Чтение RSS
Рефераты:
 
Рефераты бесплатно
 

 

 

 

 

 

     
 
Генетика и проблемы человека

Экзаменационный реферат по биологии

«Генетика и проблемы человека»

ученика 11«А» класса

Кировского Физико-математического лицея

Пономарёва Андрея.

Киров, 2000.

План.

o Введение 3 o Основные этапы развития генетики 3 o Нуклеиновые кислоты 8 o Генетический код 9 o Биосинтез белков 10 o Хромосомный комплекс 10 o Половые хромосомы человека 11 o Свойства человеческого генома: мутабельность 11 o Свойства человеческого генома: изменчивость 14 o Дискретная изменчивость 14 o Непрерывная изменчивость 15 o Влияние среды 15 o Источники изменчивости 16 o Наследственные болезни 17 o Наследственные болезни обмена 28 o Летальные гены 30 o Медико-генетическое консультирование 31 o Генетический мониторинг 34 o Заключение 35 o Использованная литература 37

Введение.

Генетика представляет собой одну из основных, наиболее увлекательных и вместе с тем сложных дисциплин современного естествознания. Место генетики среди биологических наук и особый интерес к ней определяются тем, что она изучает основные свойства организмов, а именно наследственность и изменчивость.

В результате многочисленных – блестящих по своему замыслу и тончайших по исполнению – экспериментов в области молекулярной генетики современная биология обогатилась двумя фундаментальными открытиями, которые уже нашли широкое отражение в генетике человека, а частично и выполнены на клетках человека. Это показывает неразрывную связь успехов генетики человека с успехами современной биологии, которая все больше и больше становится связана с генетикой.

Первое – это возможность работать с изолированными генами. Она получена благодаря выделению гена в чистом виде и синтезу его. Значение этого открытия трудно переоценить. Важно подчеркнуть, что для синтеза гена применяют разные методы, т.е. уже имеется выбор, когда речь пойдет о таком сложном механизме как человек.

Второе достижение – это доказательство включения чужеродной информации в геном, а также функционирования его в клетках высших животных и человека. Материалы для этого открытия накапливались из разных экспериментальных подходов. Прежде всего, это многочисленные исследования в области вирусо-генетической теории возникновения злокачественных опухолей, включая обнаружение синтеза ДНК на РНК-матрице. Кроме того, стимулированные идеей генетической инженерии опыты с профаговой трансдукцией подтвердили возможность функционирования генов простых организмов в клетках млекопитающих, включая клетки человека.

Без преувеличения можно сказать, что, наряду с молекулярной генетикой, генетика человека относится к наиболее прогрессирующим разделам генетики в целом. Ее исследования простираются от биохимического до популяционного, с включением клеточного и организменного уровней.

Но рассмотрим отдельно историю развития генетики.

Основные этапы развития генетики.

Истоки генетики, как и всякой науки, следует искать в практике.
Генетика возникла в связи с разведением домашних животных и возделыванием растений, а также с развитием медицины. С тех пор как человек стал применять скрещивание животных и растений, он столкнулся с тем фактом, что свойства и признаки потомства зависят от свойств избранных для скрещивания родительских особей. Отбирая и скрещивая лучших потомков, человек из поколения в поколение создавал родственные группы – линии, а затем породы и сорта с характерными для них наследственными свойствами.

Хотя эти наблюдения и сопоставления еще не могли стать базой для формирования науки, однако бурное развитие животноводства и племенного дела, а также растениеводства и семеноводства во второй половине XIX века породило повышенный интерес к анализу явления наследственности.

Развитию науки о наследственности и изменчивости особенно сильно способствовало учение Ч. Дарвина о происхождении видов, которое внесло в биологию исторический метод исследования эволюции организмов. Сам Дарвин приложил немало усилий для изучения наследственности и изменчивости. Он собрал огромное количество фактов, сделал на их основе целый ряд правильных выводов, однако ему не удалось установить закономерности наследственности.
Его современники, так называемые гибридизаторы, скрещивавшие различные формы и искавшие степень сходства и различия между родителями и потомками, также не смогли установить общие закономерности наследования.

