Исходные данные
|Наименование |Производительност|Концентрация |Температура |Степень |
|процесса для |ь |пыли |газа, |очистки |
|очистки |м3/г |г/м3 |єС | |
|газовых | | | | |
|выбросов | | | | |
|Литейные цеха |38000, песчаные |12 |43 |99,5 |
| |формы | | | |
Введение
1. Литейные цеха входят, как в состав машиностроительных предприятий, так и в состав отдельных литейно-металлургических производств.
В результате процесса разливки металла в формы, в атмосферу выделяются твердофазные загрязнения, содержащие оксиды: металлов, алюминия, кремния и ряда других элементов.
Газовые выбросы формируются за счет общественной вентиляции в цехе, а затем централизовано подаются на очистку.
2. В литейном производстве для процесса используется жидкий металл, соединения которого относятся ко II или III группе токсичности.
Формировочные силикаты, содержащие материалы с содержанием SiO2>70 по своему действию на организм относятся к III группе токсичности. Таким образом, промежуточные и исходные материалы, по своей токсичности относятся ко II-III группам.
3. При осуществлении процесса разлива металла в атмосферу выделяется пыль, содержащая оксиды металла, оксиды кремния, сажевые частицы и газообразные вещества в виде оксидов серы, азота, углерода.
|Вредная примесь |Класс опасности |ПДК, мг/м3 |
|Оксид железа |4 |6 |
|Пыль с содержанием SiO2>70% |3 |1 |
|Углеродная пыль с примесью SiO2 от 10 |4 |2 |
|до 70% | | |
|Металл (чугун) |4 |6 |
|Оксид углерода |4 |20 |
Характеристика технологии изготовления отливок в литейных цехах.
Задачей литейного производства является изготовление из металлов металлических сплавов изделий-отливок, имеющих разнообразные очертания и предназначенных для использования в различных целях.
Отливки после механической обработки составляют почти половину массы деталей всех машин, механизмов, приборов и аппаратов выпускаемых разными отраслями машино и приборостроения. Литьем изготовляют также отдельные части строительных сооружений, транспортных устройств и т.п.
Сущность литейного производства сводится к получению жидкого, т.е. нагретого выше tє плавления, сплава нужного состава и необходимого качества и заливки его в заранее приготовленную форму. При охлаждении же затвердевает и в твердом состоянии сохраняет конфигурацию той полости, в которую он был залит. В процессе кристаллизации и охлаждения сплава формируются основные механические и эксплуатационные свойства отливки, определяемые макро- и микро структур сплава, его плотностью, наличием и расположением в нем не металлических включений, развитием в отливке внутренних напряжений, вызванных неодновременным охлаждением ее частей и др.
Литейная технология может быть реализована различными способами. Весь цикл изготовления отливки состоит из ряда основных и вспомогательных операций, осуществляемых как параллельно, так и последовательно в различных отделения литейного цеха. Модели, стержневые ящики и другую оснастку изготовляют, как правило, в модельных цехах.
Литейная разовая песчаная форма в большинстве случаев состоит из двух полуформ: верхней и нижней, которые получают уплотнением формовочной смеси вокруг соответствующих частей (верхней и нижней) деревянной или металлической модели в специальных металлических рамках-опоках. Модель отличается от отливки размерами, наличием формовочных уклонов, облегчающих извлечение модели из формы, и знаковых частей, предназначенных для установки стержня, образующего внутреннюю полость (отверстие) в отливке.
Стержень изготовляют из смеси, например песка, отдельные зерна которого скрепляются при сушке или химическом отверждении специальными крепителями
(связующими).
В верхней полуформе с помощью соответствующих моделей выполняется воронка и система каналов, по которым из ковша поступает литейный сплав в полость формы, и дополнительные полости – прибыли.
После уплотнения смеси модели собственно отливки, литниковой системы и прибылей извлекают из полуформ. Затем в нижнюю полуформу устанавливают стержень и накрывают верхней полуформой. Необходимая точность соединения обеспечивается штырями и втулками в опоках. Перед заливкой сплава во избежание поднятия верхней полуформы жидким расплавом опоки скрепляют друг с другом специальными скобками или на верхнюю опоку устанавливают груз.
