Чтение RSS
Рефераты:
 
Рефераты бесплатно
 

 

 

 

 

 

     
 
Информационное обеспечение в анестезиологии

ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ В АНЕСТЕЗИОЛОГИИ

Есть основания считать, что для развития и совершенствования анестезиологии, для снижения анестезиологического риска, решающее значение приобретает расширение и углубление информационной базы специальности.

Актуальность этой проблемы значительно возрастает в связи с необходимос- тью постоянного повышения квалификации врачей: работа с информационным обеспечением, с “открытыми глазами” побуждает анестезиологов к анализу получаемой информации, накоплению опыта и последующему использованию его. В результате, достигается увеличение безопасности больных на операционном столе.

Перед тем как формировать информационную базу места анестезиолога, нужно решить вопрос о необходимом и достаточном объёме этой информации: излишек информации также нежелателен, как и недостаток, так как непроизводительно отвлекает персонал и неминуемо приводит к формальному отношению к информации вообще.

В настоящем сообщении мы ограничимся обсуждением некоторых информационных источников, достаточных для определения параметров гемодинамики, внешнего дыхания и газообмена больных во время общехирургических операций в городской больнице.

Некоторые показатели кровообращения

Артериальное давление.

Основной параметр кровообращения, фигурирующий во всех наркозных картах лечебных учреждений. Для измерения артериального давления (АД) чаще всего применяется методика Короткова. Сейчас, в связи с развитием автоматизированных систем определения АД, выяснено, что методика Короткова не корректна, её использование часто приводит к ошибкам измерения АД по сравнению с данными прямого измерения. Поэтому в автоматах шумы Короткова не используются, а уровни давления определяются по асцилляциям. Нужно думать, однако, что измерение АД по Короткову ещё длительное время будет доминирующей методикой и с этим фактом придется мириться. При этом нельзя мириться с упрощением способа измерения, когда тоны Короткова не используются, а измерение только систолического давления производится “по пульсу”. В этом случае теряются не только данные диастолического ,но и пульсового давления,теряются представления о сосудистом тонусе, а, следовательно, становятся трудно объяснимыми сдвиги АД и всей гемодинамики. Поэтому “упроще- ни” методики определения АД категорически недопустимо.

Нельзя согласиться с авторами, преуменьшающими значение АД, как источника информации о гемодинамике, на том лишь основании, что данные АД не всегда могут быть связаны прямой пропорцией с такими фундаментальными параметрами кровообращения, как сердечный выброс или объём циркулирующей крови, которые и определяют гемодинамику. Тем не менее, измерение АД, динамика этого показателя в течение операции, совместно с другими показателями состояния системы кровообращения, при правильной их интерпретации, дают достаточно полное представление о работе сердца и соотношении ёмкости сосудистого русла и объёма наполнителя и, наконец, о сосудистом тонусе и причинах его изменения.

Можно выделить несколько типичных “синдромов”, где изменения АД сопровождаются определенными сдвигами других параметров циркуляции.

1. Нормальный (“рабочий” для данного больного ) уровень систолического и диастолического давления, частота сердечных сокращений в пределах 60-80 в минуту. Правильный, синусовый ритм. Выраженная плетизмографическая кривая с пальца кисти. Теплые конечности. Картина нормального, ненапряженного кровообращения. Терапии не требует.

2. Сниженное или нормальное АД (иногда значительно повышенное). Уменьшение пульсового давления. Плетизмограмма - прямая линия или резко сниженная амплитуда пульсовой волны. Конечности холодные. При резкой выраженности синдрома синюшные разводы на коже конечностей. Коротковские тоны выслушиваются плохо. В анамнезе кровопотеря или катастрофа в брюшной полости.

Синдром гиповолемии и централизации кровообращения.

Терапия: струйная инфузия коллоидных растворов, плазмы, крови, кристаллоидных растворов. После появления хотя бы малой амплитуды пульсовой волны на ФПГ, осторожное введение транквилизаторов, аналгетиков на фоне продолжающейся интенсивной инфузионной терапии.

3. Повышение АД преимущественно за счет систолического давления. Тахикардия. Снижение амплитуды пульсовой волны. Холодные конечности, нос теплый.

Признаки предоперационного волнения. Синдром эмоционального повышения симпатического тонуса и спазм периферических сосудов в связи с неадекватной премедикацией или недостаточной аналгезией во время наркоза. Терапия - введение транквилизаторов, углубление наркоза, иногда добавление ингаляционных анестетиков.

