ФИЗИОЛОГИЯ КРОВИ
Основные функции крови. Объем и физико-химические свойства крови.
Состав крови.
Система гемостаза.
Группы крови. Система резус.
Фармакологическая коррекция нарушений гемопоэза и гемостаза.
Кровь, лимфа, тканевая, спинномозговая, плевральная, суставная и другие
жидкости образуют внутреннюю среду организма. Внутренняя среда отличается
относительным постоянством своего состава и физико-химических свойств, что
создает оптимальные условия для нормальной жизнедеятельности клеток
организма.
Впервые положение о постоянстве внутренней среды организма сформулировал
более 100 лет тому назад физиолог Клод Бернар. Он пришел к заключению, что
“постоянство внутренней среды организма есть условие независимого
существования”, т.е. жизни, свободной от резких колебаний внешней среды. В
1929 г. Уолтер Кэннон ввел термин гомеостаз.
В настоящее время под гомеостазом понимают как динамическое постоянство
внутренней среды организма, так и регулирующие механизмы, которые
обеспечивают это состояние. Главная роль в поддержании гомеостаза
принадлежит крови.
В 1939 г. Г.Ф. Ланг создал представление о системе крови, в которую он
включил периферическую кровь, циркулирующую по сосудам, органы
кроветворения и кроверазрушения, а также регулирующий нейрогуморальный
аппарат. Основные функции крови
Кровь, циркулирующая в сосудах, выполняет перечисленные ниже функции.
Транспортная – перенос различных веществ: кислорода, углекислого газа,
питательных веществ, гормонов, медиаторов, электролитов, ферментов и др.
Дыхательная (разновидность транспортной функции) – перенос кислорода от
легких к тканям организма, углекислого газа – от клеток к легким.
Трофическая (разновидность транспортной функции) – перенос основных
питательных веществ от органов пищеварения к тканям организма.
Экскреторная (разновидность транспортной функции) - транспорт конечных
продуктов обмена веществ (мочевины, мочевой кислоты и др.), избытка воды,
органических и минеральных веществ к органам их выделения (почки, потовые
железы, легкие, кишечник).
Терморегуляторная – перенос тепла от более нагретых органов к менее
нагретым.
Защитная – осуществление неспецифического и специфического иммунитета;
свертывание крови предохраняет от кровопотери при травмах.
Регуляторная (гуморальная) – доставка гормонов, пептидов, ионов и других
физиологически активных веществ от мест их синтеза к клеткам организма, что
позволяет осуществлять регуляцию многих физиологических функций.
Гомеостатическая – поддержание постоянства внутренней среды организма
(кислотно-основного равновесия, водно-электролитного баланса и др.).
Объем и физико-химические свойства крови
Объем крови – общее количество крови в организме взрослого человека
составляет в среднем 6 – 8% от массы тела, что соответствует 5 – 6 л.
Повышение общего объема крови называют гиперволемией, уменьшение –
гиповолемией.
Относительная плотность крови – 1,050 – 1.060 зависит в основном от
количества эритроцитов. Относительная плотность плазмы крови – 1.025 –
1.034, определяется концентрацией белков.
Вязкость крови – 5 усл.ед., плазмы – 1,7 – 2,2 усл.ед., если вязкость воды
принять за 1. Обусловлена наличием в крови эритроцитов и в меньшей степени
белков плазмы.
Осмотическое давление крови – сила, с которой растворитель переходит через
полунепроницаемую мембрану из менее в более концентрированный раствор.
Осмотическое давление крови вычисляют криоскопическим методом путем
определения точки замерзания крови (депрессии), которая для нее равна 0,56
– 0,58 С. Осмотическое давление крови в среднем составляет 7,6 атм. Оно
обусловлено растворенными в ней осмотически активными веществами, главным
образом неорганическими электролитами, в значительно меньшей степени –
белками. Около 60% осмотического давления создается солями натрия (NаСl).
Осмотическое давление определяет распределение воды между тканями и
клетками. Функции клеток организма могут осуществляться лишь при
относительной стабильности осмотического давления. Если эритроциты
поместить в солевой раствор, имеющий осмотическое давление, одинаковое с
кровью, они не изменяют свой объем. Такой раствор называют изотоническим,
или физиологическим. Это может быть 0,85% раствор хлористого натрия. В
растворе, осмотическое давление которого выше осмотического давления крови,
эритроциты сморщиваются, так как вода выходит из них в раствор. В растворе
с более низким осмотическим давлением, чем давление крови, эритроциты
набухают в результате перехода воды из раствора в клетку. Растворы с более
высоким осмотическим давлением, чем давление крови, называются
гипертоническими, а имеющие более низкое давление – гипотоническими.
