- 3 -
ЛИТЕРАТУРА
1. Гальперин Э.И., Семяндяева М.И., Неклюдова Е.А. Недоста- точность печени.-М.: Медицина, 1978.-328 с.
2. Алажиль Д., Одьевр М. Заболевания печени и желчных путей у детей: Пер. с англ.-М.: Медицина, 1982.-486 с.
3. Блюгер А.Ф., Новицкий И.Н. Практическая гепатология.-М.:
Медицина, 1984.- 405 с.
4. Мусил Я. Основы биохимии патологических процессов: Пер. с чешск.-М.: Медицина, 1985.-430 с.
5. Логинов А.С., Блок Ю.Е. Хронические гепатиты и циррозы печени.-М.: Медицина, 1987.-270 с.
6. Хазанов А.И. Функциональная диагностика болезнй пече- ни.-М.: Медицина, 1988.-304 с.
7. Классификация и критерии диагностики внутренних болезней.
Под ред. А.Д.Куимова, Новосибирск, 1995 - 107 - 114 с.
8. Klinische Pathophysiologie. Stuttgert - New York, 1987 -
864 - 900 с.
.
- 4 -
Для своей жизнедеятельность организм постоянно нуждается в введении различных веществ из окружающей среды. Основная масса этих веществ в составе пищи поступает в желудочно-ки- шечный тракт, где и происходит их расщипление и последующее всасывание. Эти вещества могут иметь кислую и щелочную при- роду, обладать биологической активностью, иметь антигенные свойства, наконец, быть токсическими. В процессе расщепление многих веществ образуются токсические промежуточные продук- ты. Тем самым, непосредственное поступление этих веществ в общий кровоток привело бы к серьезным последствиям.
По сути между желудочно-кишечным трактом и внутренней средой - системой крови, лимфы и тканевой жидкости, находит- ся печень - гепато-билиарной система. Именно здесь и проис- ходит основная часть биохимических процессов, направленных на поддержание постоянства внутренней среды.
Печень выполняет многообразные функции, поэтому наруше- ние ее деятельности влечет за собой ряд патологических изме- нений в организме. При патологии печени, с одной стороны, нарушается пищеварение, развивается интоксикация, изменяется сосудистый тонус, снижается свертываемость крови, нарушается кроветворение, иммунологическая реактивность. С другой сто- роны, различные заболевания, связанные с инфекционно-токси- ческими факторами,нарушениями диеты, приводят к развитию пат ологии печени. Поэтому знания причин, вызывающих патологию печени, патологических процессов, протекающих в ней, необхо- димо, чтобы правильно оценить и предвидеть все многообразие изменений, наступающих в организме при заболеваниях печени.
СТРОЕНИЕ И ФУНКЦИИ ПЕЧЕНИ
Согласно современным представлениям, печень взрослых
высшых позвоночных представляет собой сложноразветвленный
орган ацинарного строения. Структурно-функциональной едини-
цей органа являются простые почечные ацинусы-мельчайшие раз-
нокалиберные участи паренхемы, имеющих форму тутовой ягоды,
ориентированных вокруг мельчайших терминальных разветвлений
воротной вены и терминального участка печеночной артерии.
Вместе с ними проходят и начальные участки мельчайших желч-
ных протоков,так называемые внутрипеченочные желчные ходы
или дуктулы.
В соотвецтвии с реально существующими условиями крово- обращения в паринхеме следует различать три зоны печеночных клеток в простом ацинусе, которые отличаются условиями свое- го существования, функциями и строением.
Первая зона представлена клетками, находящимися в опти-
мальных условиях кровообращения. Но в то же время, клетки
этой зоны первыми и в наибольшей степени вступают в контакт
с различными вредоносными факторами. Т.к клетки первой зоны
ацинуса первыми встречаются с кровью воротной вены, то они
хорактеризуются особо высокой активностью распираторных
окислительныхферментов цикла Кребса,наиболее высокими пока-
зателями энергитического потенциала, углеводного обмена
(проежде всего глюконеогенеза), максимальным накоплением ла-
бильногогликогена в цитоплазме, а в ряде случаев и в ядре, а
также наиболее высоким урнем белкового обмена.
Условия существования печеночных клеток по мере удале-
ния от осевого синусоида ацинуса постепенно ухудшаются и в
наименее выгодных услвиях находятся клетки третьей зоны-зоны
циркуляторной периферии ацинуса,оказываясь тем самым наиме-
ние резистентными к любым повреждениям. Через клетки третьей
зоны протекает кровь с относительно бедным содержанием кис-
лорода и питательных веществ, поэтому у этих клеток наиболее
выражены процессы синтеза основных "экспортируемых" клеткой
белков- альбумина, фибриногена, и др. У этих клеток весьма
высок уровень гликолитических процессов. Гепатоциты этой зо-
ны в первую очередь накапливают различные печеночные пигмен-
ты, в большинстве своем содержащие липиды. В этих клетках
ранее всего и чаще всего формируются липидные накопления.