Еще одним условием, способствовавшим становлением генетики как науки, явились достижения в изучении строения и поведения соматических и половых клеток. Еще в 70-х годах прошлого столетия рядом исследователей-цитологов
(Чистяковом в 1972 г., Страсбургером в 1875 г.) было открыто непрямое деление соматической клетки, названное кариокинезом (Шлейхером в 1878 г.) или митозом (Флеммингом в 1882 г.). Постоянные элементы ядра клетки в 1888 г. по предложению Вальдейра получили название «хромосомы». В те же годы
Флемминг разбил весь цикл деления клетки на четыре главные фазы: профаза, метафаза, анафаза и телофаза.

Одновременно с изучением митоза соматической клетки шло исследование развития половых клеток и механизма оплодотворения у животных и растений.
О. Гертвиг в 1876 г. впервые у иглокожих устанавливает слияние ядра сперматозоида с ядром яйцеклетки. Н.Н. Горожанкин в 1880 г. и Е.
Страсбургер в 1884 г. устанавливает то же самое для растений: первый – для голосеменных, второй – для покрытосеменных.

В те же Ван-Бенеденом (1883 г.) и другими выясняется кардинальный факт, что в процессе развития половые клетки, в отличие от соматических, претерпивают редукцию числа хромосом ровно вдвое, а при оплодотворении – слиянии женского и мужского ядра – восстанавливается нормальное число хромосом, постоянное для каждого вида. Тем самым было показано, что для каждого вида характерно определенное число хромосом.

Итак, перечисленные условия способствовали возникновению генетики как отдельной биологической дисциплины – дисциплины с собственными предметом и методами исследования.

Официальным рождением генетики принято считать весну 1900 г., когда три ботаника, независимо друг от друга, в трех разных странах, на разных объектах, пришли к открытию некоторых важнейших закономерностей наследования признаков в потомстве гибридов. Г. де Фриз (Голландия) на основании работы с энотерой, маком, дурманом и другими растениями сообщил
«о законе расщепления гибридов»; К. Корренс (Германия) установил закономерности расщепления на кукурузе и опубликовал статью «Закон Грегора
Менделя о поведении потомства у расовых гибридов»; в том же году К. Чермак
(Австрия) выступил в печати со статьей (Об искусственном скрещивании у
Pisum Sativum).

Наука почти не знает неожиданных открытий. Самые блестящие открытия, создающие этапы в ее развитии, почти всегда имеют своих предшественников.
Так случилось и с открытием законов наследственности. Оказалось, что три ботаника, открывших закономерность расщепления в потомстве внутривидовых гибридов, всего-навсего «переоткрыли» закономерности наследования, открытые еще в 1865 г. Грегором Менделем и изложенные им в статье «Опыты над растительными гибридами», опубликованной в «трудах» Общества естествоиспытателей в Брюнне (Чехословакия).

Г. Мендель на растениях гороха разрабатывал методы генетического анализа наследования отдельных признаков организма и установил два принципиально важных явления:

1. признаки определяются отдельными наследственными факторами, которые передаются через половые клетки;

2. отдельные признаки организмов при скрещивании не исчезают, а сохраняются в потомстве в том же виде, в каком они были у родительских организмов.

Для теории эволюции эти принципы имели кардинальное значение. Они раскрыли один из важнейших источников изменчивости, а именно механизм сохранения приспособленности признаков вида в ряду поколений. Если бы приспособительные признаки организмов, возникшие под контролем отбора, поглощались, исчезали при скрещивании, то прогресс вида был бы невозможен.

Все последующее развитие генетики было связано с изучением и расширением этих принципов и приложением их к теории эволюции и селекции.

Из установленных принципиальных положений Менделя логически вытекает целый ряд проблем, которые шаг за шагом получают свое разрешение по мере развития генетики. В 1901 г. де Фриз формулирует теорию мутаций, в которой утверждается, что наследственные свойства и признаки организмов изменяются скачкообразно – мутационно.

В 1903 г. датский физиолог растений В. Иоганнсен публикует работу «О наследовании в популяциях и чистых линиях», в которой экспериментально устанавливается, что относящиеся к одному сорту внешне сходные растения являются наследственно различными - они составляют популяцию. Популяция состоит из наследственно различных особей или родственных групп – линий. В этом же исследовании наиболее четко устанавливается, существование двух типов измен6чивости организмов: наследственной, определяемой генами, и ненаследственной, определяемой случайным сочетанием факторов, действующих на проявление признаков.

На следующем этапе развития генетики было доказано, что наследственные формы связаны с хромосомами. Первым фактом, раскрывающим роль хромосом в наследственности, было доказательство роли хромосом в определении пола у животных и открытие механизма расщепления по полу 1:1.