Онкотическое давление крови – часть осмотического давления, создаваемого
белками плазмы. Оно равно 0,03 – 0,04 атм, или 25 – 30 мм рт.ст.
Онкотическое давление в основном обусловлено альбуминами. Вследствие малых
размеров и высокой гидрофильности они обладают выраженной способностью
притягивать к себе воду, за счет чего она удерживается в сосудистом русле,
При снижении онкотического давления крови происходит выход воды из сосудов
в интерстициальное пространство, что приводит к отеку тканей.
Кислотно-основное состояние крови (КОС). Активная реакция крови обусловлена
соотношением водородных и гидроксильных ионов. Для определения активной
реакции крови используют водородный показатель рН – концентрацию водородных
ионов, которая выражается отрицательным десятичным логарифмом молярной
концентрации ионов водорода. В норме рН – 7,36 (реакция слабоосновная);
артериальной крови – 7,4; венозной – 7,35. При различных физиологических
состояниях рН крови может изменяться от 7,3 до 7,5. Активная реакция крови
является жесткой константой, обеспечивающей ферментативную деятельность.
Крайние пределы рН крови, совместимые с жизнью, равны 7,0 – 7,8. Сдвиг
реакции в кислую сторону называется ацидозом, который обусловливается
увеличением в крови водородных ионов. Сдвиг реакции крови в щелочную
сторону называется алкалозом. Это связано с увеличением концентрации
гидроксильных ионов ОН и уменьшением концентрации водородных ионов.
В организме человека всегда имеются условия для сдвига активной реакции
крови в сторону ацидоза или алкалоза, которые могут привести к изменению рН
крови. В клетках тканей постоянно образуются кислые продукты. Накоплению
кислых соединений способствует потребление белковой пищи. Напротив, при
усиленном потреблении растительной пищи в кровь поступают основания.
Поддержание постоянства рН крови является важной физиологической задачей и
обеспечивается буферными системами крови. К буферным системам крови
относятся гемоглобиновая, карбонатная, фосфатная и белковая.
Буферные системы нейтрализуют значительную часть поступающих в кровь кислот
и щелочей, тем самым препятствуя сдвигу активной реакции крови. В организме
в процессе метаболизма в большей степени образуется кислых продуктов.
Поэтому запасы щелочных веществ в крови во много раз превышают запасы
кислых, Их рассматривают как щелочной резерв крови.
Гемоглобиновая буферная система на 75% обеспечивает буферную емкость крови.
Оксигемоглобин является более сильной кислотой, чем восстановленный
гемоглобин. Оксигемоглобин обычно бывает в виде калиевой соли. В капиллярах
тканей в кровь поступает большое количество кислых продуктов распада.
Одновременно в тканевых капиллярах при диссоциации оксигемоглобина
происходит отдача кислорода и появление большого количества щелочно
реагирующих солей гемоглобина, Последние взаимодействуют с кислыми
продуктами распада, например угольной кислотой. В результате образуются
бикарбонаты и восстановленный гемоглобин, В легочных капиллярах гемоглобин,
отдавая ионы водорода, присоединяет кислород и становится сильной кислотой,
которая связывает ионы калия. Ионы водорода используются для образования
угольной кислоты, в дальнейшем выделяющейся из легких в виде Н2О и СО2.
Карбонатная буферная система по своей мощности занимает второе место. Она
представлена угольной кислотой (Н2СО3) и бикарбонатом натрия или калия
(NaНСО3, КНСО3) в пропорции 1/20. Если в кровь поступает кислота, более
сильная, чем угольная, то в реакцию вступает, например, бикарбонат натрия.
Образуются нейтральная соль и слабодиссоциированная угольная кислота.
Угольная кислота под действием карбоангидразы эритроцитов распадается на
Н2О и СО2, последний выделяется легкими в окружающую среду. Если в кровь
поступает основание, то в реакцию вступает угольная кислота, образуя
гидрокарбонат натрия и воду. Избыток бикарбоната натрия удаляется через
почки. Бикарбонатный буфер широко используется для коррекции нарушений
кислотно-основного состояния организма.
Фосфатная буферная система состоит из натрия дигидрофосфата (NаН2РО4) и
натрия гидрофосфата (Nа2НРО4). Первое соединение обладает свойствами слабой
кислоты и взаимодействует с поступившими в кровь щелочными продуктами.
Второе соединение имеет свойства слабой щелочи и вступает в реакцию с более
сильными кислотами.
Белковая буферная система осуществляет роль нейтрализации кислот и щелочей
благодаря амфотерным свойствам: в кислой среде белки плазмы ведут себя как
основания, в основной – как кислоты.