Процессы активного респираторного окисления в клетках треть-
ей зоны выражены значительно слабее.
Сложность функции печени и преобладание в них синтети-
ческих и клиренсных функций обусловливает ряд особенностей
строения эпителиальной паринхемы. Печеночные клетки распола-
гаются переплетенными однорядными пластинами, благодаря чему
микроциркулярное русло синусоиды непосредственно сопрекаса-
ется с каждой паринхиматозной клеткой. паринхемотозной клет-
кой. Максимальному облегчению обмена между кровью и гепато-
цитом способствует своеобразное страение стенок печеночных
синусоидов, которое не имеет свойственной капиллярам других
органов базальной мембраны.Стенка построена из в один ряд
лежащих на каркасе ретикулярных волокон купферовских клеток,
между краями которых имеются щелевые пространства.Между куп-
феровскими клтками и гепатоцитами имеется свободное прост-
ранство - пространство Десси, которое заполнено гликокалик-
сом. На поверхности гепатоцита,обращенной в п ространство
Десси, имеются микроворсинки, которые увеличивают обменные
возможности на границе кровь-гепатоцит.
Выведение продуктов внешней секреции печеночных кле-
ток-желчи осуществляется со стороны другого - билиардного
полюса гепатоцита в желчные капилляры. Они представляют со-
бой щелевидные ходы между двумя или тремя клетками.
Т.о.желчные капилляры не имеют собственных клеток. Они гер-
метически замкнуты специальным замыкающим аппаратом, связы-
вающим по их краю наружные клеточные мембраны соседних гепа-
тоцитов.
Экзокринная и эндокринная (или метаболическая ) функции печени осуществляется в основном одними и тем же клетками - гепатоцитами. Они отвецтвенны за образование и выделение желчи, а также замногочисленные преобразования веществ,пос- тупающих с кровью в печень. К настоящему времени известно более 500 метаболических функций печени.
Схематически можно выделить следующие основные функции печени:
1.Белковый обмен.
2.Углеводный обмен.
3.Липидный обмен.
4.Обмен витаминов.
5.Водный и минеральный обмен.
6.Обмен желчных кислот и желчеобразование.
7.Пигментный обмен.
8.Обмен гормонов.
9.Детоксицирующая функция.
БЕЛКОВЫЙ ОБМЕH
Участие печени в белковом обмене включает в себя ряд функций:
1. Синтез белка.
2. Распад белка.
3. Переаминирование и дезаминирование аминокислот.
4. Образование мочевины, глютамина и креатина.
5. Специфический обмен некоторых аминокислот.
Синтез белков осуществляется, прежде всего, из свобод- ных аминокислот, которые поступают в обменный фонд печени из трех источников:
1) экзогенные свободные аминокислоты, поступающие с кровю воротной вены из кишечника;
2) эндогенные свободные аминокислоты и другие продукты эндогенного белкового распада;
3) аминокислоты, образующиеся в процессе обмена из уг- леводов и жирных кислот.
У взрослых людей с весом тела около 70 кг 12 кг относят- ся к белкам, из которых 200-300 г. ежедневно подлежат расхо- ду и неосинтезу. Из них белки мускулатуры составляют 53% и белки печени 20%. После мускулатуры печень - орган с наибо- лее интенсивным синтезом белка. Печень синтезирует из амино- кислот ежедневно 50 г. белка, из которых 12 г. относятся к альбумину.
В печени синтезируются все альбумины, 90% альфа1-гло- булинов (альфа1-гликопротеид, альфа1-липопротеид, альфа1-ан- титрипсин ), 75% альфа2-макроглобулинов ( церулоплазмин, альфа2-антитромбин, альфа2-макроглобулин) и 50% вета-глобу- линов (гемопексин, трансферин, вета2-микроглобулин, значи- тельное ко личество липопротеидов ). В условиях патологии печень может синтезировать и гамма-глобулины.
Кроме того, печень синтезирует большое количество про- коагулянтов (фибриноген,протромбин, проконвертин, проакцеле- рин и антигемофильные факторы).
