | Количественные отношения в английском языках | 6466 | чистонхои химия | Гунны | Чистон
 
Рефераты Онлайн
 
Скачать реферат
 
 
 
 
  Все права защищены. Бесплатные рефераты и сочинения. Коллекция бесплатных рефератов! Коллекция рефератов!