С 1911 г. Т. Морган с сотрудниками в Колумбийском университете США начинает публиковать серию работ, в которой формулирует хромосомную теорию наследственности. Экспериментально доказывая, что основными носителями генов являются хромосомы, и что гены располагаются в хромосомах линейно.

В 1922 г. Н.И. Вавилов формулирует закон гомологических рядов в наследственной изменчивости, согласно которому родственные по происхождению виды растений и животных имеют сходные ряды наследственной изменчивости.
Применяя этот закон, Н.И. Вавилов установил центры происхождения культурных растений, в которых сосредоточено наибольшее разнообразие наследственных форм.

В 1925 г. у нас в стране Г.А. Надсон и Г.С. Филиппов на грибах, а в
1927 г. Г. Мёллер в США на плодовой мушке дрозофиле получили доказательство влияния рентгеновых лучей на возникновение наследственных изменений. При этом было показано, что скорость возникновения мутаций увеличивается более чем в 100 раз. Этими исследованиями была доказана изменчивость генов под влиянием факторов внешней среды. Доказательство влияния ионизирующих излучений на возникновение мутаций привело к созданию нового раздела генетики – радиационной генетики, значение которой еще более выросло с открытием атомной энергии.

В 1934 г. Т. Пайнтер на гигантских хромосомах слюнных желез двукрылых доказал, что прерывность морфологического строения хромосом, выражающаяся в виде различных дисков, соответствует расположению генов в хромосомах, установленному ранее чисто генетическими методами. Этим открытием было положено начало изучению структуры и функционирования гена в клетке.

В период с 40-х годов и по настоящие время сделан ряд открытия (в основном на микроорганизмах) совершенно новых генетических явлений, раскрывших возможности анализа структуры гена на молекулярном уровне. В последние годы с введением в генетику новых методов исследования, заимствованных из микробиологии мы подошли к разгадке того, каким образом гены контролируют последовательность расположения аминокислот в белковой молекуле.

Прежде всего, следует сказать о том, что теперь полностью доказано, что носители наследственности являются хромосомы, которые состоят из пучка молекул ДНК.

Были проведены довольно простые опыты: из убитых бактерий одного штамма, обладающего особым внешним признаком, выделили чистую ДНК и перенесли в живые бактерии другого штамма, после чего размножающиеся бактерии последнего приобрели признак первого штамма. Подобные многочисленные опыты показывают, что носителем наследственности является именно ДНК.

В 1953 г. Ф. Крик (Англия) и Дж. Уотстон (США) расшифровали строение молекулы ДНК. Они установили, что каждая молекула ДНК слагается из двух полидезоксирибонуклеиновых цепочек, спирально закрученных вокруг общей оси.

В настоящее время найдены подходы к решению вопроса об организации наследственного кода и экспериментальной его расшифровке. Генетика совместно с биохимией и биофизикой вплотную подошла к выяснению процесса синтеза белка в клетке и искусственному синтезу белковой молекулы. Этим начинается совершенно новый этап развития не только генетики, но и всей биологии в целом.

Развитие генетики до наших дней – это непрерывно расширяющийся фонт исследований функциональной, морфологической и биохимической дискретности хромосом. В этой области сделано уже много сделано уже очень много, и с каждым днем передний край науки приближается к цели – разгадки природы гена. К настоящему времени установлен целый ряд явлений, характеризующих природу гена. Во-первых, ген в хромосоме обладает свойством самовоспроизводится (авторепродукции); во-вторых, он способен мутационно изменяться; в-третьих, он связан с определенной химической структуры дезоксирибонуклеиновой кислоты – ДНК; в-четвертых, он контролирует синтез аминокислот и их последовательностей в белковой молекулы. В связи с последними исследованиями формируется новое представление о гене как функциональной системе, а действие гена на определение признаков рассматривается в целостной системе генов – генотипе.

Раскрывающиеся перспективы синтеза живого вещества привлекают огромное внимание генетиков, биохимиков, физиков и других специалистов.


Нуклеиновые кислоты.