Поддержание постоянного аминокислотного состава крови также является одной из основных функций печени.Вслучае не- достка какой либо аминокислоты с помощью переаминирования и дезаминирования осущесществляется пополнение этого недостат- ка. Спектр аминокислот, подвозимых в крови портальной вены в печень, претерпевает в печени изменения, поскольку аминокис- лоты частично могут распадаться до мочевины, частично участ- вуют в биосинтезе белков или глюкозы, частично проходит че- рез печень неизмененными. Поскольку в печени преимущественно распадаются ароматические аминокислоты (фенилаланин, тирозин и метионин), в мускулатуре распадаются главным образом ами- нокислоты с разветвленной цепью (валин, лейцин или изолей- цин), кровь печеночной вены содержит относительно более вы- сокий уровень аминокислот с разветвленными цепями, по срав- нению с кровью воротной вены.Аминокислоты с разветвленными цепями в мускулатуре и в головном мозге служат для получения энергии.Напротив,ароматические аминокислоты, которые конку- рируют с аминокислотами с разветвленными цепями за транс- портные системы в гематоэнцефалическом барьере, превращаются в нейротрансмиттеры.Обезвреживание аммиака в головном мозге достигается посредством образования глютамина из глютама- та.Глютамин с кровью транспортируется к почкам и к печени, и служит в почках в качестве субстрата для выведения аммиака в мозге и, следовательно,для регуляции кислотно-щелочного рав- новесия при помощи почек.В печени происходит обезвоживание аммиака из глютамина через цикл мочевины.Образование мочеви- ны представляет собой определенную ступень обезвреживания мочевины в печени, поскольку мочевина выделяется с мочой, и образование мочевины является необратимым.
Обезвреживание аммиака и функция печени в качестве регулятора величины рН.
Биосинтез мочевины и глютамина представляет собой важ- нейшую возможность обезвреживания аммиака печенью.Синтез мо- чевины происходит в печени, в цикле мочевины, открытом Krebs и Henseleit (46).Глютамин образуется при переносе аммиака из глютамата посредством глютаминсинтетазы.Отщепление ионов ам- мония от глютамина производится посредством глютаминазы.Син- тез и расщепление глютамина происходит совместно в глютами- новом цикле.В соответствии с концепцией метаболического зо- нирования печеночного ацинуса цикл мочевины и реакция глюта- миназы глютаминового цикла локализуется в перипортальной зо- не, в то время как реакция глютаминсинтетазы глютаминового цикла находится в перивенозной зоне (32)(рис.34.5).Поскольку фермент, определяющий скорость цикла мочевины, локализующе- гося перипортально, карбамилфосфатсинтетаза имеет незначи- тельное сродство с ионами аммония (Кm=1-2мМ/л), по сравнению с перивенозно локализуемой глютаминсинтетазой глютаминового цикла (Кm=0,3мМ/л), обезвреживает только при высоких кон- центрациях аммония в цикле мочевины.Ионы аммиака, которые обезвреживаются при токе перипортальной крови от перипор- тального в перивенозном направлении не через цикл мочевины, происходит вследствие высокого сродства глютаминсинтетазы к аммиаку еще в перивенозной зоне печеночного ацинуса.Таким образом, аммиак в физиологических концентрацией портальной крови (0,3мМ/л) обезвреживается посредством образования мо- чевины,а также посредством синтеза глютамина.
Поскольку при синтезе мочевины в печени, наряду с ионами аммония, также используются ионы бикарбоната (см. суммарную формулу на рис.34.5) и синтезируемый в печени, транспортиру- емый к почкам глютамин выводится в виде ионов аммония пос- редством печеночной глютаминазы в мочу, и печень в состоянии стабилизировать значение рН посредством изменения скорости синтеза глютамина - таким образом, печень обладает функцией стабилизатора величины рН.
При метаболическом ацидозе в печени понижается скорость синтеза мочевины, в ней снижается уровень бикарбоната.Ско- рость синтеза глютамина в печени повышается, транспортируе- мый к почкам глютамин отдает больше ионов аммония и, следо- вательно, протонов в мочу.При метаболическом алкалозе необ- ратимо повышается синтез мочевины, расходуется больше бикар- боната.Напротив, вследствие уменьшенного синтеза глютамина в печени, почки уменьшают подачу глютамина для выведения ионов аммония в мочу (рис.34.5).
Нарушения метаболизма аминокислот и синтеза мочевины при болезнях печени.
При острых и хронических заболеваниях печени могут воз- никать изменения обмена аминокислот и белков вследствие уменьшения функциональной массы гепатоцитов и вследствие на- личия портосистемного шунта потока крови.
Нарушения обмена аминокислот при хронических заболевани- ях печени выявляются тем, что спектр аминокислот в плазме по сравнению со здоровыми при хронических заболеваниях печени характеризуется понижением содержания аминокислот с разветв- ленными цепями на 30-50% (лейцин, изолейцин, валин) и повы- шением содержания ароматических аминокислот (тирозин, фени- ламин и метионин).Понижение содержания аминокислот с раз- ветвленными ?аминокислотами(цепями) приводит при хронических заболеваниях печени к наблюдаемой гиперинсулинемии.Гиперин- сулинемия обусловлена повышенным распадом аминокислот с раз- ветвленными цепями на переферии, в мускулатуре и жировой ткани (84) и, следовательно, к понижению содержания этих аминокислот в плазме.Повышение содержания ароматических ами- нокислот в плазме при хронических заболеваниях печени объяс- нсется уменьшением распада этих аминокислот в печени вследс- твие нарушения функций печени, поскольку содержание ключевых печеночных ферментов распада ароматических аминокислот, для триптофана - триптофанпирролаза, в печени понижено (84).