Буферные системы имеются и в тканях, что способствует поддержанию рН тканей
на относительно постоянном уровне. Главными буферами тканей являются белки
и фосфаты.
Поддержание рН осуществляется также с помощью легких и почек. Через легкие
удаляется избыток углекислоты. Почки при ацидозе выделяют больше кислого
одноосновного фосфата натрия, а при алкалозе – больше щелочных солей:
двухосновного фосфата натрия и бикарбоната натрия.
Состав крови
Кровь состоит из жидкой части плазмы и взвешенных в ней форменных
элементов: эритроцитов, лейкоцитов и тромбоцитов. На долю форменных
элементов приходится 40 – 45%, на долю плазмы – 55 – 60% от объема крови.
Это соотношение получило название гематокритного соотношения, или
гематокритного числа. Часто под гематокритным числом понимают только объем
крови, приходящийся на долю форменных элементов.
Плазма крови
В состав плазмы крови входят вода (90 – 92%) и сухой остаток (8 – 10%).
Сухой остаток состоит из органических и неорганических веществ. К
органическим веществам плазмы крови относятся белки, которые составляют 7 –
8%. Белки представлены альбуминами (4,5%), глобулинами (2 – 3,5%) и
фибриногеном (0,2 – 0,4%).
Белки плазмы крови выполняют разнообразные функции: 1) коллоидно-
осмотический и водный гомеостаз; 2) обеспечение агрегатного состояния
крови; 3) кислотно-основной гомеостаз; 4) иммунный гомеостаз; 5)
транспортная функция; б) питательная функция; 7) участие в свертывании
крови.
Альбумины составляют около 60% всех белков плазмы. Благодаря относительно
небольшой молекулярной массе (70000) и высокой концентрации альбумины
создают 80% онкотического давления. Альбумины осуществляют питательную
функцию, являются резервом аминокислот для синтеза белков. Их транспортная
функция заключается в переносе холестерина, жирных кислот, билирубина,
солей желчных кислот, солей тяжелых металлов, лекарственных препаратов
(антибиотиков, сульфаниламидов). Альбумины синтезируются в печени.
Глобулины подразделяются на несколько фракций: a -, b - и g -глобулины.
a -Глобулины включают гликопротеины, т.е. белки, простетической группой
которых являются углеводы. Около 60% всей глюкозы плазмы циркулирует в
составе гликопротеинов. Эта группа белков транспортирует гормоны, витамины,
микроэлементы, липиды. К a -глобулинам относятся эритропоэтин, плазминоген,
протромбин.
b -Глобулины участвуют в транспорте фосфолипидов, холестерина, стероидных
гормонов, катионов металлов. К этой фракции относится белок трансферрин,
обеспечивающий транспорт железа, а также многие факторы свертывания крови.
g -Глобулины включают в себя различные антитела или иммуноглобулины 5
классов: Jg A, JgG, JgМ, JgD и JgЕ, защищающие организм от вирусов и
бактерий. К g -глобулинам относятся также a иb – агглютинины крови,
определяющие ее групповую принадлежность.
Глобулины образуются в печени, костном мозге, селезенке, лимфатических
узлах.
цбриноген – первый фактор свертывания крови. Под воздействием тромбина переходит в нерастворимую форму – фибрин, обеспечивая образование сгустка крови. Фибриноген образуется в печени.
Белки и липопротеиды способны связывать поступающие в кровь лекарственные
вещества. В связанном состоянии лекарства неактивны и образуют как бы депо.
При уменьшении концентрации лекарственного препарата в сыворотке он
отщепляется от белков и становится активным. Это надо иметь в виду, когда
на фоне введения одних лекарственных веществ назначаются другие
фармакологические средства. Введенные новые лекарственные вещества могут
вытеснить из связанного состояния с белками ранее принятые лекарства, что
приведет к повышению концентрации их активной формы.
К органическим веществам плазмы крови относятся также небелковые азотсодержащие соединения (аминокислоты, полипептиды, мочевина, мочевая кислота, креатинин, аммиак). Общее количество небелкового азота в плазме, так называемого остаточного азота, составляет 11 – 15 ммоль/л (30 – 40 мг%). Содержание остаточного азота в крови резко возрастает при нарушении функции почек.
В плазме крови содержатся также безазотистые органические вещества: глюкоза
4,4 – 6,6 ммоль/л (80 – 120 мг%), нейтральные жиры, липиды, ферменты,
расщепляющие гликоген, жиры и белки, проферменты и ферменты, участвующие в
процессах свертывания крови и фибринолиза. Неорганические вещества плазмы
крови составляют 0,9 – 1%. К этим веществам относятся в основном катионы
Nа+, Са2+, К+, Mg2+ и анионы Сl-, НРО42-, НСО3-. Содержание катионов
является более жесткой величиной, чем содержание анионов. Ионы обеспечивают
нормальную функцию всех клеток организма, в том числе клеток возбудимых
тканей, обусловливают осмотическое давление, регулируют рН.