Нуклеиновые кислоты, как и белки, необходимы для жизни. Они представляют собой генетический материал всех живых организмов вплоть до самых простых вирусов. Выяснение структуры ДНК открыло новую эпоху в биологии, так как позволило понять, каким образом живые клетки точно воспроизводят себя и как в них кодируется информация, необходимая для регулирования их жизнедеятельности. Нуклеиновые кислоты состоят из мономерных единиц, называемых нуклеотидами. Из нуклеотидов строятся длинные молекулы – полинуклеотиды. Молекула нуклеотида состоит из трех частей: пятиуглеродного сахара, азотистого основания и фосфорной кислоты. Сахар, входящий в состав нуклеотидов, представляет собой пентозу.

Различают два типа нуклеиновых кислот – рибонуклеиновые (РНК) и дезоксирибонуклеиновые (ДНК). В обоих типах нуклеиновых кислот содержатся основания четырех разных видов: два из них относятся к классу пуринов, другие - к классу пиримидинов. Азот, содержащийся в кольцах, придает молекулам основные свойства. Пурины – это аденин (А) и гуанин (Г), а пиримидины – цитозин (Ц) и тимин (Т) или урацил (У). В молекулах пуринов имеется два кольца, а в молекулах пиримидинов – одно. В РНК вместо тимина содержится урацил. Тимин химически очень близок к урацилу, а точнее 5- метилурацил.

Нуклеиновые кислоты являются кислотами потому, что в их молекулах содержится фосфорная кислота. В результате соединения сахара с основанием образуется нуклеозид. Соединение происходит с выделением молекулы воды. Для образования нуклеотида требуется еще одна реакция конденсации, в результате которой, между нуклеозидом и фосфорной кислотой возникает фосфоэфирная связь. Разные нуклеотиды отличаются друг от друга природой сахаров и оснований, которые входят в их состав. Роль нуклеотидов в организме не ограничивается тем, что они служат строительными блоками нуклеиновых кислот; некоторые важные коферменты также представляют собой нуклеотиды или их производные.

Два нуклеотида, соединясь, Образуют динуклеотид путем конденсации. В результате которой между фосфатной группой одного нуклеотида и сахара другого возникает фосфодиэфирный мостик. При синтезе полинуклеотидов этот процесс повторяется несколько миллионов раз. Фосфодиэфирные мостики возникают за счет прочных ковалентных связей, и это сообщает всей нуклеотидной цепи прочность и стабильность, что очень важно, так как в результате этого уменьшается риск «поломок» ДНК, при ее репликации.

РНК имеет две формы: транспортную (тРНК) и рибосомную (рРНК). Они имеют довольно сложную структуру. Третья форма - это информационная, или матричная, РНК (мРНК). Все эти формы участвуют в синтезе белка. МРНК – это одноцепочная молекула, образующаяся на одной из цепей ДНК в процессе транскрипции. При синтезе мРНК копируется только одна цепь молекулы ДНК.
Нуклеотиды, из которых синтезируются мРНК, присоединяются к ДНК в соответствии с правилами спаривания оснований и при участии фермента РНК – полимеразы. Последовательность оснований в мРНК представляет собой комплиментарную копию цепи ДНК – матрицу. Длина ее может быть различной, в зависимости от длины полипептидной цепи, которую она кодирует. Большинство мРНК существует в клетке в течение короткого времени.

Рибосомная РНК кодируется особыми генами, находящимися в нескольких хромосомах. Последовательность в рРНК сходная у всех организмов. Она содержится в цитоплазме, где образует вместе с белковыми молекулами клеточные органеллы, называемые рибосомами. На рибосомах происходит синтез белка. Здесь «код», заключенный в мРНК, транслируется в аминокислотную последовательность строящейся полипептидной цепи. Группы, образуемые рибосомами – полирибосомы (полисомы) – делают возможным одновременный синтез нескольких молекул полипептидов при участии одной молекулы мРНК.

Для каждой аминокислоты имеется специфическая тРНК, и все они доставляют содержащиеся в цитоплазме аминокислоты к рибосомам. Таким образом, тРНК играют роль связующих звеньев между триплетным кодом, содержащимся в мРНК и аминокислотной последовательностью в полипептидной цепи. Так как многие аминокислоты кодируются несколькими триплетами, число тРНК значительно больше 20 (идентифицировано уже 60). Каждая аминокислота присоединяется к одной из своих тРНК. В результате образуется аминоацил – тРНК, в котором энергия связи между концевым нуклеотидом А и аминокислотой достаточна для того, чтобы в дальнейшем могла образоваться пептидная связь с карбоксильной группой соседней аминокислоты.


Генетический код.