Поскольку при хронических болезнях печени и при циррозе также уменьшена скорость синтеза мочевины вследствие умень- шения содержания ферментов цикла мочевины, таким образом, объясняется повышение содержания аминокислот плазмы, особен- но ароматических аминокислот, а также в уменьшенном распаде аминокислот в цикле мочевины (32).Поскольку обезвоживание ионов аммония в цикле мочевины локализуется в перипортальной зоне печеночного ацинуса, и при циррозе особенно повреждает- ся морфологически перипортальный регион, что объясняется уменьшением скорости синтеза мочевины при хронических забо- леваниях печени и наступившей гипераммониемией, а также склонностью к развитию метаболического алкалоза.Метаболичес- кий алкалоз имеет место при хронических заболеваниях печени вследствие снижения потребления бикарбоната вследствие уменьшения скорости синтеза мочевины, причем компенсаторно для обезвреживания аммиака в перивенозной зоне печеночного ацинуса может быть повышен синтез глютамина.(32)(рис.34.5).
При наличии застойной печени перивенозная зона печеноч- ного ацинуса необратимо повреждена в отношении обезврежива- ния ионов аммония посредством синтеза глютамина.Это может приводить к метаболическому ацидозу вследствие уменьшенного выделения аммония почками при застойной печени (32).Таким образом, изменения метаболизма аминокислот и обезвреживания аммония при хронических болезнях печени представляют собой важные факторы в патогенезе изменений кислотно-щелочного равновесия и в возникновении печеночной энцефалопатии.
Нарушения метаболизма белка при заболеваниях печени.
Изменения белков плазмы при заболеваниях печени могут отражать изменения биосинтеза белка в печени, поскольку мно- гие белки плазмы синтезируются исключительно в печени.
Альбумин: больные с циррозом печени часто имеют понижен- ный уровень сывороточных альбуминов.Этот уровень может быть отражением пониженного запаса альбуминов в плазме, а может при нормальном запасе плазменных альбуминов быть также выра- жением эффекта разбавления.Так, у больных с циррозом печени и гипоальбуминемией, а также с асцитом часто наблюдается нормальный запас альбумина в плазме и даже повышенный общий альбумин в теле, вследствие повышения экстраваскулярного за- паса альбумина.Таким образом, при характеризации метаболизма альбуминов при болезнях печени следует проводить различие между больными с асцитом и без него.
У больных с циррозом печени без асцита гипоальбуминемия
обозначает уменьшение синтеза альбуминов, интраваскулярного
запаса альбуминов и общего альбумина всего тела.Ежедневный
синтез альбумина может уменьшаться при циррозе с 10-12 г до
4 г.
У больных с циррозом печени с асцитом, несмотря на гипо- альбуминемию, синтез альбумина, напротив, очень часто бывает нормальным.Секреция синтезируемого в гепатоцитах альбумина в плазму может нарушаться коллагеном цирроза, так что до 89% новосинтезированного альбумина непосредственно переходит в асцит и, таким образом, несмотря на нормальный синтез альбу- мина, может возникать гипоальбуминемия.По этой причине уро- вень сывороточного альбумина не находит выражения в произво- дительности синтеза печенью, вследствие длительного времени полужизни распада альбумина, которое составляет около 3-х недель. Напротив, определение факторов свертывания в крови является отражением производительности синтеза в печени, поскольку время полужизни факторов свертывания очень невели- ко.
Факторы свертывания: печень играет важную роль в гемос-
тазе, поскольку она ответственна за синтез большинства фак-
торов свертывания и за распад фибринолитических факторов.Пе-
чень синтезирует фибриноген (фактор 1) и факторы свертывания
5, 7, 9 и 10, причем, за исключением фибриногена, все другие
факторы для синтеза нуждаются в витамине К.Тяжелые острые
болезни печени могут, посредством выпадения функции печени,
вследствие уменьшения синтеза, привести к быстрому падению
содержания факторов свертывания 2, 5, 7 и 10 с удлинением
протромбинового времени, поскольку время полужизни факторов
свертывания лежит между 2 и 4 днями.Уровень фибриногена в
крови, как правило, не уменьшен.Поскльку для синтеза факто-
ров свертывания 2, 7, 9 и 10 также необходим витамин К, ко-
торый в качестве жирорастворимого витамина в кишечнике вса-
сывается при участии желчных кислот и образуется микробами
кишечника, то мальабсорбция, застойная желтуха и стерилиза-
ция содержимого кишечника антибиотиками приводят к нарушени-
ям свертывания вследствие дефицита витамина К. Введение ви-
тамина К устраняет при нормальной функции печени эти наруше-
ния свертывания.