В разовых песчаных формах производят ~ 80% всего объема выпуска отливок. Однако точность и чистота их поверхности, условия труда, технико- экономические показатели не всегда удовлетворяют требованиям современного производства.
В связи с этим все более широкое применение находят специальные способы литья: по выплавляемым (выжигаемым) моделям, под давлением, центробежным способом, вакуумным всасыванием и т.д. Отливки различных размеров, сложности и назначения из сплавов, существенно отличающихся по своим свойствам, нельзя изготовлять одинаковыми способами.
В связи с этим получили распространение разнообразные технологические процессы, отличающиеся приемами.
Технологический процесс получения отливок в розовой песчаной форме
Характеристика сырья, используемого в литейном производстве.
Формовочные материалы:
К формовочным материалам относятся все материалы применяемые для изготовления разовых литейных форм и стержней. Различают исходные формовочные материалы и формовочные смеси.
Основными исходными материалами для большинства разовых форм являются песок и глина, вспомогательными – связующие добавки:
1) противопригарные;
2) увеличивающие газопроницаемость, податливость, текучесть и пластичность смеси;
3) уменьшающие прилипаемость смесей.
Формовочные смеси приготавливают из исходных формовочных материалов и из смесей, ранее уже находившихся в употреблении (отработанные формовочные смеси). Исходные формовочные материалы завод получает из вне.
В зависимости от назначения смеси разделяют на формовочные смеси, стержневые смеси и вспомогательные смеси.
Правильный выбор формовочных смесей в литейном производстве имеет очень большое значение, т.к. формовочные смеси влияют на качество получаемых отливок.
К числу формовочных песков относят пески, образованные зернами тугоплавких, прочных и твердых минералов. На практике, главным образом, применяются пески образованные зернами кварца.
Кварц обладает высокой огнеупорностью (1713 єС), прочностью и твердостью (по шкале Мооса - 7). Кварц является одной из форм существования кремнезема (SiO2). Благодаря тугоплавкости, высоким механическим качеством, низкой химической активности, а также в следствии низкой стоимости, кварцевые пески широко применяют как основу формовочных и стержневых смесей.
Природные кварцевые пески не бывают свободными от загрязняющих примесей; зерен полевого шпата, частиц слюды и других минералов. Полевой шпат и слюда содержат окислы щелочных и щелочно-земельных металлов. Эти минералы менее тугоплавки, чем кварц и способны вместе с кварцем и окислами залитого Me образовывать сложные легкоплавкие силикаты (например: типа n
SiO2 m FeO p Na2O).
В природных кварцевых песках часто содержится глина. Если эта глина обладает высокими качествами, то такая примесь может рассматриваться как полезная.
Глина является связующим материалом в формовочных и стержневых смесях.
Обволакивая зерна песка, она связывает их и таким образом придает смеси необходимые прочность и одновременно пластичность. Минералогический состав глины различный, в общем виде его можно записать: m Al2O3 ? n SiO2 ? aH2O.
Основным компонентом глины является каолинит Al2O3 ?2H2O ? 2SiO2. В природных формовочных песках содержание глины колеблется в пределах 2-50%.
С помощью глины как связывающего материала нельзя обеспечить высокие физико- механические свойства стержней, которые выполняют внутренние полости в отливках. Поэтому для приготовления стержневых смесей используют самые разнообразные связующие – масляные и растительные масла и их заменители: декстрин, сульфоритно-дрожжевая бражка, жидкое стекло, синтетические смолы и др.
Из противопригарных материалов чаще всего используют графит, циркон, пылевидный кварц и порошок каменного угля. Противопригарные добавки вводят в смеси для уменьшения образования пригара на отливках.
Для увеличения податливости и газопроницаемости стержней в стержневые смеси вводят древесные опилки.
Литейные сплавы.
