Министерство образования Украины
Приазовский Государственный Технический Университет
Кафедра автоматизации технологических процессов
и производств
ОТЧЕТ
по технологической практике
на Мариупольском металлургическом
комбинате «Азовсталь»
Студент гр. МА-95
Попов В.С.
Мариуполь 1998 г.
Содержание.
Введение
1. Аглофабрика
2. Доменный цех
3. Мартеновский цех
4. Конвертерный цех
5. Толстолистовой цех
Заключение
Приложение 1
Приложение 2
Приложение 3
Приложение 4
Приложение 5
Приложение 6
Приложение 7
Список литературы
Введение.
Целью технологической практики является изучение конструкций агрегатов и технологических процессов предприятий черной металлургии, их взаимосвязи в условиях законченного металлургического цикла, устройства и эксплуатации оборудования аглодоменных, сталеплавильных и прокатных цехов; приобретение навыков по ведению технологических процессов; изучение вопросов контроля и автоматизации технологических процессов; углубление и расширение знаний по теоретическим дисциплинам.
Практика позволяет студентам после изучения ряда теоретических курсов изучить структуру и организацию предприятия черной металлургии; вопросы технологических процессов производства чугуна, стали и проката; приобрести навыки выбора оптимального варианта получения металлургической продукции; изучить устройства и уровни технической эксплуатации аппаратуры автоматизации металлургических процессов; изучить свойства и область применения материалов, используемых при производстве черных металлов и металлопродукции; изучить вопросы автоматизации и механизации.
В результате прохождения практики приобретаются знания по технологии агломерационного, доменного, сталеплавильного и прокатного производства; изучается конструкция и технические характеристики средств контроля и автоматического управления технологическими процессами.
Аглофабрика
Окускование пылеватых руд и тонких концентратов перед доменной плавкой позволяет существенно улучшить технико-экономические показатели работы доменных печей, увеличить их производительность. Процесс агломерации можно условно разбить на следующие периоды :
подготовка шихты;
дробления и дозирование;
смешивание и окомкование;
спекание;
дробление агломерата.
Краткая техническая характеристика оборудования аглофабрики приведена в таблице 1.1.
Таблица 1.1. Техническая характеристика оборудования аглофабрики.
Наименование и характеристики оборудования Значение Рудный двор: --- Количество рудных кранов, шт. 1 Отделение приемных бункеров: --- количество бункеров, шт. 24 Коксодробильное отделение: --- количество бункеров, шт. --- количество дробилок, шт. 1 2 Отделение дробления извести: --- количество бункеров, шт. --- количество дробилок, шт. 2 2 Отделение спекания: --- количество агломашин, шт. ------ полезная площадь спекания, м2 ------ длина агломашины, м --- количество шихтовых бункеров, шт. 2 62,5 25 2Подготовка шихты. Сырье, поступающее на рудный двор для усреднения, разгружают консольному пути равномерно по фронту выгрузки формируемого штабеля. Штабель формируют путем послойного складирования сырья. В качестве сырья используются: аглоруды, концентраты, шламы, колошниковая пыль, окалина, марганцевая руда, отходы графитового производства, известь, известняк и топливо для агломерации. Сырье, забранное из-под консольного пути рассыпают грейферным краном по ширине рудного двора равномерным слоем, пока не образуется гребень высотой до 1 метра. Гребни последующих слоев укладывают между гребнями нижних слоев до окончания формирования штабеля, высота которого около 15 метров.
Дробление и дозирование. Рудная смесь, известняк, известь и топливо поступают на приемные бункера. Основное назначение дозирования и дробления - обеспечить получение агломерата заданного качества с фиксированным химическим составом. Шихта составляется из следующих компонент:
· рудная смесь и известь;
· марганцевая руда;
· известняк;
· топливо;
· горячий возврат.
Крупность топлива не должна превышать 25 мм. Наибольшие отклонения массы выдаваемых материалов от заданного не должны превышать для рудной смеси 3% , для извести 2%. Коксовую мелочь и топливо дробят до фракции 0-3 мм не менее 95%; известняк - 0-3 мм не менее 97%.