4. Снижение АД, преимущественно диастолического. Отсутствие или слабо выраженная тахикардия. Неизменная или увеличенная амплитуда пульсовой волны на ФПГ. Теплые конечности.

Синдром снижения симпатического тонуса, чаще всего в связи с введением первых доз аналгетиков после вводного наркоза - функциональная гиповолемия. Терапия - на время гипотонии воздержание от симпатолитических препаратов, увеличение темпа инфузии, при затянувшейся гипотензии небольшие дозы симпатомиметиков.

5. Снижение АД, преимущественно диастолического. Медленное снижение амплитуды пульсовой волны на ФПГ. Инфузионная терапия не дает стойкого эффекта. Конечности теплые.

Синдром эссенциальной сосудистой недостаточности, связанный с длительным приемом симпатолитиков, недостаточностью надпочечников, гепаторгией, наконец может иметь место синдром персистирующего тимуса (тимико-лимфатический синдром). Причиной описанной сосудистой недостаточностит могут быть и последствия аллергической реакции на фармакологические препараты.

Кроме специфической терапии необходима терапия, направленная на поддержание сосудистого тонуса - симпатомиметики, вводимые капельно до достижения достаточного уровня диастолического давления. В некоторых случаях приходится проводить такое лечение в течение нескольких часов и даже суток.

6. Повышеие АД у гипертоников может не сопровождаться симптоматикой недостаточности анестезии и тем не менее, такое повышение бывает связано с недостаточно блокированной ноцицептивной активностью. Поэтому наряду с гипотензивной терапией нужно обратить внимание и на достаточность анестезии и гипнотического эффекта медикации.

7. Снижение АД, выраженная тахикардия, снижение амплитуды ФПГ. Изменения на ЭКГ (нарушения питания миокарда, аритмии). В анамнезе ИБС, стенокардия, другая сердечная патология. В тяжелых случаях отек легких. Все это - синдром малого выброса, сердечная недостаточность, чаще всего вследствие развивающегося инфаркта миокарда. Лечение инфаркта миокарда. Предельное сокращение (текущей) операции. Противопоказаны все анестетики с кардиотоксическим и отрицательным инотропным эффектом. Между тем уровень анестезии должен быть адекватным болевому раздражению. Осторожная инфузионая терапия под контролем ЦВД.

Таким образом, динамическое наблюдение за АД, наряду с показателями периферического кровообращения, дает анестезиологу возможность поставить точный диагноз и предпринять нужные и своевременные лечебные меры.

Перечисленные “синдромы” повидимому отображают основные варианты гемодинамических сдвигов во время операции, тем не менее, для вящей убедительности, напомним некоторые типичные ситуации, где точная и своевременная диагностика причины изменения АД может оказать решающее влияние на исход операции и течение операционного периода.

У больных с перитонитом, чаще после перфорации полого органа, особенно если с момента перфорации прошло несколько часов, при поступлении в операционную может быть отмечено нормальное и даже повышенное АД. При этом больной обезвожен, конечности холодные, синюшные, тахикардия, резкое снижение пульсового давления и отсутствие пульсовой волны на плетизмограмме. Если, понадеевшись на высокий уровень АД, анестезиолог рискнет начать наркоз и введет препарат, даже не обладающий симпатолитическим действием, например транквилизатор - произойдет резкое падение АД, иногда до нулевого уровня. Восстановление АД в этих условиях бывает очень трудной задачей. Лишь струйное переливание жидкостей (коллоидных и кристаллоидых растворов), в таком объёме, который приведет к коррекции гиповолемии и появлению пульсовой волны на ФПГ (хотя бы малой амплитуды) - обычно это 1-2 литра жидкости - позволит без опасений начать наркоз и не только препаратами с симпатомиметическим действием. Иначе говоря, сначала нужно устранить гиповолемию, дегидратацию, централизацию кровообращения и только после этого можно расчитывать на благополучное течение операции и наркоза.

Аналогичная ситуация: после вскрытия брюшной полости у больного с выраженной кишечной непроходимостью или перитонитом в фазе дегидротации и централизации кровообращения (отсутствие пульсовой волны на ФПГ, холодные конечности, снижение или нормальный уровень АД) - производится новокаиновая блокада брыжжейки тонкой кишки. Если эта процедура оказывается успешной и достигается симпатолитический эффект, как при эпидуральной анестезии - происходит резкое снижение АД, которое с большим трудом восстанавливается инфузией больших объёмов плазмозаменителей и введением симпатомиметиков. Отсюда следует, что проведение новокаиновой блокады должно быть согласовано с анестезиологом и может быть разрешено только при отсутствии симптоматики выраженной гиповолемии.