В большинстве случаев отливки изготовляют из металлических сплавов, а не из чистых металлов. Это объясняется тем, что эксплуатационные и особенно литейные свойства многих чистых металлов хуже чем сплавов.
Металлическими сплавами называются системы, состоящие (металлов или неметаллов). Так основой стали является железо. Кроме железа в стали также содержаться неметаллические (углерод, сера, фосфор) и металлические
(марганец, хром и др.) примеси. Примеси делятся на легирующие
(специальные), постоянные (неизбежные) и случайные. Легирующие примеси вводятся в сплав преднамеренно, чтобы придать ему необходимые эксплуатационные или технологические свойства. Например для повышения прочности и твердости чугуна и стали в них добавляют марганец, хром, ванадий. Для повышения жидкотекучести чугуна при художественном литье в него добавляют фосфор. Постоянными называются примеси, наличие которых, обусловлено технологией получения сплава. Например, в чугуне постоянной примесью является сера, переходящая в чугун из кокса. Случайной примесью в сером ваграночном чугуне может быть например медь, пришедшая из лома шихты.
Металлы и сплавы, применяемые в промышленности делятся на 2 группы – черные и цветные. Черными металлами называется железо и сплавы на его основе. Цветными – все остальные металлы и сплавы.
Характеристика выбросов загрязняющих веществ в атмосферу.
В литейном производстве на 1 т. отливок образуется от 1 до 3 т. отходов, включающих отработанную и неиспользованную смесь, шлаки, пыль, газы. Хотя основная часть отходов – это отработанные смеси и шлаки, наибольшую опасность представляют именно пыль и газы, в связи с трудностью их улавливания, обезвреживания и удаления. А их количество при производстве
1 т. отливок из стали или чугуна примерно составляет: пыли – 50 кг., углеводородов – 1 кг., оксида углерода (II) – 250 кг., оксида серы (II) –
1,5-2 кг., кроме того выделяется ряд других вредных газов, таких как фенол, формальдегид, ацетон, бензол и др., общее количество которых хотя и невелико, однако представляет опасность из-за их токсичности.
В газах, удаляемых от литейного оборудования и выбрасываемых в атмосферу, содержатся пыль, состоящая в основном из мелкодисперсных частичек, содержание свободного оксида кремния в которых достигает 60%.
Поэтому среди населения, прилегающих к заводу территорий, появляется возможность возникновения пылевых профессиональных заболеваний.
Эффективность очистки пылегазовых выбросов.
Обеспыливание выбрасываемого из литейного цеха воздуха производится с помощью различного типа пылеосадительных устройств, различных по принципу действия и эффективности. К ним относятся пылеосадительные камеры, аппараты сухой инерционной и мокрой очистки, тканевые и электрические фильтры.
Применение пылеочистителей дает возможность не только добиться очистки отходящих газов от пыли, но и повторно использовать ранее выбросившуюся пыль.
Из токсичных газов, выделяющихся при плавке металлов, сушке форм и стержней, заливке форм металлом на первом месте стоит СО. Основной способ уменьшения количества СО, поступающего в окружающее пространство, дожигание его до оксида углерода (IV). Больше сложности возникает при обезвреживании токсичных газов, отходящих от стержневых сушилок и установок, производящих стержни с использованием холоднотвердеющих смесей, и в других процессах, основанных на применении синтетических смол в составе формовочных и стержневых смесей. В состав этих газов входят различные альдегиды, ароматические углеводороды, спирты, оксид азота, серы, углерода и фосфора, аммиак, цианиды и другие вещества.
Существующие способы обезвреживания газов основаны на химическом связывании вредных веществ, их адсорбции и абсорбции и т.п. К одному из наиболее перспективных в настоящее время способов относится католическое окисление отходящих газов в контактных аппаратах на специальных катализаторах при температуре 200-500 єС.
Составление технологической схемы очистки газовых выбросов и сточных вод.