Последовательность оснований в нуклеотидах ДНК должна определять аминокислотную последовательность белков. Эта зависимость между основаниями и аминокислотами является генетическим кодом. С помощью четырех типов нуклеотидов записаны параметры для синтеза белковых молекул. В код, состоящий из троек оснований, входит четыре разных триплета. Доказательство триплетности кода представил Ф. Крик в 1961 г. Для многих аминокислот существенное значение имеет только первые буквы. Одна из особенностей генетического кода состоит в том, что он универсален. У всех живых организмов имеются одни и те же 20 аминокислот и пять азотистых оснований.

В настоящее время успехи молекулярной биологии достигли такого уровня, что стало возможно определить последовательность оснований в целых генах.
Эта серьезная веха в развитии науки, так как теперь можно искусственно можно синтезировать целые гены. Это нашло применение в генной инженерии.

Биосинтез белков.

Единственные молекулы, которые синтезируются под прямым контролем генетического материала клетки, - это белки (если не считать РНК). Белки могут быть структурными (кератин, коллаген) или играть функциональную роль
(инсулин, фибриноген и, главное, ферменты, ответственные за регуляцию клеточного метаболизма). Именно набор содержащихся в данной клетке ферментов определяет, к какому типу клеток она будет относиться. В 1961 году два французских биохимика Жакоб и Моно, исходя из теоретических соображений, постулировали существование особой формы РНК, выполняющей в синтезе белка роль посредника. В последствии этот посредник получил название мРНК.

Данные, полученные с помощью различных методов в экспериментах, показали, что процесс синтеза РНК состоит из двух этапов. На первом этапе
(транскрипция) относительно слабые водородные связи между комплиментарными основаниями полинуклеотидных цепей разрываются, что приводит к раскручиванию двойной спирали ДНК и освобождению одиночных цепей. Одна из этих цепей избирается в качестве матрицы для построения комплиментарной одиночной цепи мРНК. Молекулы мРНК образуются в результате связывания друг с другом свободных рибонуклеотидов. Синтезированные молекулы мРНК, несущие генетическую информацию, выходят из ядра и направляются к рибосомам. После того, как образовалось достаточное число молекул мРНК, транскрипция прекращается и две цепи ДНК на этом участке вновь соединяются, восстанавливая двойную спираль. Второй этап – это трансляция, которая происходит на рибосомах. Несколько рибосом могут прикрепиться к молекуле мРНК, подобно бусинам на нити, образуя структуру, называемую полисомой.
Преимущество такого комплекса состоит в том, что при этом на одной молекуле мРНК становится возможным одновременный синтез нескольких полипептидных цепей. Как только новая аминокислота присоединилась к растущей полипептидной цепи, рибосома перемещается по нитям мРНК. Молекула тРНК покидает рибосому и возвращается в цитоплазму. В конце трансляции полипептидная цепь покидает рибосому.


Хромосомный комплекс человека.

На Земле не существует двух совершенно одинаковых людей, за исключением однояйцовых близнецов. Причины этого многообразия нетрудно понять с генетических позиций.

Число хромосом у человека – 46 (23 пары). Если допустить, что родители отличаются по каждой паре хромосом лишь по одному гену, то общее количество возможных генотипических комбинаций – 223. На самом деле количество возможных комбинаций будет намного больше, так как в этом расчете не учтен перекрест между гомологичными хромосомами. Следовательно, уже с момента зачатия каждый человек генетически уникален и неповторим.


Половые хромосомы человека.

Гены, находящиеся в половых хромосомах, называются сцепленными с полом. Явление сцепления генов, локализированных в одной хромосоме, известно под названием закона Моргана. В Х-хромосоме имеется участок, для которого в У-хромосоме нет гомолога. Поэтому у особи мужского пола признаки, определяемые генами этого участка, проявляются даже в том случае, если они рецессивны. Эта особая форма сцепления позволяет объяснить наследование признаков, сцепленных с полом, например цветовой слепоты, раннего облысения и гемофилии у человека. Гемофилия – сцепленный с полом рецессивный признак, при котором нарушается свертывание крови. Ген, детерминирующий этот процесс, находится в участке Х-хромосомы, не имеющем гомолога, и представлен двумя аллелями – доминантным нормальным и рецессивным мутантным.

Особи женского пола, гетерозиготных по рецессиву или по доминанту, называют носителем соответствующего рецессивного гена. Они фенотипически нормальны, но половина их гамет несет рецессивный ген. Несмотря на наличие у отца нормального гена, сыновья матерей-носителей с вероятностью 50% будут страдать гемофилией.