Наконец, третья, не частая, но трудная ситуация. Больная оперируется по поводу внематочной беременности (например). По вскрытии брюшной полости найдено относительно небольшое количество крови в малом тазу (500-700мл), однако, несмотря на инфузионую терапию, операция сопровождается постепенным снижением АД ,в большей мере диастолического. Темп падения АД может возрастать. Обращает на себя внимание неэффективность даже струйной инфузионной терапии.При этом, несмотря на низкое АД, конечности остаются относительно теплыми, симптомов централизации кровообращения нет. На плетизмограмме удовлетворительная амплитуда пульсовой волны.

Типичная картина сосудистой недостаточности. Ни во время операции, ни после неё обычно не удается выяснить точную причину этой недостаточности. В любом случае необходимо срочное проведение антиаллергической и симпатомиметической терапии. Симпатомиметики нужно “титровать”,т.е. подбирать адекватную дозу, а лучше скорость постоянного введения для поддержания АД, обеспечивающего почечную фильтрацию. Нужно подчеркнуть, что в подобных обстоятельствах настойчивая, неумеренная инфузионная терапия может привести к развитию отёка легких со всеми вытекающими отсюда последствиями.

Фотоплетизмография.

В разделе об артериальном давлении мы не раз ссылались на данные плетизмографии с пальца кисти. Эта зона с полным правом может быть представлена, как зона периферической циркуляции, периферической не в смысле отдаленной от центра, а о динамике кровенаполнения органа, в связи с пульсовыми изменениями наполнения мелких артерий, капиллярного русла и мелких вен.

Фотоплетизмография один из методов фиксации изменений объёма органа или его части в связи с динамикой его кровенаполнения в течение сердечного цикла. Если в обычной плетизмограмме изменения объёма органа отражались за счет изменений объёма манжеты, наполненной газом или жидкостью и чисто механическим путем передавались на самописец, то фотоплетизмограмма имеет в своей физической основе изменения освещенности тканей исследуемого органа при изменении его кровенаполнения. Эти изменения освещенности фиксируются фотодиодом, а электрический сигнал от последнего выводится на дисплей в виде соответствующей кривой, которую можно назвать пульсовой. Аналогичная кривая может быть получена и с помощью реоплетизмографии.Там вместо изменений освещенности фиксируются изменения сопротивления электрическому току в связи с изменениями кровенаполнения органа.

Вне зависимости от техники получения пульсовой, плетизмографической кривой, она представляет значительный интерес для врачей разных специальностей, особенно для анестезиологов. Этот особый анестезиологический интерес обусловлен большой информативностью и малой инерционностью сведений о процессах, лежащих в основе плетизмографических изменений.

Как известно, регуляция тонуса артерий малого диаметра, вплоть до артериол, осуществляется главным образом за счет симпатической иннервации. Этим обусловлена малая инерционность отражения на плетизмограмме изменений в организме, влияющих на симпатическую иннервацию. Поскольку много событий оказывают такое влияние, все они отражаются на сосудистом тонусе и, следовательно, на пульсовой кривой. Важнейшими из “событий” для анестезиолога являются: боль, гиповолемия, гипотермия, гипокапния. Снижение амплитуды пульсовой волны может быть обусловлено и уменьшением сердечного выброса. В результате воздействия каждого из этих факторов в отдельности (кроме малого выброса) происходит усиление “симпатического сигнала”, увеличение сосудистого тонуса и снижение амплитуды пульсовой волны на фотоплетизмограмме (ФПГ). Это и является отражением механизма централизации кровообращения. К анестезиологу этот сигнал приходит почти мгновенно. Например,после появления болевого раздражения наступает резкое снижение амплитуды ФПГ. Это снижение для анестезиолога важно не столько, как признак централизации, сколько как критерий неадекватности обезболивания и необходимости дополнительной анестезии. Иначе говоря, амплитуда пульсовой волны для анестезиолога служит своеобразным “аналгезиметром” и помогает оперативно коррегировать недостатки аналгезии.

Уменьшение амплитуды пульсовой волны при гиповолемии происходит медленно, как и при снижении температуры тела, поскольку эти изменения гомеостаза развиваются постепенно.