В плазме постоянно присутствуют все витамины, микроэлементы, промежуточные продукты метаболизма (молочная и пировиноградная кислоты).
Форменные элементы крови.
К форменным элементам крови относятся эритроциты, лейкоциты и тромбоциты.
Рис 1. Форменные элементы крови человека в мазке.
1 – эритроцит, 2 – сегментоядерный нейтрофильный гранулоцит, 3 –
палочкоядерный нейтрофильный гранулоцит, 4 – юный нейтрофильный гранулоцит,
5 – эозинофильный гранулоцит, 6 – базофильный гранулоцит, 7 – большой
лимфоцит, 8 – средний лимфоцит, 9 – малый лимфоцит, 10 – моноцит, 11 –
тромбоциты (кровяные пластинки).
Эритроциты
В норме в крови у мужчин содержится 4,0 – 5,0х10"/л, или 4 000 000 – 5 000
000 эритроцитов в 1 мкл, у женщин – 4,5х10"/л, или 4 500 000 в 1 мкл.
Повышение количества эритроцитов в крови называется эритроцитозом,
уменьшение эритропенией, что часто сопутствует малокровию, или анемии. При
анемии может быть снижено или число эритроцитов, или содержание в них
гемоглобина, или и то и другое. Как эритроцитозы, так и эритропении бывают
ложными в случаях сгущения или разжижения крови и истинными.
Эритроциты человека лишены ядра и состоят из стромы, заполненной
гемоглобином, и белково-липидной оболочки. Эритроциты имеют преимущественно
форму двояковогнутого диска диаметром 7,5 мкм, толщиной на периферии 2,5
мкм, в центре – 1,5 мкм. Эритроциты такой формы называются нормоцитами.
Особая форма эритроцитов приводит к увеличению диффузионной поверхности,
что способствует лучшему выполнению основной функции эритроцитов –
дыхательной. Специфическая форма обеспечивает также прохождение эритроцитов
через узкие капилляры. Лишение ядра не требует больших затрат кислорода на
собственные нужды и позволяет более полноценно снабжать организм
кислородом. Эритроциты выполняют в организме следующие функции: 1) основной
функцией является дыхательная – перенос кислорода от альвеол легких к
тканям и углекислого газа от тканей к легким;
2) регуляция рН крови благодаря одной из мощнейших буферных систем крови – гемоглобиновой;
3) питательная – перенос на своей поверхности аминокислот от органов пищеварения к клеткам организма;
4) защитная – адсорбция на своей поверхности токсических веществ;
5) участие в процессе свертывания крови за счет содержания факторов свертывающей и противосвертывающей систем крови;
6) эритроциты являются носителями разнообразных ферментов (холинэстераза, угольная ангидраза, фосфатаза) и витаминов (В1, В2, В6, аскорбиновая кислота);
7) эритроциты несут в себе групповые признаки крови.
Рис 2.
А. Нормальные эритроциты в форме двояковогнутого диска.
Б. Сморщенные эритроциты в гипертоническом солевом растворе.
Гемоглобин и его соединения
Гемоглобин – особый белок хромопротеида, благодаря которому эритроциты выполняют дыхательную функцию и поддерживают рН крови. У мужчин в крови содержится в среднем 130 – 1б0 г/л гемоглобина, у женщин – 120 – 150 г/л.
Гемоглобин состоит из белка глобина и 4 молекул гема. Гем имеет в своем составе атом железа, способный присоединять или отдавать молекулу кислорода. При этом валентность железа, к которому присоединяется кислород, не изменяется, т.е. железо остается двухвалентным. Гемоглобин, присоединивший к себе кислород, превращается в оксигемоглобин. Это соединение непрочное. В виде оксигемоглобина переносится большая часть кислорода. Гемоглобин, отдавший кислород, называется восстановленным, или дезоксигемоглобином. Гемоглобин, соединенный с углекислым газом, носит название карбгемоглобина. Это соединение также легко распадается. В виде карбгемоглобина переносится 20% углекислого газа.
В особых условиях гемоглобин может вступать в соединение и с другими
газами. Соединение гемоглобина с угарным газом (СО) называется
карбоксигемоглобином. Карбоксигемоглобин является прочным соединением.
Гемоглобин блокирован в нем угарным газом и неспособен осуществлять перенос
кислорода. Сродство гемоглобина к угарному газу выше его сродства к
кислороду, поэтому даже небольшое количество угарного газа в воздухе
является опасным для жизни.