Очистка газовых выбросов от пыли литейных цехов может производится с использованием аппаратов мокрой очистки (пенный газопроливатель и барабанный вакуум-фильтр) и аппаратов сухой очистки (циклон).
Технологическая схема мокрой очистки включает в себя6 пенный газопроливатель (1), насос для откачки суспензии (2), насос для подачи осветленной воды (3), барабанный вакуум-фильтр (4), запорную арматуру (5) и вентилятор для подачи загрязненного воздуха (6).
Технологическая схема сухой очистки.
Она включает: циклон и вентилятор для подачи загрязненного газа.
Расчет циклона.
Основным размером циклона любой конструкции является диаметр аппарата.
Для нахождения диаметра нам необходимо знать объем проходящего через циклон газа и скорость прохождения газа через циклон.
Скорость газа на входе в циклон W1 по практическим данным составляет от 14 до 18 м/с, а скорость газа в самом циклоне принимается в пределах заданных соотношением:
Примем скорость газа на входе в циклон 18 м/с, а скорость газа в циклоне W2=0,35W1, тогда скорость газа в циклоне будет равна:
Так как воздух поступает при t=43 єC, определим объем воздуха при этой температуре, используя соотношение:
; ;
Диаметр циклона определим по формуле:
Примем ближайшую стандартную величину диаметра 1,6 м.
Минимальный диаметр частиц оседающих в циклоне определим по формуле
где:
R1 - радиус циклона;
R2 - радиус выхлопной трубы циклона ;
R2=(0,5-0,6) R1; R2=0,5R1=0,5?1,6=0,8
? - вязкость газовой фазы; n - число кругов движения частиц, принимается в пределах от 2 до 3, примем n=3;
?ч - плотность газа в циклоне.
Определим вязкость газовой фазы для заданной температуры t=43єС.
С=111
?0=17,72?10-6 Па?с
Гидравлическое сопротивление циклона определим по формуле:
где:
- плотность газа при t=43 єС, будет определятся по формуле
;
? - коэффициент сопротивления циклона, ?=105
По результатам расчета выберем циклон ЦН-15, с сопротивлением 105 Па, и эффективностью очистки, при минимальном диаметре частиц 9,6 мкм, 87%.
Расчет пенного газопромывателя.
Так как заданная концентрация пыли равна 12 г/м3, то мы рассматриваем однополочный газопромыватель.
Самым важным технологическим параметром является скорость газа. При высокой скорости наблюдается унос жидкой фазы (брызгоунос). Верхним пределом скорости газового потока является 3 м/с. Сильный брызгоунос наблюдается при скорости более 3,5 м/с. Нижний предел скорости газа, при котором возникает слой пены на полке, лежит в пределах 0,8-1,2 м/с.
Таким образом оптимальное значение скорости газа выбирают в пределах
2,2-2,8 м/с.
Так как объем газа задан при нормальных условиях, пересчитаем его на процесс, протекающий при 43 єС.
Определяем площадь поперечного сечения промывателя:
; где:
Wг - скорость газа в аппарате, принимаем Wг=2,3 м/с.
В прямоугольном аппарате обеспечивается лучшее распределение воды, поэтому примем прямоугольный аппарат размером 2·2,7 м с подачей воды через центральный диффузор.
При очистке газов от пыли, при температуре газа менее 100 єС, расчет количества воды приводим по уравнению материального баланса. Расход воды в промывателе складывается из расхода воды, идущего в утечку и расхода воды идущего на слив с решетки.
Количество воды протекающей через решетку, определяется заданным составом суспензии Т:Ж выбирается в пределах 5,5-9,5 : 1.
При Т:Ж < 1 : 5 может происходить забивание решетки пылью; Т:Ж > 1 :
10 нерационально из-за больших объемов растворов и суспензии.
Количество уловленной в аппарате пыли рассчитывается по формуле:
где:
Свх - концентрация пыли на входе в аппарат;
Свых - концентрация пыли на выходе.