Анестезиологу необходимо разобраться в происхождении спазма сосудов в каждом конкретном случае. Это не всегда просто. В самом начале операции динамика амплитуды ФПГ зависит главным образом от качества седативной терапии и обезболивания. По ходу операции, при неадекватном и не своевременном возмещении операционной кровопотери, при переливании не согретых растворов и крови, снижение амплитуды пульсовой волны происходит и вследсвие снижения объёма циркулирующей крови и снижения температуры тела. Не контролируемая капнометром вентиляция легких в режиме так называемой “умеренной гипервентиляции”, т.е. вентиляции с минутным объёмом в пределах 10 л/мин., чаще всего оказывается избыточной, что и приводит к снижению РаСО2, иногда значительному, что может явиться причиной спазмирования периферических сосудов и снижения амплитуды пульсовой волны.

Для того, чтобы выделить парциальное влияние каждого из перечисленных факторов необходима дополнительная информация: об объёме кровопотери и кровезамещения, о температуре тела и, наконец о динамике РСО2. Влияние неадекватного обезболивания выясняется ex juvantibus: если амплитуда пульсовой волны не увеличивается после очередной дозы фентанила (например), можно предположить, что не боль причина вазоспазма и снижения амплитуды пульсовой волны на ФПГ.

Повторяем, не всегда легко разобраться отчего снизилась амплитуда кривой ФПГ, однако это не повод для отрицания информативной важности такого определения тонуса сосудов и активности симпатической иннервации.

Очень важна эта информация и при выведении больных из состояния гиповолемии. Когда в операционную поступает больной с токсическим шоком, эксикацией, страдающий от болей в животе - прямую линию на плетизмограмме вместо пульсовой кривой мы должны рассматривать, как результат комплексного воздействия на тонус периферических сосудов и кровообращения вцелом. Это гиповолемия и централизация кровообращения на фоне не утоленной боли и снижения сердечного выброса. И когда при струйном переливании коллоидных растворов и осторожной седативной терапии появляются первые признаки пульсовой волны с постепенным увеличением её амплитуды, можно признать рациональность проводимой терапии. И здесь динамика амплитуды пульсовой волны может быть с успехом использована в качестве гида при терапии тяжелых состояний, подобных описанному.

“Заслуги” пульсовой кривой этим не ограничиваются, она может быть отличным показателем адекватности премедикации у больных, идущих на плановую операцию. Неадекватность проявляется снижением амплитуды пульсовой волны (вплоть до прямой линии на ФПГ) и снижением температуры конечностей. Как правило, после введения транквилизаторов амплитуда пульсовой волны увеличивается и достигает максимума после вводного и начала основного наркоза. В этот момент амплитуда может быть принята за максимальную (100%), а дальнейшая её динамика отразит состояние обезболивания. В некоторых приборах уже вводят программу, которая позволяет представить амплитуду пульсовой волны каждого момента операции и наркоза цифрой, выражающей процент от максимальной амплитуды. Такое цифровое выражение сосудистого тонуса значительно увеличит информативную ценность ФПГ.

Разумеется, на практике, при оценке состояния больного по фотоплетизмографической кривой, не всегда все бывает так однозначно и определенно. Например, неутоленная боль может сопровождаться достаточно высокой амплитудой пульсовой волны и причина несоответствия “теории”с практикой в данном случае не в дефектах плетизмограммы, а в так называемой полимодальности формирования (перцепции) болевого (ноцицептивного) стимула. Не всегда боль вызывает типичную реакцию организма ввиде артериальной гипертензии,тахикардии и спазмировании периферических сосудов. Возможны и варианты этой реакции: например, артериальная гипертензия и спазм сосудов не сопровождаются тахикардией или, напротив, отсутствует гипертензия и снижение амплитуды пульсовой волны на ФПГ при наличии тахикардии. Не исключен вариант, когда имеет место лишь подъём АД, возможны и другие варианты. Нейрофизиологи объясняют такую вариабельность участием различных нервных образований в перцепции боли. Всё это, однако, не умаляет значения ФПГ кривой, как гида в определении адекватности обезболивания. Нужно помнить только, что эта кривая не исключает необходимости оценки и учета других критериев достаточности обезболивания.

Аналогичные оговорки необходимы и при диагностике по ФПГ кривой волемического статуса больных. Как уже говорилось в предыдущем разделе, гиповолемия при эссенциальной сосудистой недостаточности может и не сопровождаться резким снижением амплитуды пульсовой волны, кроме того, у разных больных эффект централизации кровообращения бывает выражен с разной интенсивностью. Наконец, дело затрудняется необходимостью дифференцировать плетизмографический эффект с гипотермией и болевой реакцией. Всё это требует учета других причин изменеия ФПГ кривой, в результате диагноз становится более точным.