При некоторых патологических состояниях, например, при отравлении сильными окислителями (бертолетовой солью, перманганатом калия и др.) образуется прочное соединение гемоглобина с кислородом – метгемоглобин, в котором происходит окисление железа, и оно становится трехвалентным. В результате этого гемоглобин теряет способность отдавать кислород тканям, что может привести к гибели человека.
В скелетных и сердечной мышцах находится мышечный гемоглобин, называемый миоглобином. Он играет важную роль в снабжении кислородом работающих мышц.
Имеется несколько форм гемоглобина, отличающихся строением белковой части – глобина. У плода содержится гемоглобин F. В эритроцитах взрослого человека преобладает гемоглобин А (90%). Различия в строении белковой части определяют сродство гемоглобина к кислороду. У фетального гемоглобина оно намного больше, чем у гемоглобина А. Это помогает плоду не испытывать гипоксии при относительно низком парциальном напряжении кислорода в его крови.
Ряд заболеваний связан с появлением в крови патологических форм
гемоглобина. Наиболее известной наследственной патологией гемоглобина
является серповидноклеточная анемия, Форма эритроцитов напоминает серп.
Отсутствие или замена нескольких аминокислот в молекуле глобина при этом
заболевании приводит к существенному нарушению функции гемоглобина.
В клинических условиях принято вычислять степень насыщения эритроцитов
гемоглобином. Это так называемый цветовой показатель. В норме он равен 1.
Такие эритроциты называются нормохромными. При цветовом показателе более
1,1 эритроциты гиперхромные, менее 0,85 – гипохромные. Цветовой показатель
важен для диагностики анемий различной этиологии.
Гемолиз
Процесс разрушения оболочки эритроцитов и выход гемоглобина в плазму крови называется гемолизом. При этом плазма окрашивается в красный цвет и становится прозрачной – “лаковая кровь”. Различают несколько видов гемолиза.
Осмотический гемолиз может возникнуть в гипотонической среде. Концентрация раствора NаСl, при которой начинается гемолиз, носит название осмотической резистентности эритроцитов, Для здоровых людей границы минимальной и максимальной стойкости эритроцитов находятся в пределах от 0,4 до 0,34%.
Химический гемолиз может быть вызван хлороформом, эфиром, разрушающими белково-липидную оболочку эритроцитов.
Биологический гемолиз встречается при действии ядов змей, насекомых, микроорганизмов, при переливании несовместимой крови под влиянием иммунных гемолизинов.
Температурный гемолиз возникает при замораживании и размораживании крови в результате разрушения оболочки эритроцитов кристалликами льда.
Механический гемолиз происходит при сильных механических воздействиях на кровь, например встряхивании ампулы с кровью.
Рис 3. Электронная микрофотография гемолиза эритроцитов и образование их
“теней”. 1 – дискоцит, 2 – эхиноцит, 3 – “тени” (оболочки) эритроцитов.
Скорость оседания эритроцитов (СОЭ)
Скорость оседания эритроцитов у здоровых мужчин составляет 2 – 10 мм в час, у женщин – 2 – 15 мм в час. СОЭ зависит от многих факторов: количества, объема, формы и величины заряда эритроцитов, их способности к агрегации, белкового состава плазмы. В большей степени СОЭ зависит от свойств плазмы, чем эритроцитов. СОЭ увеличивается при беременности, стрессе, воспалительных, инфекционных и онкологических заболеваниях, при уменьшении числа эритроцитов, при увеличении содержания фибриногена. СОЭ снижается при увеличении количества альбуминов. Многие стероидные гормоны (эстрогены, глюкокортикоиды), а также лекарственные вещества (салицилаты) вызывают повышение СОЭ.
Эритропоэз
Образование эритроцитов, или эритропоэз, происходит в красном костном мозге. Эритроциты вместе с кроветворной тканью носят название “красного ростка крови”, или эритрона.
Для образования эритроцитов требуются железо и ряд витаминов.
Железо организм получает из гемоглобина разрушающихся эритроцитов и с пищей. Трехвалентное железо пищи с помощью вещества, находящегося в слизистой кишечника, превращается в двухвалентное железо. С помощью белка трансферрина железо, всосавшись, транспортируется плазмой в костный мозг, где оно включается в молекулу гемоглобина. Избыток железа депонируется в печени в виде соединения с белком – ферритина или с белком и липоидом – гемосидерина. При недостатке железа развивается железодефицитная анемия.