Свойства человеческого генома: Мутабельность.

Изменчивость организмов является одним из главных факторов эволюции.
Она служит основным источником для отбора форм, наиболее приспособленных к условиям существования.

Изменчивость является сложным процессом. Обычно биологи делят ее на наследственную и ненаследственную. К наследственной изменчивости относят такие изменения признаков и свойств организмов, которые при половом размножении не исчезают, сохраняются в ряду поколений. К ненаследственной изменчивости – модификациям, или флюктуациям, относят изменения свойств и признаков организма, которые возникают в процессе его индивидуального развития под влиянием факторов внешней среды, сложившейся специфическим образом для каждого индивидуума, и при половом размножении не сохраняются.

Наследственная изменчивость представляет собой изменение генотипа, ненаследственная – изменение фенотипа организма.

Термин «мутация» впервые был предложен Гуго де Фризом в его классическом труде «Мутационная теория» (1901 – 1903). Мутацией он называл явление скачкообразного, прерывного изменения наследственного признака.
Основные положения теории Г. де Фриза до сих пор не утратили своего значения, и поэтому их следует здесь привести:

1) мутация возникает внезапно, без всяких переходов;

2) новые формы вполне константны, т.е. устойчивы;

3) мутации в отличие от ненаследственных изменений (флюктуаций) не образуют непрерывных рядов, не группируются вокруг среднего типа

(моды). Мутации являются качественными изменениями;

4) мутации идут в разных направлениях, они могут быть как полезными, так и вредными;

5) выявление мутаций зависит от количества особей, проанализированных для обнаружения мутаций.

6) Одни и те же мутации могут возникать повторно.

Однако Г. де Фриз допустил принципиальную ошибку, противопоставив теорию мутаций теории естественного отбора. Он неправильно считал, что мутации могут сразу давать новые виды, приспособленные к внешней среде, без участия естественного отбора. На самом деле мутации являются лишь источником наследственных изменений, служащих материалом для естественного или искусственного отбора. термин "ген" был впервые применен для обозначения наследственно- обусловленного признака Иогансеном в 1911 г. Связь между геном и белком, структура которого определяется структурой гена впервые была сформулирована в виде гипотезы "1 ген - 1 фермент" Бидлом и Татумом. Прямые доказательства того, что мутации гена человека вызывают изменение в первичной структуре белков получены в 1949 г. Полингом при исследовании наследственных гемоглобинопатий. Исследую первичную структуру гемоглабина, выделенного из эритроцитов больных с серповидно клеточной анемией Полинг показал, что подвижность аномального гемоглобина в электрическом поле (электрофорез) изменена по сравнению с нормальной. Далее им было установлено, что этот эффект связан с заменой аминокислоты валина на глютаминовую кислоту. С этого открытия началась новая эра открытий в человеческой биохимической генетики наследственных болезней обмена. Они вызываются мутациями генов , которые продуцируют белки с аномальной структурой, что приводит к изменению их функций.