В схему дробления топлива включен питатель-классификатор; предварительное разделение топлива по крупности перед его дроблением реализует возможность управления его гранулометрическим составом и сокращает содержание частиц 0,5 мм на 8-10%.
Дозирование извести производят автоматически по заданному весовому соотношению руда-известь. Весовое количество известняка определяют по заданной основности агломерата, весовым качествам и составу рудной смеси. Расход топлива устанавливают исходя из условия получения прочного агломерата при высокой производительности агломашины. Выдача материалов из бункеров дозировочного отделения производится после получения данных о химсоставе. Дозирование производится автоматически и непрерывно. Дозирование рудной смеси осуществляется с двух бункеров. Точность дозирования контролируют не менее трех раз в смену.
Смешивание и окомкование. Назначение смешивания , увлажнения и окомкования шихты - получение однородной массы всех шихтовых материалов высокой газопроницаемости в процессе спекания. Смешивание и окомкование шихты осуществляют в две стадии : в первичном и вторичном смесителе . Оптимальное содержание влаги в шихте составляет от 8 до 9%. При уменьшении крупности шихты содержание влаги в ней необходимо увеличить , а при увеличении крупности соответственно уменьшить. Увлажнение шихты производят во втором смесительном барабане . При увеличении массового расхода шихты на агломашины пропорционально увеличивают объемный расход воды. Содержание влаги в шихте определяют по внешним признакам. Сжатая в руках шихта должна сохранять свою форму.
Спекание. Высота слоя шихты на агломашине устанавливается в зависимости от газопроницаемости в пределах 300-350 мм . Агломашины оборудованы двухсекционными комбинированными газовыми горелками с горизонтально расположенными горелками. Зажигание шихты осуществляется природным газом; режим зажигания шихты регулируют путем поддержания на заданном уровне температуры горна и соотношения газ-воздух. Температура горна поддерживается в пределах: первая секция - зона зажигания 1200-1350 °С; вторая секция - зона тепловой обработки 1350-400 °С (начало и конец секции соответственно). Объемные расходы газа и воздуха поддерживают в пределах 700 - 800 ч и 4200 - 4800 ч соответственно. Давление природного газа поддерживается не ниже 4905 Па. Скорость движения ленты регулируют в зависимости от вертикальной скорости спекания. Температура отходящих газов в 12 и 13 вакуум камерах должна быть 200-250 °С. Нормальное разрежение в вакуум камерах составляет 9800-11700 Па. При нормальном ходе процесса спекания агломерат равномерно спечен и при выдаче с ленты раскален не более чем на 1/3 высоты снизу.
Дробление агломерата. Дробление и отсев мелочи от агломерата осуществляется с помощью одно-валковой дробилки и двухъярусного стационарного грохота . Расстояние между звездочками дробилки составляет 300 мм. Ширина щелей верхнего грохота 50 мм, нижнего -12 мм.
Метрологическое обеспечение. На аглофабрике осуществляют контроль следующих параметров :
химического состава материалов и их крупности;
состава и массы составляющих шихты и топлива на 1 м длины транспортера;
химического состава агломерата;
скорости движения аглоленты;
объемных расходов природного газа и воздуха на зажигании;
температуры зажигания слоя шихты на вакуум-камерах , коллекторах агломашины , перед эксгаустерами , шихты перед барабанами-окомкователями;
разряжение в вакуум-камерах , коллекторах агломашин , перед эксгаустерами;
толщины слоя агломерата на лентах.
Показания контрольно-измерительных приборов и данные о качестве сырых материалов и агломерата записывают в журнал работы смены.
Метрологическое обеспечение агломерационного процесса приведено в приложении 6.
Системы автоматизации. Для обеспечения максимальной производительности агломашин и заданного качества агломерата на аглофабрике внедрены следующие автоматические системы :
дозирования извести при выдаче из бункера в поток рудной смеси;
дозирования составляющих аглошихты и топлива;
поддержания постоянного соотношения “газ-воздух” на горнах;
поддержания заданной температуры зажигания аглошихты;
отсечка и включение воды в барабане-окомкователе при остановках и пусках агломашины;
включение вибратора в шихтовых бункерах;
заполнение бункеров дробленым известняком.