Для образования эритроцитов требуются витамин В12 (цианокобаламин) и
фолиевая кислота. Витамин В12 поступает в организм с пищей и называется
внешним фактором кроветворения. Для его всасывания необходимо вещество
(гастромукопротеид), которое вырабатывается железами слизистой оболочки
пилорического отдела желудка и носит название внутреннего фактора
кроветворения Касла. При недостатке витамина В12 развивается В12-дефицитная
анемия, Это может быть или при недостаточном его поступлении с пищей
(печень, мясо, яйца, дрожжи, отруби), или при отсутствии внутреннего
фактора (резекция нижней трети желудка). Считается, что витамин В12
способствует синтезу глобина, Витамин В12 и фолиевая кислота участвуют в
синтезе ДНК в ядерных формах эритроцитов. Витамин В2 (рибофлавин) необходим
для образования липидной стромы эритроцитов. Витамин В6 (пиридоксин)
участвует в образовании гема. Витамин С стимулирует всасывание железа из
кишечника, усиливает действие фолиевой кислоты. Витамин Е (a -токоферол) и
витамин РР (пантотеновая кислота) укрепляют липидную оболочку эритроцитов,
защищая их от гемолиза.
Для нормального эритропоэза необходимы микроэлементы. Медь помогает всасыванию железа в кишечнике и способствует включению железа в структуру гема. Никель и кобальт участвуют в синтезе гемоглобина и гемсодержащих молекул, утилизирующих железо. В организме 75% цинка находится в эритроцитах в составе фермента карбоангидразы. Недостаток цинка вызывает лейкопению. Селен, взаимодействуя с витамином Е, защищает мембрану эритроцита от повреждения свободными радикалами.
Физиологическими регуляторами эритропоэза являются эритропоэтины, образующиеся главным образом в почках, а также в печени, селезенке и в небольших количествах постоянно присутствующие в плазме крови здоровых людей. Эритропоэтины усиливают пролиферацию клеток-предшественников эритроидного ряда – КОЕ-Э (колониеобразующая единица эритроцитарная) и ускоряют синтез гемоглобина. Они стимулируют синтез информационной РНК, необходимой для образования энзимов, которые участвуют в формировании гема и глобина. Эритропоэтины увеличивают также кровоток в сосудах кроветворной ткани и увеличивают выход в кровь ретикулоцитов. Продукция эритропоэтинов стимулируется при гипоксии различного происхождения: пребывание человека в горах, кровопотеря, анемия, заболевания сердца и легких. Эритропоэз активируется мужскими половыми гормонами, что обусловливает большее содержание эритроцитов в крови у мужчин, чем у женщин. Стимуляторами эритропоэза являются соматотропный гормон, тироксин, катехоламины, интерлейкины. Торможение эритропоэза вызывают особые вещества – ингибиторы эритропоэза, образующиеся при увеличении массы циркулирующих эритроцитов, например у спустившихся с гор людей. Тормозят эритропоэз женские половые гормоны (эстрогены), кейлоны. Симпатическая нервная система активирует эритропоэз, парасимпатическая – тормозит. Нервные и эндокринные влияния на эритропоэз осуществляются, по-видимому, через эритропоэтины.
Об интенсивности эритропоэза судят по числу ретикулоцитов –
предшественников эритроцитов. В норме их количество составляет 1 – 2%.
Созревшие эритроциты циркулируют в крови в течение 100 – 120 дней.
Разрушение эритроцитов происходит в печени, селезенке, в костном мозге посредством клеток мононуклеарной фагоцитарной системы. Продукты распада эритроцитов также являются стимуляторами кроветворения.
Лейкоциты
Лейкоциты, или белые кровяные тельца, представляют собой бесцветные клетки, содержащие ядро и протоплазму, размером от 8 до 20 мкм.
Количество лейкоцитов в периферической крови взрослого человека колеблется
в пределах 4,0 – 9,0х10' /л, или 4000 – 9000 в 1 мкл. Увеличение количества
лейкоцитов в крови называется лейкоцитозом, уменьшение – лейкопенией.
Лейкоцитозы могут быть физиологическими и патологическими (реактивными).
Среди физиологических лейкоцитозов различают пищевой, миогенный,
эмоциональный, а также лейкоцитоз, возникающий при беременности.
Физиологические лейкоцитозы носят перераспределительный характер и, как
правило, не достигают высоких показателей. При патологических лейкоцитозах
происходит выброс клеток из органов кроветворения с преобладанием молодых
форм. В наиболее тяжелой форме лейкоцитоз наблюдается при лейкозах.
Лейкоциты, образующиеся при этом заболевании в избыточном количестве, как
правило, малодифференцированы и не способны выполнять свои физиологические
функции, в частности, защищать организм от патогенных бактерий. Лейкопения
наблюдается при повышении радиоактивного фона, при применении некоторых
фармакологических препаратов. Особенно выраженной она бывает в результате
поражения костного мозга при лучевой болезни. Лейкопения встречается также
при некоторых тяжелых инфекционных заболеваниях (сепсис, милиарный
туберкулез). При лейкопениях происходит резкое угнетение защитных сил
организма в борьбе с бактериальной инфекцией.