Большинство организмов хранят генетическую информацию в ДНК - линейном полимере, состоящем из 4ех различных мономерных единиц - дезоксирибонуклеотидами, которые сцеплены друг с другом в цепь фосфодиэфирными связями. Как было доказано Уотсоном и Криком, Типичная молекула ДНК состоит из 2ух плинуклеотидных цепей, каждая из которых содержит от нескольких тысяч до нескольких миллионов молекул. Каждый нуклеотид в одной цепи специфически связан водородной связью с нуклеотидом другой цепи. Только 2 типа спаривания нуклеотидов найдены в ДНК: дезоксиаденозинмонофосфат с тимидинмонофосфатом (А-Т пара) и дезоксигуанидинмонофосфат с дезоксицитидинмонофосфатом (Г-Ц пара). Таким образом последовательность нуклеотидов одной цепи точно определяет последовательность в другой, и обе цепи являются комплиментарными одна другой. Последовательность четырех нуклеотидов вдоль полинуклеотидной цепи варьирует среди ДНК неродственных организмов и является молекулярной базой их генетического расхождения. Поскольку большинство наследственных характеристик стабильно передается от родителей к потомству, последовательность нуклеотидов в ДНК должна точно копироваться при репродукции организма. Это имеет место в обеих цепях. Последовательность нуклеотидов и отсюда генетическая информация консервируется в ходе процесса репликации. Так как каждый нуклеотид в дочерних цепях спарен специфически с комплиментарным нуклеотидом в родительских или матричных цепях до того, как произойдет процесс полимеризации. ДНК высших организмов регулярно упаковано в структуру, называемую хромосомами, состоящих из нуклеопротеиновых элементов (нуклеосом). Хромосомы отделены от всех других клеточных компонентов ядерной мембраной. Каждый из нуклеосомных элементов состоит из четырех, иногда пяти белковых субъединиц, называемых гистонами, которые образуют стержневую структуру, вокруг которого "наматывается" примерно 140 пар нуклеотидов геномной ДНК. Структура гистонов характеризуется высокой консервативностью в царстве эукариотов. Двуспиральная модель ДНК определяет способ, путем которого гены могут быть реплицированы для передачи потомства. Процесс репликации является сложным, но концептуально простым.
Две нити ДНК разделяются, и каждая копируется серией ферментов, которые вставляют комплиментарные основания напротив каждого основания на исходной
(родительской) цепи ДНК. Таким образом две идентичные двойные спирали образуются из одной – в этом состоит процесс репликации. ДНК "делает" РНК, этот процесс называется транскрипцией, а РНК "делает" белок, этот процесс называется трансляцией. Последовательность основания в специфическом гене ультимативно диктует последовательность аминокислот в специфическом белке это коллинеарность между молекулой ДНК и белком достигается посредством генетического кода. Четыре типа оснований ДНК собранные в группы из трех образует триплет, каждый из которых образует кодовое слово, или кодон, который определяет включение одной аминокислоты в структуру кодируемого белка, таким способом определяется включение каждой из 20 аминокислот, которые встречаются в белках. 64 различных триплета существуют для 20 аминокислот, что определяет свойства генетического кода. Таким образом большинство аминокислот определяется более чем одним кодоном, но каждый кодон полностью специфичен.

Хотя в настоящее время вопрос о природе гена выяснен не окончательно, тем не менее прочно установлен ряд общих закономерностей мутирования гена.
Мутации генов возникают у всех классов и типов животных, высших и низших растений, многоклеточных и одноклеточных организмов, у бактерий и вирусов.
Мутационная изменчивость как процесс качественных скачкообразных изменений является всеобщей для всех органических форм.

Свойства человеческого генома: Изменчивость.

Изменчивостью называют всю совокупность различий по тому или иному признаку между организмами, принадлежащими к одной и той же природной популяции или виду. Поразительное морфологическое разнообразие особей в пределах любого вида привлекло внимание Дарвина и Уоллеса во время их путешествий. Закономерный, предсказуемый характер передачи таких различий по наследству послужил основой для исследований Менделя. Дарвин установил, что определенные признаки могут развиваться в результате отбора, тогда как
Мендель объяснил механизм, обеспечивающий передачу из поколения в поколение признаков, по которым ведется отбор.

Мендель описал, каким образом наследственные факторы определяют генотип организма, который в процессе развития проявляется в структурных, физиологических и биохимических особенностях фенотипа. Если фенотипическое проявление любого признака обусловлено в конечном счете генами, контролирующими этот признак, то на степень развития определенных признаков может оказывать влияние среда.
Изучение фенотипических различий в любой большой популяции показывает, что существуют две формы изменчивости - дискретная и непрерывная. Для изучения изменчивости какого-либо признака, например роста у человека, необходимо измерить этот признак у большого числа индивидуумов в изучаемой популяции.
Результаты измерений представляют в виде гистограммы, отражающей распределение частот различных вариантов этого признака в популяции. На рис. 4 представлены типичные результаты, получаемые при таких исследованиях, и они наглядно демонстрируют различие между дискретной и непрерывной изменчивостью.

Дискретная изменчивость

Некоторые признаки в популяции представлены ограниченным числом вариантов.
В этих случаях различия между особями четко выражены, а промежуточные формы отсутствуют; к таким признакам относятся, например, группы крови у человека, длина крыльев у дрозофилы, меланистическая и светлая формы у березовой пяденицы (Biston betularia), длина столбика у первоцвета
(Primula) и пол у животных и растений. Признаки, для которых характерна дискретная изменчивость, обычно контролируются одним или двумя главными генами, у которых может быть два или несколько аллелей, и внешние условия относительно мало влияют на их фенотипическую экспрессию.