Так как степень очистки аппарата 99,5%, то:
Примем Т:Ж = 1 : 8 =
Количество воды, необходимой для образования суспензии определяется по формуле:
где:
С - концентрация пыли в суспензии;
К - коэффициент распределения между утечкой и сливной водой, выраженной отношением пыли, попадающей в утечку, к общему количеству пыли.
Количество воды приходящейся на 1м2 решеток, определяется по уравнению:
Вследствие трудности определения параметров решетки, по заданной утечке, и учитывая испарение воды, после ее протекания через решетку, принимаем коэффициент запаса К3=1,5.
или
Количество сливной воды определяется по формуле:
где: b - ширина решетки перед сливом, м;
I - интенсивность потока воды на сливе (0,8-2,2 м3/м·ч), примем i=1м3/м·час.
Так как вода сливается на обе стороны, то:
Общее количество воды:
Учитывая простоту изготовления выберем проливатель с решеткой с круглыми отверстиями. Рекомендуемая скорость газа в отверстиях 8-13 м/с.
Полагаем, что количество очищенного газа не увеличивается, примем .
Тогда отношение площади свободного сечения решетки к площади сечения аппарата:
где:
Z - коэффициент, учитывающий, что 5% сечения решетки занимают, опоры, переливные стенки и др.
По таблице выбираем газопромыватель: тип аппарата ~ 40, как обеспечивающего очистку заданного количества газа, с расходом воды 12 м3/с, площадью сечения решетки 5,6 м2, высота аппарата – 5750 мм.
Для обеспечения работы аппарата при колебаниях нагрузки примем высоту порога hп=25 мм.
Габаритная высота газопромывателя складывается из следующих параметров:
- надрешоточная высота h1=1 м;
- подрешоточная высота h2=1 м;
- высота бункера hб=2 м.
Общая высота аппарата без учета штуцеров: h1 + h2 + hб = 1+1+2 = 4 м.
Определим диаметр штуцера для подвода газа по формуле:
где:
W1 - скорость газа на входе в аппарат, примем W1=15 м/с.
Принимаем диаметр выходного штуцера также d2 = 1 м.
Діаметр штуцера для подвода воды определяем по формуле:
где:
Wв - скорость воды на входе, примем Wв = 2 м/с
Принимаем диаметры штуцеров для ввода вывода суспензии одинаковыми и равными 40 мм.
Расчет вентилятора.
В основе выбора насоса и вентилятора для заданных условий работы лежат экономические требования. Они заключаются в том, чтобы насос или вентилятор и их приводные двигатели работали при наибольшем КПД и при этом были дешевыми. Общий метод решения задачи выборов насосов и вентиляторов для заданных условий работы состоит в следующем: для того, чтобы определить давление, которое должен развивать насос или вентилятор необходимо провести расчет потерь давления в трубопроводе по формуле:
где:
? - коэффициент гидравлического трения; l - длина участка трубопровода;
S? - сумма местных сопротивлений;
? - плотность вещества, проходящего по трубопроводу;
? - скорость; g - ускорение свободного падения; h - высота.
Для того, чтобы найти ?, сначала необходимо вычислить число
Рейнольдса, по формуле:
где:
? - вязкость среды, ?0 газа = 17,72·10-6 Па·с
Вязкость газа при 43 єС равна = 19,85·10-6 Па·с
- поток турбулентности;
По таблице выбираем центробежный вентилятор ЦН-70 ~ 10А с КПД 65%, мощностью 20 кВт.
Расчет и подбор насосов.
а) насос для откачки суспензии;
Чтобы определить давление, которое должен создавать насос разделим участок на отдельные участки с одинаковым расходом суспензии и определим потери сопротивления на каждом участке. Тогда общее давление на каждом будет равно:
1) ; поток турбулентний
2) поток турбулентний
3) поток турбулентний
По таблице выбираем насос марки 1Ѕ К-6 2900 б) насос для подачи осветленной воды
1) ; поток турбулентний
2) поток турбулентний
По таблице выбираем насос марки 1Ѕ К-6 2900.
Примем такой же насос для подачки воды из трубопроводы из трубопровода.