Лейкоциты в зависимости от того, однородна ли их протоплазма или содержит зернистость, делят на 2 группы: зернистые, или гранулоциты, и незернистые, или агранулоциты. Гранулоциты в зависимости от гистологических красок, какими они окрашиваются, бывают трех видов: базофилы (окрашиваются основными красками), эозинофилы (кислыми красками) и нейтрофилы (и основными, и кислыми красками). Нейтрофилы по степени зрелости делятся на метамиелоциты (юные), палочкоядерные и сегментоядерные. Агранулоциты бывают двух видов: лимфоциты и моноциты.
В клинике имеет значение не только общее количество лейкоцитов, но и процентное соотношение всех видов лейкоцитов, получившее название лейкоцитарной формулы, или лейкограммы.
Лейкоцитарная формула здорового человека (в %)
Гранулоциты
Агранулоциты
Нейтрофилы
Базофилы
Эозинофилы
Лимфоциты
Моноциты
юные
Палочко-ядерные
Сегменто-ядерные
0 – 1
1 – 5
45 – 65
0 – 1
1 – 5
25 – 40
2 - 8
При ряде заболеваний характер лейкоцитарной формулы меняется. Увеличение количества юных и палочкоядерных нейтрофилов называется сдвигом лейкоцитарной формулы влево. Он свидетельствует об обновлении крови и наблюдается при острых инфекционных и воспалительных заболеваниях, а также при лейкозах.
Все виды лейкоцитов выполняют в организме защитную функцию. Однако осуществление ее различными видами лейкоцитов происходит по-разному.
Нейтрофилы являются самой многочисленной группой. Основная их функция –
фагоцитоз бактерий и продуктов распада тканей с последующим перевариванием
их при помощи лизосомных ферментов (протеазы, пептидазы, оксидазы,
дезоксирибонуклеазы). Нейтрофилы первыми приходят в очаг повреждения. Так
как они являются сравнительно небольшими клетками, то их называют
микрофагами. Нейтрофилы оказывают цитотоксическое действие, а также
продуцируют интерферон, обладающий противовирусным действием.
Активированные нейтрофилы выделяют арахидоновую кислоту, которая является
предшественником лейкотриенов, тромбоксанов и простагландинов. Эти вещества
играют важную роль в регуляции просвета и проницаемости кровеносных сосудов
и в запуске таких процессов, как воспаление, боль и свертывание крови.
По нейтрофилам можно определить пол человека, так как у женского генотипа имеются круглые выросты – “барабанные палочки”.
Рис 4. Половой хроматин (“барабанные палочки”) в гранулоците женщины.
Эозинофилы также обладают способностью к фагоцитозу, но это не имеет
серьезного значения из-за их небольшого количества в крови. Основной
функцией эозинофилов является обезвреживание и разрушение токсинов
белкового происхождения, чужеродных белков, а также комплекса антиген-
антитело. Эозинофилы продуцируют фермент гистаминазу, который разрушает
гистамин, освобождающийся из поврежденных базофилов и тучных клеток при
различных аллергических состояниях, глистных инвазиях, аутоиммунных
заболеваниях. Эозинофилы осуществляют противоглистный иммунитет, оказывая
на личинку цитотоксическое действие. Поэтому при этих заболеваниях
увеличивается количество эозинофилов в крови (эозинофилия). Эозинофилы
продуцируют плазминоген, который является предшественником плазмина –
главного фактора фибринолитической системы крови. Содержание эозинофилов в
периферической крови подвержено суточным колебаниям, что связано с уровнем
глюкокортикоидов. В конце второй половины дня и рано утром их на 20~ меньше
среднесуточного уровня, а в полночь – на 30% больше.
Базофилы продуцируют и содержат биологически активные вещества (гепарин, гистамин и др.), чем и обусловлена их функция в организме. Гепарин препятствует свертыванию крови в очаге воспаления. Гистамин расширяет капилляры, что способствует рассасыванию и заживлению. В базофилах содержатся также гиалуроновая кислота, влияющая на проницаемость сосудистой стенки; фактор активации тромбоцитов (ФАТ); тромбоксаны, способствующие агрегации тромбоцитов; лейкотриены и простагландины. При аллергических реакциях (крапивница, бронхиальная астма, лекарственная болезнь) под влиянием комплекса антиген-антитело происходит дегрануляция базофилов и выход в кровь биологически активных веществ, в том числе гистамина, что определяет клиническую картину заболеваний.