Наряду с факторами свертывания при тяжелых поражениях печеночной паренхимы вследствие нарушений синтеза активность холинэстеразы и концентрации гаптоглобина и церулоплазмина в плазме понижены.
Экстрацеллюлярный фибриногенез. матрикс - коллаген.
Соединительная ткань экстрацеллюлярного матрикса печени
содержит три основные группы макромолекул: 1. Коллаген; 2.
Протеогликан и 3. Гликопротеины, которые все при циррозе пе-
чениобнаруживаются по повышенным концентрациям в печени
(73).
Коллаген представляет собой гетерогенный класс протеи- нов, их аминокислотный состав на одну треть представлен гли- цином и на одну четверть пролином и гидрооксипролином. Кол- лаген очень устойчив по отношению к протеолитическому распа- ду, только специфические ферменты (коллагеназы) расщипляют коллаген.
В печени человека можновыделить пять различных типов коллагена, имеющих структурные различия между собой: колла- ген типа I, III, IV, V, VI. В нормальной печени человека коллаген типа I и типа III составляют примерно треть всего коллагена печени, который составляет, в общем, 2-8 мг/1г сы- рого веса печени. Содержание коллагена повышается при цирро- зе до 30 мг/1мг сырового веса печени, так что в конечной стадии цирроза печени печень может содержать примерно 15 г коллагена. Коллаген типа IV, V и VI в нормальной печени че- ловека количественно представляют собой менее значимые ком- поненты. Все типы коллагена находятся, в том или ином коли- чественном выражении, в области портального факта, в прост- ранстве Дисса и в фибротических фактах печени, причем гепа- тоциты, купферовские клетки, клетки Ито, эндотелиальные клетки синусоида, а также клетки портального тракта и воспа- лительные клетки способны к синтезу коллагена.Фибриногенез: под фибриногенезом понимают образование соединительной тка- ни, например, в печени.При всех формах цирроза печени до сих пор наблюдалось повышенное содержание коллагена.При биосин- тезе коллагена внутриклеточно в качестве предстадий сначала образуется препроколлаген и после отщепления аминокислот по- лучается преколлаген, гидроксилированием остатков лизина или пролина, например, посредством внутриклеточной пролингидрок- силазой.Определение активности печеночной пролингидроксилазы в пунктатах печени применяется для характеристики коллаген- синтетазы, поскольку может быть обнаружена корреляция между синтезом коллагена и активностью этого фермента в легочной ткани.Проколлаген подвергается при секреции из клеток, а также внеклеточно,дальнейшим ферментативным превращениям посредством проколлагенпептидаз,до того, как он внеклеточно образует соответствующие структуры коллагеновых фибрилл.На поверхности новообразованных коллагеновых фибрилл, а также и в плазме могут быть образованы проколлагеновые фибриллы.По этой причине производится радиоиммунологическое определение проколлагеновых пептидов, в особенности, проколлагеновых пептидов типа 3, в плазме, для охарактеризации метаболизма коллагена при заболеваниях печени.
Не менее существеена для организма и многостронная роль печени в катаболизме белка. В печени осуществляются все этапы ращепления белковых веществ до образования аммиака, мочевины,глютамина и креатина. Если мочевина и креатин евля- ютсяпутями обезвреживания аммиака, то глютамин - транспорт- ная форма а ммиака в крови.
Печеночная паренхема осуществляет и катаболизм нукле- оопротеидов с ращеплением их до аминокислот, пуриновых и пи- римидиновых оснований. Причем последние превращаются в моче- вую кислоту.
Гепатоциты содержат ряд ферментов, обеспечивающих спе- цифический обменотдельных аминокислот. Так, около 90% фени- лаланина превращается в печени в тирозин. Из триптофана об- разуется триптамин, серотанин, никотиновая кислота. Регуля- ция белкового обмена достаточно устойчевая функция печени.
УГЛЕВОДНЫЙ ОБМЕН
Участие печени в углеводном обмене включает в себя следующие функции :
1.Включение галактозы и фруктозы в метобализм.
2.Глюконеогенез.
3.Окисление глюкозы .
4.Синтез ираспад гликогена.
5.Образование глюкороновой кислоты.
Печень занимает ключевые позиции в углеводном обмене: ей пренадлежит главная роль в поддержании стабильной кон- центрации глюкозы в сывортке крови. Это достигается за счет:
1)синтеза и расходованея глюкозы;
2)активациии торможения глюконеогенеза.