В заключение этого раздела обратим внимание на зависимость амплитуды пульсовой волны ФПГ от усиления сигнала. В самом начале операции нужно выбрать уровень усиления и в процессе проведения операции не менять этого усиления. Нужно установить такое усиление, когда амплитуда максимальна, но верхушка кривой не за шкалой дисплея, когда эта верхушка не плоская, а округлая. При таком выборе даже небольшие погрешности в поддержании уровня аналгезии сразу проявятся в снижении амплитуды волны и не исчезнут за шкалой прибора, как при чрезмерном усилении.

Некоторые показатели внешнего дыхания.

Для анестезиолога показатели внешнего дыхания (ДО,МОД, давление в дыхательных путях, податливость грудной клетки-легких) важны, как для характеристики состояния аппарата внешнего дыхания, так и для контроля функции респираторов. Этот контроль является важнейшим условием безопасности больных и благополучного исхода операций, поскольку нарушения дыхания больного во время общей анестезии с тотальной кураризацией служат наиболее частой причиной осложнений, в том числе и летальных. Именно поэтому общим правилом является оснащение любого респиратора приборами, контролирующими правильность показаний органов управления аппарата. Иначе говоря, анестезиолог не имеет права проводить управляемое дыхание больному, если респиратор не оснащен хотя бы простейшим волюметром, измеряющим дыхательный и минутный объемы дыхания. Это требование, увы вызвано к жизни не формальными, а сугубо жизненными, практическими причинами. Дело в том, что надежные и хорошо себя зарекомендовавшие респираторы типа РО, после длительной эксплуатации далеко не всегда дают объем вдоха, соответствующий данным органов управления аппарата. Расхождения между показаниями волюметра и респиратора могут составить от 10 до 30% и более (как в сторону уменьшения, так и увеличения). Более того, при определенных, вполне вероятных повреждениях аппарата, движения дыхательного меха (сильфона) вовсе не обязательно сопровождаются потоком газа в сторону больного. Если при этом анестезиолог не обратит внимания на показания манометра и экскурсии грудной клетки больного - может развиться острая дыхательная недостаточность, тяжесть которой будет зависеть от длительности такого апноэ. Кстати заметим, что даже включенный механический волюметр в описанной ситуации не гарантирует больного от гиповентиляции, поскольку не имеет механизма тревожной сигнализации. Лишь современные электронные волюметры могут обеспечить полную безопасность больного в случае нарушений работы респиратора или разгерметизации дыхательного контура.

К сожалению, в настоящее время в стране выпускается только один тип электрон- ных волюметров, модель ДУ-1500А ( Rad Hacker Lab.- Красногорск). Его длительные испытания в условиях клиники экстренной хирургии показали высокую надежность прибора, удобство его адаптации к респиратору. Прибор имеет малые габариты и очень простое управление. Волюметр дает возможность определить объём каждого выдоха, МОД после каждого выдоха и частоту дыхательных движений в мин. Прибор оснащен механизмом подачи сигнала тревоги (звукового) при снижении ДО до 150мл.

Главным достоинством прибора является его надежность и достаточная точность. Несмотря на это, при больших расхождениях показаний волюметра (любого) и респиратора есть необходимость удостовериться в точности работы волюметра. К сожалению, это можно сделать либо с помощью спирометра, либо специального эталонного литрового шприца, которам, обычно клиники не располагают.

Для того, чтобы быть спокойным и доверять показаниям волюметра во время проведения ИВЛ можно применить простой прием. Еще до наркоза нужно предложить больному сделать несколько дыхательных движений, предварительно соеденив его (больного) с дыхательным контуром респиратора (с помощью загубника). В результате мы получим исходные величины ДО и МОД, которые можно будет сопоставлять с этими же показателями во время наркоза. Это повысит надежность и достоверность измерений.

Ценность определения исходных величин ДО и МОД не ограничивается “поверочными” целями. Эти величины помогают определить адекватность выбора параметров вентиляции во время наркоза и самостоятельного дыхания после прекращения ИВЛ. Знание исходных величин внешнего дыхания помогут исключить гиповентиляцию, как причину послеоперационной гипоксемии (по данным пульсоксиметра), о чем более подробно будет расказано в разделе, посвященном пульсоксиметрии.