Поскольку дискретная изменчивость ограничена некоторыми четко выраженными признаками, ее называют также качественной изменчивостью в отличие от количественной, или непрерывной, изменчивости.

А

Б

Рисунок 1. Гистограммы, отражающие распределение частот в случае прерывистой (А) и не прерывистой (Б) изменчивости.

Непрерывная изменчивость

По многим признакам в популяции наблюдается полный ряд переходов от одной крайности к другой без всяких разрывов. Наиболее яркими примерзлая служат такие признаки, как масса (вес), линейные размеры, форма и окраска организма в целом или отдельных его частей. Частотное распределение по признаку, проявляющему непрерывную изменчивость, соответствует кривой нормального распределения. Большинство членов популяции попадает в среднюю часть кривой, а на ее концах, соответствующих двум крайним значениям данного признака, находится примерное одинаковое (очень малое) число особей. Признаки, для которых характерна непрерывная изменчивость, обусловлены совместным воздействием многих генов (полигенов) и факторов среды. Каждый из этих генов в отдельности оказывает очень небольшое влияние на фенотип, но совместно они создают значительный эффект.

Влияние среды

Главный фактор, детерминирующий любой фенотипический признак, - это генотип. Генотип организма определяется в момент оплодотворения, но степень последующей экспрессии этого генетического потенциала в значительной мере зависит от внешних факторов, воздействующих на организм во время его развития. Так, например, использованный Менделем сорт гороха с длинным стеблем обычно достигал высоты 180 см. Однако для этого ему необходимы были соответствующие условия - освещение, снабжение водой и хорошая почва. При отсутствии оптимальных условий (при наличии лимитирующих факторов) ген высокого стебля не мог в полной мере проявить свое действие. Эффект взаимодействия генотипа и факторов среды продемонстрировал датский генетик
Иогансен. В ряде экспериментов на карликовой фасоли он выбирал из каждого поколения самоопылявшихся растений самые тяжелые и самые легкие семена и высаживал их для получения следующего поколения. Повторяя эти эксперименты на протяжении нескольких лет, он обнаружил, что в пределах «тяжелой» или
«легкой» селекционной линии семена мало различались по среднему весу, тогда как средний вес семян из разных линий сильно различался. Это позволяет считать, что на фенотипическое проявление признака оказывают влияние как наследственность, так и среда. На основании этих результатов можно определить непрерывную фенотипическую изменчивость как «кумулятивный эффект варьирующих факторов среды, воздействующих на вариабельный генотип». Кроме того, эти результаты показывают, что степень наследуемости данного признака определяется в первую очередь генотипом. Что касается развития таких чисто человеческих качеств, как индивидуальность, темперамент и интеллект, то, судя по имеющимся данным, они зависят как от наследственных, так и от средовых факторов, которые, взаимодействуя в различной степени у разных индивидуумов, влияют на окончательное выражение признака. Именно эти различия в тех и других факторах создают фенотипические различия между индивидуумами. Мы пока еще не располагаем данными, которые твердо указывали бы на то, что влияние каких-то из этих факторов всегда преобладает, однако среда никогда не может вывести фенотип за пределы, детерминированные генотипом.


Источники изменчивости

Необходимо ясно представлять себе, что взаимодействие между дискретной и непрерывной изменчивостью и средой делает возм

 
     
Бесплатные рефераты
 
Банк рефератов
 
Бесплатные рефераты скачать
| Интенсификация изучения иностранного языка с использованием компьютерных технологий | Лыжный спорт | САИД Ахмад | экономическая дипломатия | Влияние экономической войны на глобальную экономику | экономическая война | экономическая война и дипломатия | Экономический шпионаж | АК Моор рефераты | АК Моор реферат | ноосфера ба забони точики | чесменское сражение | Закон всемирного тяготения | рефераты темы | иохан себастиян бах маълумот | Тарых | шерхо дар борат биология | скачать еротик китоб | Семетей | Караш | Influence of English in mass culture дипломная | Количественные отношения в английском языках | 6466 | чистонхои химия | Гунны | Чистон | Кус | кмс купить диплом о language:RU | купить диплом ргсу цена language:RU | куплю копии дипломов для сро language:RU
 
Рефераты Онлайн
 
Скачать реферат
 
 
 
 
  Все права защищены. Бесплатные рефераты и сочинения. Коллекция бесплатных рефератов! Коллекция рефератов!