Расчет барабанного вакуум-фильтра.
Пересчитаем константу К, которая учитывает изменения вакуума.
;
;
Определяем удельную производительность зоны фильтрования приняв время фильтрования ?=32 с.
Основное уравнение фильтрования:
где:
V - удельная производительность;
К - константа фильтрования, учитываются сопротивление осадка;
С - константа фильтрования, учитывающая сопротивление фильтрующей перегородки.
Решая квадратною уравнение получим:
а за 1 секунду Vуд составит:
Пересчитаем заданную производительность по суспензии на производительность по фильтрату.
При влажности осадка в 34% соотношение влажного и сухого осадка:
где:
Woc - влажность осадка в долях единицы.
Расход суспензии:
;
Определим массовую долю твердой фазы в суспензии:
Масса влажного осадка:
;
Масса фильтрата
При плотности фильтра ?=1000 кг/м3
или
Необходимая поверхность в зоне фильтрования составит:
;
Так как в обычных вакуум-фильтрах поверхность зоны фильтрования составляет 30-35% от общей поверхности, то общая поверхность фильтра будет равна:
По таблице принимаем фильтр диаметром D=1,6 м, длиной L=2м и площадью фильтрования F=10 м.
Уточнение выбранной схемы основного очистного оборудования с коротким описанием работы.
Данные расчетов показали, что для очистки пылегазовых выбросов от литейных цехов, удобнее взять пенный газопромыватель, у которого степень очистки выше чем у циклона. Для заданного объема газа 38000 м3/час достаточно взять один аппарат, т.к. и один аппарат может обеспечить очистку заданного количества газа. Нам также нужен насос для подачи и вентилятор для подачи загрязненного воздуха.
Описание уточненной схемы
Загрязненный аз подается в подрешеточное пространство вентилятором.
Насосом вода из водопровода подается на решетку газопромывателя.
Образующийся шлам попадает в бункер и через штуцера для отвода суспензии по трубопроводу подается на барабанный вакуум-фильтр. Осветленная вода возвращается в процесс газоочистки насосом, а шлам идет на утилизацию.
Утилизация и рекуперация отходов.
Утилизация формовочных песков.
В настоящее время применяют смеси, поэтому не существует универсального способа регенерации.
Регенерация смеси в отличии от регенерации песка представляет собой технологический процесс подготовки отработанной смеси в целях повторного ее использования.
Регенерация песка представляет собой технологический процесс извлечения зерновой основы песка из отработанной смеси.
Регенерация песка делится на несколько групп:
1. Механическая;
2. Термическая;
3. Гидравлическая;
4. Естественная;
5. Комбинированная;
Технологический цикл состоит из нескольких этапов:
1. Подготовка обработанной смеси.
2. Отделение пленки связывающего от поверхности зерен песка.
3. Сепарация – представляет собой удаление пылевидных фракций из зерновых основ песка.
Основной операцией при подготовке отработанной формовочной смеси является ее дробление и отделение металла.
Смесь начинает дробиться при выбивке отливок. Далее она помещается в дробильные установки, пройдя которые просеивается. Попутно с этим из смеси удаляется металл. В качестве оборудования применяются выбивные решетки, вальцовые дробилки и другие виды дробилок. Удаление металла осуществляется с помощью магнитных сепараторов.
Просеивание осуществляется на грохотах. При гидрорегенерации дробление осуществляется струей воды.
Второй этап является главным и определяет название метода регенерации.
Механическая регенерация возможна в том случае, когда силы адгезии меньше чем пленка связывающего материала, при этом пленка связывающего должна быть достаточно хрупкой.
Силами адгезии определяется степень склеивания между предметами. В том случае, если пленка является эластичной. Отделение пленки связывающего может осуществляться несколькими способами:
1. Механическое перетирание;
2. Механический удар;
3. Пневмоудар.
Термическая регенерация. Ее сущность состоит в нагреве отработанной смеси до 650-1000 єС, в выдержке при этой температуре в окислительной атмосфере и охлаждении песка.