В пострезорбтивной фазе, примерно черер 4 часа после приема пищи, потребность организма в глюкозе составляет при- мерно 7,5 г в час, причем мозг потребляет 6 г в час и эрит- роциты 1,5 г в час.Эта потребность в глюкозе покрывается пе- ченью, где 4,5 г в час поставляется за счет распада гликоге- на и 3 г в час - глюконеогенезом из лактата, аминокислот и глицерина (43).
При обычном питании с потреблением углеводов, равном примерно 100 г эквивалента глюкозы во время еды в ходе фазы резорбции только в первые оба часа после приема пищи всасы- вается примерно 40-60 г глюкозы в час.Мозг и эритроциты пот- ребляют только примерно 7,5 г в час.Избыточная глюкоза преж- де всего воспринимается печенью, превращается в гликоген, жир или в СО2.Инсулин, который при всасывании глюкозы однов- ременно выделяется в кровь воротной вены, стимулирует это поглощение глюкозы и превращение.
Фруктоза превращается в печени при помощи фермента фрук- токиназы во фруктозо-1-фосфат и, наконец,альдолазой печени переводится в триозы глицеринальдегид и дигидроксиаце- тон-фосфат, которые могут метаболизироваться в лактат.Таким способом в нормальной печени в лактат превращается около 70% поглощенной фруктозы.При инфузии фруктозы происходит повыше- ние уровня лактата в сыворотке в 2-5 раз с развитием лакта- тацидоза, в то время как при инфузии глюкозы в крови наблю- дается лишь двукратный подъем концентрации лактата.Причиной развития лактатацидоза при инфузии фруктозы, в отличие от инфузии глюкозы можно усматривать в том, что вследствие очень высокой активности фруктокиназы в печени, с полувреме- нем, равным 18 минутам, фруктоза очень быстро переводится в печени в лактат.
Галактоза в тонком кишечнике освобождается из лактозы, при пассаже крови воротной вены через печень почти полностью удаляется посредством фосфорелирования специфической галак- токиназой из крови.Элиминация галактозы через рот или после внутривенной инъекции галактозы применяется для характериза- ции функции печени (86).
Нарушения метаболизма углеводов при заболеваниях печени.
Поскольку печень работает как глюкостат для целей глюко- зогомеостаза организма человека, то заболевания печени ведут к гипогликемии, но чаще к гипергликемии ("гепатогенный диа- бет").Генетически обусловленные дефекты в метаболизме угле- водов в печени ведут к тяжелым врожденным заболеваниям с функциональными ограничениями печени.
Гипергликемия и "гепатогенный диабет".
При хронических заболеваниях печени, особенно при цирро-
зах, часто наблюдается нарушение гомеостаза глюкозы.Наруше-
ние гомеостаза глюкозы у больных с циррозом печени выявляет-
ся часто при проведении тестов на толерантность к инсулину
(18).Примерно половина всех больных с циррозом печени обна-
руживают патологическую толерантность печени и в 10% мягкий
корригируемый диетой и сульфанилмочевины сахарный диа-
бет(18).
Наблюдаемый при циррозе печени гиперинсулинизм является следствием уменьшенного распада инсулина в печени.С другой стороны, несмотря на повышение периферического уровня инсу- лина, в крови у больных с циррозом печени наблюдается умень- шение толерантности к глюкозе, у больных с циррозом печени наблюдается резистентность к инсулину.Резистентность к инсу- лину является следствием уменьшения сродства или числа ре- цепторов инсулина, поскольку у больных с циррозом печени наблюдается уменьшение числа рецепторов инсулина в моноци- тах, эритроцитах и жировых клетках (60,85).В некоторых слу- чаях резистентность к инсулину дополнительно может быть обусловлена дефектом рецепторов, а также нарушением реакций, которые ведут к активированию рецепторов пострецепторными дефектами.Резистентность к инсулину, с другой стороны, снова приводит к уменьшению толерантности глюкозы.Таким образом, патогенез гепатогенного сахарного диабета попадает в пороч- ный круг, в котором заболевание печени ведет к уменьшению степени превращения глюкозы и, следовательно, к гиперглике- мии.Гипергликемия ведет к гиперинсулинемии, поскольку распад инсулина в печени замедляется при повреждениях печени.Гипе- ринсулинемия характеризуется ?"Догоп"-регуляцией рецепторов инсулина, и понижением числа рецепторов инсулина, следствием чего является резистентность инсулина.Резистентность инсули- на ведет к гипергликемии через понижение превращения глюко- зы.