Кроме ДО и МОД с помощью волюметра вкупе с манометром можно измерять величину податливости легких. Эта величина определяется соотношением дыхательного объёма и давления на вдохе. Соотношение показывает сколько мл.дыхательной смеси входит в легкие под давлением в 1см.водн. столба. При очень хорошей эластичности на 1см. водного столба приходится 100 мл объёма вдоха. На практике чаще за норму приходиться признавать величину податливости, равную 50 мл. объёма на 1см. Н2О давления. Чем эта величина меньше, тем региднее система легкие-грудная клетка, тем должно быть выше, при прочих равных условиях, среднее внутригрудное давление при ИВЛ. Таким образом, знание величины податливости легких характеризует состояние легочной ткани и позволяет выбрать оптимальное соотношение объём/давление. Определение этого соотношения особенно важно при изменении давления в брюшной полости, например, при эндоскопических операциях. Пневмоперитонеум при этих операциях вносит заметные нарушения не только в соотношение объём/давление, но и приводит к снижению венозного возврата к сердцу и, следовательно, к снижению ударного и минутного объёмов сердца. За счет более высокого стояния диафрагмы при пневмоперитонеуме снижается ДО, либо при сохранении величины ДО, увеличивается давление на вдохе. Снижение ДО может привести к гиперкапнии, для профилактики которой приходится увеличивать частоту дыхательных экскурсий и минутную вентиляцию легких. Все описанные маневры производятся на основе данных волюметра и манометра и только эта информация позволяет корригировать нарушения вентиляции легких и предотвращать гемодинамические нарушения.

Резюмируя раздел об измерении некоторых показателей внешнего дыхания во время общей анестезии, перечислим основные задачи применения волюметра:

1.Контроль и коррекция показаний респиратора.

2.Включение тревожной сигнализации при гиповентиляции и апноэ.

3.Измерение исходных величин ДО и МОД.

4.Оценка эластических свойств легких у больных на операционном столе.

5.Оптимизация внутригрудного давления и ДО при пневмоперитонеуме, изменении положения тела на операционном столе и др.мероприятиях, изменяющих уровень стояния диафрагмы.

6.Оценка адекватности вентиляции легких (по объёму выдоха и МОД) при самостоятельном дыхании после ИВЛ.

Мониторное наблюдение за показателями газообмена.

Пульсоксиметрия.

Наиболее популярный источник информации во время наркоза. Пульсоксиметр очень прост в эксплуатации и дает ценную и наглядную информацию.

Пульсоксиметр это прибор, соединяющий в себе три прибора: оксиметр, фотоплетизмограф и пульсотахометр. Это сочетание не случайно, поскольку оно привело к значительному увеличению точности сведений о степени оксигенации гемоглобина по сравнени с ранее выпускавшимся прибором оксигемометром. В обоих приборах принцип работы одинаков: анализ спектральной характеристики крови, протекающей в исследуемых тканях. Уточнение результатов пульсоксиметра связано с тем, что его датчик реагирует на спектр крови на протяжении всего сердечного цикла, а “компьютер” прибора отбирает информацию только о спектре на высоте систолы (на пике пульсовой волны), т.е.учитывает информацию о насыщении гемоглобина артериальной крови.

Пульсоксиметр не требует калибровки в процессе работы, что упрощает его эксплуатацию. Надежность информации, получаемой от прибора, можно проверить, испытывая его на заведомо здоровых людях. Если при этих испытаниях получают цифры НвО2 в пределах физиологической нормы (96-97%), можно считать, что прибор исправен и показания его верны.

Нет нужды обсуждать актуальность постоянной информации о насыщении гемоглобина артериальной крови кислородом. Эта информация особенно важна потому, что клинически гипоксемия проявляет себя цианозом лишь при уровне НbО2 в 70-75%, т.е. лишь при глубокой гипоксемии, чреватой серьёзными нарушениями работы сердца, мозга, печени.

Наиболее вероятными причинами гипоксемии во время наркоза с применением ИВЛ являются : 1. Затянувшаяся интубация трахеи или интубация, проводимая без достаточной кислородной компенсации непосредственно перед процедурой. Пульсоксиметр позволяет не подвергать больного риску гипоксемии и прекращать попытку интубации при снижении НвО2 до 90-88%. После компенсации с помощью ИВЛ маской может быть предпринята повторная попытка интубации трахеи также под контролем газообмена пульсоксиметром.