Доменный цех.
Доменный цех комбината “Азовсталь” выпускает три вида передельного чугуна:
30% фосфористого (содержание фосфора до 1.5%) для мартеновского цеха;
69.5% низкоуглеродистого (содержание марганца до 0.17%) для конвертерного цеха;
0.5% синтетического литейного чугуна для литейного цеха.
Доменный цех комбината “Азовсталь” включает в себя 6 печей суммарным объемом 9217 м3 и проектной мощностью 5693.7 тысяч тонн в год. Характеристики каждой печи приведены в таблице 2.1.
Таблица 2.1. Характеристики доменных печей.
№ печи Объем печи, м3 Проектная мощность, тыс. 1 1233 775 2 1233 775 3 1719 960 4 1800 1160 5 1513 950 6 1719 1073.7
Основным топливом доменного процесса является кокс. Используется кокс мариупольского коксохимического завода. В качестве заменителей кокса наиболее широко используется природный и коксовый газы, а также жидкое и пылевидное топливо. Комбинат “Азовсталь” работает на криворожском и камышбурунском железорудном сырье. Среднее содержание железа в криворожской руде 55%, кроме того, она практически не содержит вредных примесей. В доменном производстве в качестве флюсов применяются известняк и доломитизированный известняк, представляющий собой изоморфную смесь кальцита и доломита.
Подготовка шихты. Сырьевые материалы доставляются на рудный двор доменного цеха железнодорожным или водным транспортом. Между рудным двором и доменными печами расположена бункерная эстакада. Бункерная эстакада расположена параллельно линии печей и представляет собой сооружение, состоящее из ряда отдельных бункеров и обслуживающего их оборудования. Она предназначена для механизации набора и подачи материалов в печь, а также для создания необходимого запаса шихтовых материалов непосредственно у доменной печи. С помощью вагон-весов осуществляется набор материалов из бункеров по заданной программе, их взвешивание, транспортировка к скиповой яме и выгрузка в скипы. Материалы на колошник доменной печи доставляются скиповым подъемником. Скиповый подъемник состоит из наклонного моста, двух скипов и скиповой лебедки.
Движение газов и шихты в доменной печи. Загруженные на колошник шихтовые материалы начинают постепенно опускаться вниз и проходят путь от колошника до горна за 5-8 часов, а газы, движущиеся им навстречу, за 2-10 с. При опускании вниз загруженные на колошник холодные материалы непрерывно омываются движущимися вверх горячими восстановительными газами, образующимися в горне при сжигании топлива в кислороде дутья. За время движения материалов сверху вниз успевают произойти все физико-химические превращения необходимые для получение чугуна и шлака.
Причины опускания шихтовых материалов:
1) горение кокса перед фурмами и образование свободного пространства;
2) уменьшение объема материалов в следствии уминки;
3) переход в жидкое состояние;
4) выпуск из печи чугуна и шлака.
Скорость движения материалов по сечению печи не одинакова. Наибольшая скорость наблюдается над очагами горения кокса и в направлении к центру печи она снижается. Движение газов происходит вследствие давления, возникающего в горне в результате подачи дутья. На характер движения и распределение газов в доменной печи оказывает влияние качество шихтовых материалов и распределение их при загрузке на колошнике печи. Следовательно шихта должна быть соответствующим образом распределена на колошнике печи, чтобы обеспечить оптимальную газопроницаемость. У стен и в центре печи необходимо располагать кусковой материал (крупные куски кокса и агломерата), а в промежуточной зоне сосредотачивать более мелкие фракции железорудной части шихты.