ЛИПИДНЫЙ ОБМЕН
Роль печени в метаболизме липидов и липопротеинов состо- ит в синтезе липидов (триглицериды, холестерин и фосфолипи- ды), липопротеинов (ЛГОНП и ЛПВП), апопротеинов, липопротеи- нов и ферментов метаболизма липопротеинов и жиров (леци- тин-холестерин-ацилтрансферазы (ЛХАТ), а также в катаболизме хиломикрон, остатков ЛПОНП, ЛПНП и ЛПВП.
В липидном и липопротеиновом обмене жирные кислоты с ко- роткими и средними цепями транспортируются из пищи через во- ротную вену прямо в печень, в то время как жирные кислоты с длинными цепями должны расщепляться в слизистой оболочке тонкого кишечника на триглицериды, они, как и холестерин пи- щи, транспортируются в виде хиломикрон.Хиломикроны, которые через грудной проток попадают в кровь, посредством липопро- теилипазы превращаются в остатки хиломикрон, которые воспри- нимаются Е-рецепторами аполипопротеинов печени.Экзогенный холестерин здесь смешивается с эндогенным холестерином и вы- деляется печенью с желчью, метаболизируется в желчные кисло- ты или с синтезируемыми в печени триглицеридами выводится в кровь в виде ЛПОНП.
ЛПОНП в качестве важнейшего богатого триглицеридами ли-
попротеина синтезируется печенью, в крови подвергается мета-
болическому каскаду при взаимодействии с липопротеинлипазой
и, вероятно, также при участии печеночной триглицеридлипазы
в ЛПНП (рис.34.6).ЛПНП представляют собой для переферических
клеток главный источник холестерина.С другой стороны, части-
чы ЛПНП воспринимаются рецепторами ЛПНП гепатоцитов в клетки
печени и лизосомальными ферментами разрушаются на компонен-
ты.В гепатоцитах повышение содержания свободного холестерина
вызывает торможение HMG-СоА-редуктазы, ключевого фермента
синтеза холестерина, активацию ацил-КоА-холестерин-ацилт-
рансферазы и следовательно, накопление свободного холестери-
на в форме эфиров холестерина и, наконец, торможение образо-
вания рецепторов ЛПНП в клетках, следствием чего является
поглощения холестерина.Зависимое от рецепторов поглощение
ЛПНП представляет собой существенный элемент регуляции син-
теза холестерина в теле и гомеостаза холестерина (10).
Наряду с ЛПОНП в печени также происходит первый этап
синтеза ЛПВП, образования ЛПВП и передача их в кровь.При
воздействии лецитин-холестерин-ацилтрансферазы (ЛХАТ), ново-
образованные ЛПВП превращаются в ЛПВП, причем освобождается
эфир холестерина, который переносится на ЛППП и ЛПВП.ЛПВП
транспортируют холестерин из переферических клеток в печень
обратно и разрушаются в печени (рис.34.6).Таким образом,
ЛПВП представляет собой резервуар для избыточного холестери-
на переферических клеток, который транспортируется к печени
и там образует запас холестерина, который используется для
желчной секреции холестерина, распада желчных кислот или для
повторной утилизации.Вследствие этой центральной роли печени
в метаболизме липопротеинов при заболеваниях печени имеют
место качественные и количественные изменения липидов плаз-
мы.
Нарушения метаболизма липопротеинов при заболеваниях печени.
При заболеваниях печени с желтухой нередко наблюдается
повышение неэстерифицированного холестерина в сыворотке, в
то время как уровень холестерина оказывается очень часто
?.Пониженный уровень эфиров холестерина в плазме при заболе-
ваниях печени может рассматриваться во взаимосвязи с пони-
женной активностью лецитин-холестерин-ацилтрансферазы (ЛХАТ)
в пораженной печени, что находит отражение также в перефери-
ческой крови и, таким образом, в уменьшенной этерификации
холестерина жирными кислотами.При хронической застойной жел-
тухе вследствие регургитации желчи, богатой холестерином и
лецитином, в плазме наблюдается повышение свободного холес-
терина и лецитина в крови.
Гипертриглицеридемия, которая может наблюдаться при ост-
ром и хроническом гепатитах, а также при холестазе, и сильно
связана с частицами ЛПВП, обогащенными триглицеридами, объ-
ясняется понижением активности печеночной липазы, которая в
норме отщепляет триглицериды.С другой стороны, появление бо-
гатых триглицеридами ЛПВП при застойной желтухе может объяс-
няться понижением содержания эфиров холестерина в частицах
ЛПВП вследствие уменьшения активности ЛХАТ при уменьшении
образования эфиров холестерина.
У больных с холестазом в плазме в 99% наблюдается особый липопротеин, так называемый липопротеин Х (ЛП-Х), в то время как при отсутствии холестаза ЛП-Х в 97% не может быть обна- ружен в плазме (80).Для дифференциального диагноза желтухи, тем не менее, определение липопротеина Х бесполезно, пос- кольку он повышается при внутрипеченочном и внепеченочном холестазе.