Моноциты обладают выраженной фагоцитарной функцией. Это самые крупные
клетки периферической крови и их называют макрофагами. Моноциты находятся в
крови 2-3 дня, затем они выходят в окружающие ткани, где, достигнув
зрелости, превращаются в тканевые макрофаги (гистиоциты). Моноциты способны
фагоцитировать микробы в кислой среде, когда нейтрофилы не активны.
Фагоцитируя микробы, погибшие лейкоциты, поврежденные клетки тканей,
моноциты очищают место воспаления и подготавливают его для регенерации.
Моноциты синтезируют отдельные компоненты системы комплемента.
Активированные моноциты и тканевые макрофаги продуцируют цитотоксины,
интерлейкин (ИЛ-1), фактор некроза опухолей (ФНО), интерферон, тем самым
осуществляя противоопухолевый, противовирусный, противомикробный и
противопаразитарный иммунитет; участвуют в регуляции гемопоэза. Макрофаги
принимают участие в формировании специфического иммунного ответа организма.
Они распознают антиген и переводят его в так называемую иммуногенную форму
(презентация антигена). Моноциты продуцируют как факторы, усиливающие
свертывание крови (тромбоксаны, тромбопластины), так и факторы,
стимулирующие фибринолиз (активаторы плазминогена).
Лимфоциты являются центральным звеном иммунной системы организма. Они осуществляют формирование специфического иммунитета, синтез защитных антител, лизис чужеродных клеток, реакцию отторжения трансплантата, обеспечивают иммунную память. Лимфоциты образуются в костном мозге, а дифференцировку проходят в тканях. Лимфоциты, созревание которых происходит в вилочковой железе, называются Т-лимфоцитами (тимусзависимые). Различают несколько форм Т-лимфоцитов. Т–киллеры (убийцы) осуществляют реакции клеточного иммунитета, лизируя чужеродные клетки, возбудителей инфекционных заболеваний, опухолевые клетки, клетки-мутанты. Т-хелперы (помощники), взаимодействуя с В-лимфоцитами, превращают их в плазматические клетки, т.е. помогают течению гуморального иммунитета. Т-супрессоры (угнетатели) блокируют чрезмерные реакции В-лимфоцитов. Имеются также Т-хелперы и Т- супрессоры, регулирующие клеточный иммунитет. Т-клетки памяти хранят информацию о ранее действующих антигенах.
В-лимфоциты (бурсозависимые) проходят дифференцировку у человека в
лимфоидной ткани кишечника, небных и глоточных миндалин. В-лимфоциты
осуществляют реакции гуморального иммунитета. Большинство В-лимфоцитов
являются антителопродуцентами. В-лимфоциты в ответ на действие антигенов в
результате сложных взаимодействий с Т-лимфоцитами и моноцитами превращаются
в плазматические клетки. Плазматические клетки вырабатывают антитела,
которые распознают и специфически связывают соответствующие антигены.
Различают 5 основных классов антител, или иммуноглобулинов: JgA, JgG, JgМ,
JgD, JgЕ. Среди В-лимфоцитов также выделяют клетки-киллеры, хелперы,
супрессоры и клетки иммунологической памяти.
О-лимфоциты (нулевые) не проходят дифференцировку и являются как бы резервом Т- и В-лимфоцитов.
Лейкопоэз
Все лейкоциты образуются в красном костном мозге из единой стволовой клетки. Предшественники лимфоцитов первыми ответвляются от общего древа стволовых клеток; формирование лимфоцитов происходит во вторичных лимфатических органах.
Лейкопоэз стимулируется специфическими ростовыми факторами, которые
воздействуют на определенные предшественники гранулоцитарного и
моноцитарного рядов. Продукция гранулоцитов стимулируется гранулоцитарным
колониестимулирующим фактором (КСФ-Г), образующимся в моноцитах,
макрофагах, Т-лимфоцитах, а угнетается – кейлонами и лактоферрином,
секретируемыми зрелыми нейтрофилами; простагландинами Е. Моноцитопоэз
стимулируется моноцитарным колониестимулирующим фактором (КСФ-М),
катехоламинами. Простагландины Е, a - и b -интерфероны, лактоферрин
тормозят продукцию моноцитов. Большие дозы гидрокортизона препятствуют
выходу моноцитов из костного мозга. Важная роль в регуляции лейкопоэза
принадлежит интерлейкинам. Одни из них усиливают рост и развитие базофилов
(ИЛ-3) и эозинофилов (ИЛ-5), другие стимулируют рост и дифференцировку Т- и
В-лимфоцитов (ИЛ-2,4,6,7). Лейкопоэз стимулируют продукты распада самих
лейкоцитов и тканей, микроорганизмы и их токсины, некоторые гормоны
гипофиза, нуклеиновы