Химические реакции в доменной печи. В доменной печи происходят реакции окисления и восстановления. Основным восстановительным процессом в печи является восстановление оксидов железа, которое при температуре более 843 К идет в три ступени, а при температуре менее 843 К в две. Восстановление оксидов железа монооксидом углерода и водородом с образованием углекислого газа и воды принято называть косвенным, а восстановление углеродом с образованием СО - прямым восстановлением. С восстановлением оксидов железа восстанавливаются и другие оксиды. Оксиды, прочность которых ниже прочности соответствующих оксидов железа (MnO2, Mn2O3,CuO,NiO) восстанавливаются при сравнительно низких температурах. Оксиды, прочность которых выше прочности оксидов железа (A1203, MnO, SiO2, TiO2) восстанавливаются при высоких температурах. Оксиды элементов, химическое сродство к кислороду у которых больше, чем у углерода, в доменной печи не восстанавливаются и полностью переходят в шлак. Это оксиды алюминия, магния, кальция. Также в доменной печи идет испарение влаги шихты, и восстановление из нее водорода, происходит разложение карбонатов, выделяется углекислый газ и доменный газ.
Образование чугуна. Образование чугуна в доменной печи начинается при низких температурах в результате растворения углерода в восстановленном железе. Марганец и хром увеличивают содержание углерода в чугуне, а кремний и фосфор уменьшают.
Образование шлака. Кроме чугуна - в доменной печи образуется жидкий шлак. Основными компонентами шлака являются оксиды кальция, кремния, алюминия, магния и т.д. Различают три вида шлака: первичный, промежуточный и конечный. Первичный образуется при расплавлении наиболее легкоплавких химических соединений. Его состав и горизонт начала образования непостоянны. По мере опускания первичный шлак нагревается, его состав изменяется, а количество увеличивается. При повышении температуры в шлаке растворяются оксиды кремния, алюминия и кальция. На горизонте фурм в шлак переходит зола кокса. Этот шлак называется промежуточным. Ниже уровня фурм, в горне, где происходит окончательное разделение чугуна и шлака, образуется шлак с окончательным составом - конечный, который и выпускается из печи.
Выпуск чугуна и шлака. По окончании доменного процесса происходит выпуск чугуна и шлака. В нижней части горна расположена чугунная летка. Для выпуска чугуна рассверливают отверстие диаметром 40-60 мм в огнеупорной массе и по ленточному каналу чугун попадает в желоб для чугуна. После выпуска чугуна отверстие вновь забивают огнеупорной массой. В стене горна расположена шлаковая летка, через которую выпускают шлак. Выпуск чугуна и шлака должен производиться строго по графику. Выпуск верхнего шлака начинают через 40-50 минут после выпуска чугуна и с небольшими перерывами продолжают до последующего выпуска с тем, чтобы обеспечить максимальную выдачу шлака через шлаковые летки. В доменных печах 1,2,5,6 выпуск верхнего шлака осуществляется через две шлаковые летки по очереди.
Отвод колошникового газа из печи и его дальнейшее использование. Колошниковый газ, выходящий из доменной печи, используется в качестве топлива. При сжигании одной тонны кокса в печи образуется около 5000 м3 газа. Колошниковый газ используется для отопления доменных воздухонагревателей, коксовых, мартеновских и нагревательных печей и котельных установок. Для устранения отрицательного воздействия пыли газ перед использованием очищают в специальных пылеулавливающих агрегатах.
Метрологическое обеспечение процесса выплавки чугуна. На доменных печах автоматически регулируется температура и влажность дутья, давление колошникового газа и газа, поступающего на отопление воздухонагревателей. Также контролируется следующие параметры:
давление холодного и горячего дутья;
давление газа в средней части шахты и на колошнике;
давление природного газа;
давление воды, поступающей в охладительную арматуру;
давление пара;
расход природного газа, подаваемого на каждую фурму;
расход воды на охлаждение печи;
расход газа;
расход пара, подаваемого на увлажнение дутья;
температура колошникового газа в газоотводах и по радиусу колошника;
температура огнеупорной кладки печи;
температура поступающей и отходящей воды и воздуха;
состав колошникового газов и влажность дутья;
уровень шихтовых в печи;
число подач, загруженных в печь;
число скипов в подаче;
угол поворота ВРШ;
масса агломерата, кокса и добавок к каждой подаче.
Метрологическое обеспечение доменного процесса приведено в приложении 7.