2.Неисправность респиратора, при которой продолжаются движения меха и даже манометр показывает небольшое положительное давление на вдохе, а дыхательная смесь идет не к больному, а в мешок (отказ клапана отключения наркозного блока).

3.Случайная разгерметизация дыхательного контура. Сигнал тревоги в связи со снижением оксигенации гемоглобина заставит анестезиолога проверить контур и устранить дегерметизацию.

4.Неисправность респиратора, приводящая к значительному снижению эффективного дыхательного объёма и МОД, если эти величины не контролируются точным волюметром.

5.Снижение (прекращение) подачи кислорода по магистрали снабжения.

Все описанные причины приводят к дыхательной недостаточности и во-время не замеченные могут привести к гипоксемии, которая фиксируется пульсоксиметром. Для устранения гипоксемии в перечисленных случаях необходимо во время выяснения причины обеспечить адекватное дыхание больному либо за счет ручной вентиляции мешком при выключенном респираторе, либо с помощью мешка “Амбу”. При невозможности срочно устранить неисправность, должна быть произведена смена аппарата.

Частой причиной гипоксемии, которую фиксирует пульсоксиметр, служит паренхиматозная дыхательная недостаточность. Если при снижении показаний пульсоксиметра исключены все перечисленные причины нарушения объёмов вентиляции легких, если волюметр показывает удовлетворительные данные ДО и МОД, если капнометр не фиксирует гиперкапнии, если наконец, нет снижения содержания кислорода в дыхательной смеси - нужно думать о нарушении вентиляционно-перфузионных отношений в легких. Самой вероятной причиной паренхиматозной дыхательной недостаточности и гипоксемии является шунтирование неоксигенированной крови, протекающей по невентилируемым отделам легких. Чаще всего это связано с погрешностями интубации трахеи: либо интубационная трубка прошла в правый главный бронх и отключила из вентиляции левое легкое, либо кончик трубки перекрыл верхнедолевой бронх справа. При этом иногда продолжается вентиляция (редуцированная) левого бронха. Восстанавливается правильное положение трубки - гипоксемия купируется.

Причиной гипоксемии могут быть и ателектазы в связи с обтурацией бронхов мокротой и, наконец, шунтирование крови в участках легких, бронхи которых закрываются во время выдоха. Эти участки формируют так называемый объём экспираторного закрытия. Эти ателектазы отличаются от обычных обтурационных ателектазов открытостью бронха во время вдоха. И хотя газ во время вдоха в этот бронх войти не может в связи с тем, что во время выдоха газ из бронха не выходил, газообмен в соответствующем отделе легкого происходит благодаря диффузии кислорода из проксимальных отделов бронхиального дерева и углекислоты в обратном направлении. Только этим обстоятельством можно объяснить улучшение оксигенации крови при увеличении концентрации кислорода ( FiO2) во вдыхаемой смеси. Очевидно, что увеличение объёма экспираторного закрытия (у старых больных, при операциях в брюшной полости) во время ИВЛ с высоким FiO2 в дыхательной смеси, как правило не сопровождается гипоксемией. Но если концентрация кислорода снижается - при переходе на самостоятельное дыхание воздухом - развивается гипоксемии. Это показывает пульсоксиметр. Но даже в отсутствие пульсоксиметра a”priori можно считать, что все больные после полостных операций (особенно верхнеабдоминальных) нуждаются в обогащении кислородом вдыхаемого воздуха. Для адаптации к воздуху по нашим данным нужно от 20 до 40 мин.

При работе с пульсоксиметром нужно иметь ввиду особенности формирования оксиметрического сигнала,которые (особенности) имеют непосредственное отношение к достоверности информации, поступающей от прибора. Дело в том, что показания зависят от амплитуды ФПГ и при её значительном снижении, что нередко случается во время наркоза, надежность оксиметрических данных снижается. В некоторых моделях пульсоксиметров при критическом снижении амплитуды пульсовой кривой ФПГ, на табло появляются знаки, предупреждающие о возможной ошибке в показаниях прибора.

Капнометрия.

Капнометрия или измерение концентрации углекислоты в выдыхаемом воздухе, призвана объективно отразить меру адекватности минутной вентиляции легких количеству доставляемой кровью к легким углекислоты. Чем выше уровень обмена и, следовательно, чем больше притекает с кровью СО2, тем большей должна быть и минутная вентиляция легких, чтобы поддерживать константную величину напряжения углекислоты в артериальной крови (РаСО2), которая, как известно, равна 40 мм.рт.ст.