Клинически липопротеинемия при хронической застойной желтухе приводит к образованию ксантом в коже, в которых об- наруживаются ошеломляющие количества прежде всего эстерифи- цированного холестерина, наряду со свободным холестерином.
ОБМЕН ВИТАМИНОВ
Печень участвует в обмене почти всех витаминов.Она
заключается в выполнении следующих функций:
1.Участие во всасывании и, прежде всего, жирораствори- мых витаминов.
2.Синтез витаминов.
3.Образование биологически активных форм витаминов.
4.Депонировании и выделении избытка витаминов из орга- низма.
ВОДНЫЙ И МИНЕРАЛЬНЫЙ ОБМЕН
Роль печени в поддержании минерального обмена заключа- ется главным образом в ее участии обмена и депонирования ме- ди, железаи и цинка.
Участие печени в водно-солевом обмене связано:
1) с поддержанием онкотического давления плазмы;
2) с регуляцией уровня натрия и калия плазмы крови путем влияния на уровень альдостерона в плазме крови.
ОБМЕН ЖЕЛЧНЫХ КИСЛОТ И ЖЕЛЧЕОБРАЗОВАНИЕ
Желчные кислоты подвергаются кишечно-печеночной циркуля-
ции.Ежедневно в печени синтезируется 200-600 мг желчных кис-
лот из холестерина.Этот синтез выравнивается дневной потерей
желчных кислот в кале (200-600 мг) и в моче (0,5 мг), так
что запас желчных кислот в организме человека остается пос-
тоянным и равным 3 г. В печени также происходит конъюгация
желчных кислот с аминокислотами глицином и таурином, сульфа-
тирование, глюкуронирование и глюкозирование.Выделяемые в
желчь желчные кислоты при голодании преимущественно попадают
в желчный пузырь.Во время пищеварения после сокращения желч-
ного пузыря запас желчных кислот 2-3 раза проходит кишеч-
но-печеночный цикл, причем основная часть желчных кислот ре-
зорбируется в терминальной части тонкого кишечника, так что
ежедневно, в случае 3-4-кратного приема пищи 12-36 г желчных
кислот поступает в тонкий кишечник.Только незначительная
часть желчных кислот поступает в толстый кишечник и метабо-
лизируется ферментами микробов.Часть этих желчных кислот ре-
зорбируется в толстом кишечнике.Резорбируемые в кишке желч-
ные кислоты кровью воротной вены доставляются к печени и
большей частью воспринимаются гепатоцитами.Небольшая часть
желчных кислот экстрагируется гепатоцитами из крови воротной
вены и поступает в переферическую циркуляцию, так что при
физиологических условиях концентрация желчных кислот в пере-
ферической крови составляет 120-200 мкг/дл (3-5 мкмоль/л),
что очень низко.Циркулирующие в переферической крови желчные
кислоты лишь незначительно выделяются с мочой (0,5
мг/сут=1,3 мкМ/сут), поскольку печень эти желчные кислоты
экстрагирует с высокой эффективностью и выделяет с
желчью.Таким способом запас желчных кислот сохраняется пос-
редством кишечной экстракции и секреции в желчь
(рис.34.7)(14).
Синтез желчных кислот.
В печени происходит синтез первичных желчных кислот (хо-
левая и хенодезоксихолевая кислоты) из неэстерифицированного
холестерина.Первый шаг синтеза желчных кислот состоит в
7а-гидроксилировании холестерина при воздействии расположен-
ной в микросомах холестерин-7а-гидроксилазы.Это ферментатив-
ное 7а-гидроксилирование холестерина является шагом, опреде-
ляющим скорость биосинтеза желчных кислот, активность фер-
мента холестерин-7а-гидроксилазы регулируется количеством
желчных кислот, воспринимаемых гепатоцитами из воротной ве-
ны, посредством торможения по принципу обратной связи.После-
дующие шаги биосинтеза состоят в перемещении двойной связи
от 7а-гидроксихолестерина к 7а-гидроксихолес-
тен-4-еn-3-ону.Этот промежуточный продукт представляет собой
пункт разветвления для синтеза в направлении холевой кислоты
или хенодезоксихолевой кислоты.При помощи 12а-гидроксилиро-
вания посредством расположенной в эндоплазматическом ретику-
луме 12а-гидроксилазы происходит синтез холевой кислоты.Пос-
ле прохождения этого места разветвления в цитозоле происхо-
дит насыщение двойной связи и восстановление 3-оксо-группы в
3а-гидроксигруппу.Когда эти ферментативные реакции на стеро-
идном