Для термической регенерации используются печи различных конструкций:
1. Барабанные печи;
2. Шахтные печи;
3. печи кипящего слоя.
Гидрогенерация. При этом процессе отработанная смесь после предварительной подготовки поступает на отливку пленки связывающего.
Отливку песчаной пульпы осуществляют различными способами:
1. В проточной воде;
2. В гидроциклонах;
3. В оттирочных машинах, в которых песчано-водная смесь интенсивно перемешивается.
После отливки осуществляется сепарация и высушивание. Перед высушиванием производится обезвоживание.
Естественная регенерация – выдерживание песка в естественных условиях.
Отработанная смесь после извлечения из нее металла складывается на открытых площадках и выдерживается в атмосферных условиях несколько лет.
Продолжительность выдерживания зависит от вида используемого связующего. Регенерация осуществляется благодаря колебаниям температуры.
Изменение tє приводит к отделению пленки связывающего вследствии разности коэффициентов термического расширения. Отдельная пленка вымывается складками. Многие органические связующие разлагаются биологически. полученный песок может использоваться в литейном производстве, в строительстве.
Материальный баланс сырья и материалов, используемых в литейном производстве.
|Приход |Расход |
|газ на очистку 38000 м3/ч при н.у. |очищенный газ 38000 м3/ч при н.у. |
|пыль в газе 433,2 кг/ч |пыль в газе 2,166 кг/ч |
| |шлам 653,08 кг/ч |
| |пыль 431,034 кг/ч |
| |вода 222,06 кг/ч |
|Вода: |Вода: |
|осветленная 7427,9 кг/ч |осветленная 7427,9 кг/ч |
|светлая 222,06 кг/ч | |
|газ 38000 м3/ч |газ 38000 м3/ч |
|пыль 433,2 кг/ч |пыль 433,2 кг/ч |
|вода 7649,96 |вода 7649,96 |
Вывод.
По результатам расчетов, проведенных в данной курсовой работе, для очистки пылегазовых выбросов от пыли литейных цехов была выбрана мокрая схема очистки с использованием пенного газопромывателя и барабанного вакуум- фильтра. Для откачки суспензии необходимо взять насос марки 1ЅК-62900, такой же насос возьмем и для подачи осветленной воды.
Для подачи загрязненного воздуха выбран центробежный вентилятор ЦН-70
10А.
Сточные воды образующиеся в литейных цехах, сбрасываются в систему городской канализации.
Список литературы.
1. Аксенов П.И. Оборудование литейных цехов – Москва:
Машиностроение, 1977 - 510 с.
2. Воздвиженский В.М., Грачев В.А., Спасский В.В. Литейные сплавы и технология их плавки в машиностроении – Москва:
Машиностроение, 1984 - 431 с.
3. Дорошенко С.П. Комовник Т.Ч., Макаревич А.П. Литейное производство: Введение в специальность – Киев: Вища школа, 1987
-182 с.
4. Ладыжский Б.Н., Орешкин В.Д., Сухарчук Ю.С. Литейное производство – Москва: Машиностроение, 1953 – 207 с.
5. Литейное производство: Учебник для вузов. Под редакцией
Михайлова А.М. – Москва.: Машиностроение, 1987 – 255 с.
-----------------------
Приготовление формовочных смесей
Подготовка исходных формовочных материалов
Внепечная обработка расплава
Выплавка сплава и его перегрев
Подготовка исходных шихтовых материалов
Контроль отливки
Повторная очистка поверхности
Термообработка
Отделение литников, прибылей, очистка поверхности, удаление стержней
Выбивка отливок из формы
Затвердевание сплава, охлаждение в форме
Заливка формы
Сборка формы
Сушка (отверждение полуформ и стержней)
Изготовление полуформ и стержней
Чертеж детали
Разработка чертежа отливки
Разработка чертежей модели и стержневых ящиков
-----------------------
4
АФ982096.000.ПЗ
Арк.
Вим.
Арк.
№ докум.
Підпис
Дата