Из этого общего положения вытекает большое количество следствий, которые при капнометрии используются, как критерии газообмена.

Прежде всего, подчеркнём, что концентрация СО2 в выдыхаемом воздухе, а точнее концентрация СО2 в конце выдоха (FetСО2 - end tidal -конец дыхат. цикла -англ.) информирует нас о состоянии общей вентиляции легких (тотальная, но не локальная вентиляция). Иначе говоря, изменения FеtСО2 помогают диагностировать тотальную гиповентиляцию (или гипервентиляцию) или вентиляционную дыхательную недостаточность (в отличии от гипоксемии по пульсоксиметру, которая чаще всего является следствием локальной гиповентиляции, т.е. паренхиматозной дыхательной недостаточности).

Здесь мы должны напомнить известное положение, согласно которому FetСО2 нельзя идентифицировать с РаСО2 и не только потому, что одна величина представляет собой концентрацию и выражена в процентах, а другая - парциальное давление и выражена в мм.рт.ст., но главным образом потому, что артериальная или равная ему альвеолярная концентрация углекислоты выше, чем её концентрация в выдыхаемом воздухе, даже в конце выдоха, поскольку в процессе легочной вентиляции происходит разведение альвеолярного газа менее насыщенными углекислотой порциями выдыхаемого воздуха. Разница между FaCO2 и FetCO2 (концентрация СО2 в арт.крови и в конце выдоха) зависит от вентилируемости легких, т.е. от соотношения ФОЕ (функциональная остаточная емкость - все, что остается в легких после обычного выдоха) и ДО. Чем величина этого соотношения меньше (чем больше ДО при неизменном ФОЕ), тем меньше и разница между FaCO2 и FetCO2, т.к. происходит более быстрое обновление общей емкости легких, а концентрация СО2 от альвеол до “конца выдоха” выравнивается. Есть и другие факторы, влияющие на обсуждаемое различие, например снижение эластичности легких.

Имеющиеся различия между альвеолярной концентрацией СО2 (FACO2) и FetCO2 не являются абсолютным препятствием для использования на практике FetCO2, как “законного” представителя FACO2 и FaCO2 (которые, как известно, равны). Это связано с относительным постоянством разницы у одного и того же человека при стабильных показателях внешнего дыхания. Из этого следует, что однажды определив разницу между РаСО2 и РеtСО2 (РаСО2 определяется по КЩС), в дальнейшем можно вносить поправку в измерения РetCO2, полученные с помощью капнометра. Можно упростить оценку FetCO2, если до операции предложить больному подышать через трубку с отведением к капнометру и определить исходную величину FetCO2, а при последующих измерениях принять её за норму для данного пациента. Опыт показывает, что у большинства больных (при отсутствии выраженной гипо или гипервентиляции), исходные величины FetCO2 колеблются в пределах 4 -5%.

Для облегчения сравнения РаСО2 и FetCO2 приводим правило примерного перевода величин парциального давления в величины концентрации и наоборот (примерное оно потому, что атмосферное давление принято за постоянную величину, равную 750 мм.рт.ст.). РСО2 = FCO2 х 7. FCO2 =РСО2:7.

Анестезиолог получает полезную информацию с помощью капнометра уже при поступлении больного на операционный стол. Как уже было сказано, данные капнометрии позволяют ориентировать

 
     
Бесплатные рефераты
 
Банк рефератов
 
Бесплатные рефераты скачать
| мероприятия при чрезвычайной ситуации | Чрезвычайная ситуация | аварийно-восстановительные работы при ЧС | аварийно-восстановительные мероприятия при ЧС | Интенсификация изучения иностранного языка с использованием компьютерных технологий | Лыжный спорт | САИД Ахмад | экономическая дипломатия | Влияние экономической войны на глобальную экономику | экономическая война | экономическая война и дипломатия | Экономический шпионаж | АК Моор рефераты | АК Моор реферат | ноосфера ба забони точики | чесменское сражение | Закон всемирного тяготения | рефераты темы | иохан себастиян бах маълумот | Тарых | шерхо дар борат биология | скачать еротик китоб | Семетей | Караш | Influence of English in mass culture дипломная | Количественные отношения в английском языках | 6466 | чистонхои химия | Гунны | Чистон
 
Рефераты Онлайн
 
Скачать реферат
 
 
 
 
  Все права защищены. Бесплатные рефераты и сочинения. Коллекция бесплатных рефератов! Коллекция рефератов!