Мартеновский цех.
Мартеновский цех комбината “Азовсталь” имеет в своем составе одиннадцать качающихся мартеновских печей, емкостью 400 т. (печи 1-6,8-10,12) и 600 т. (печь 11), работающих скрап-рудным процессом. Все печи отапливаются природным газом и низкосернистым мазутом с содержанием влаги не более 1.5%. Топливо подается в печь газо-мазутными горелками с распылением мазута природным газом. Вентиляторный воздух подогревается в двухоборотных регенераторах и поступает в печь через двухканальные головки. Основные размеры мартеновских печей комбината “Азовсталь” с подвижным рабочим пространством приведены в таблице 3.1.
Таблица 3.1. Основные размеры мартеновских печей.
Наименование элементов печи Печь 1-6, 8-10, 12 Печь 11 Емкость печи, т. 400 600 Площадь пода, м2. 99,4 125 Длина пода, м. 18,4 20,8 Ширина пода, м. 5,4 6,0 Глубина ванны, мм. 1000 1200 Толщина пода, мм. 985 985Шихтовка плавок производится из расчета получения в металле по расплавлении массовой доли углерода - на 0.25-0.65% выше среднезаданного в годовой стали, серы - не более 0.055%(для низколегированной стали - не более 0.050%). Основность шлака по расплавлении должна быть не менее 1.0. Количество руды и известняка определяется мастером производства исходя из химического состава выплавляемой стали и шихтовых материалов, норм расхода чугуна и металлолома, количества оставшегося в печи металла и шлака. Для повышения содержания углерода в расплаве производится завалка в печь углеродосодержащих материалов(кокса, электродного боя и др.). Масса металлической части шихты устанавливается в пределах от 430 до 460 т., что соответствует выплавке стали в объеме емкости двух сталеразливочных ковшей. Выпуск плавки в три ковша производится только на мартеновской печи №11, при этом шихтовка плавки производится на садку массой не менее 650т. из расчета наполнения металлом трех ковшей.
Все поступающие на шихтовый двор мартеновского цеха материалы и ферросплавы принимаются работниками мартеновского цеха. Все ферросплавы, поступившие на шихтовый двор, дробятся до установленной крупности и складируются на шихтовом дворе в специальные бункера и закрома. При производстве стали используются следующие шихтовые материалы:
лом металлургический всех классов и категорий;
жидкий чугун;
твердый чугун;
железная руда 21 и 22 классов;
окалина;
известняк с содержанием CaO+MgO не менее 53.5%;
известь фракции до 100мм;
отработанный синтетический шлак конвертерного производства;
боксит с содержанием Al2O3 не менее 28%;
плавиковый шпат с содержанием серы не более 0.1%;
кокс.
Вся шихта, рассчитанная на плавку, подается к печам составами: в первом - известняк и руда, в остальных - легковесный и тяжеловесный лом. Рудные и ломовые составы укомплектовываются мульдами объемом 1.75м3. В рудных составах насчитывается 8-9 вагонеток, в ломовых - 10 вагонеток с четырьмя мульдами на каждой вагонетке. Погрузка рудного состава производится из соотношения: 12 мульд загружаются известняком, а остальные загружаются рудой. Ломовые составы до и после погрузки провешиваются, масса лома в стандартном ломовом составе составляет 130-160т. при погрузке тяжеловесного лома и 60-80т. легковесного. Для транспортировки шлакообразующих присадок, ферросплавов и легирующих используются полировочные составы из 6 вагонеток с четырьмя мульдами. Первая мульда полировочного состава загружается коксом, 11 мульд - известью, 6 - окалиной, 3 - рудой, 2 - бокситом, 1- синтетическим шлаком конвертерного производства. Для раскисления и легирования стали используются следующие ферросплавы и легирующие материалы: ферромарганец, ферросилиций, селикомарганец, ферробор, феррохром, ферросиликохром, селикокальций, лигатура с РЗМ, феррованадий, феррованадий азотированный, феррониобий, ферротитан, алюминий, медь или лом меди, никель и силикованадий. Отгрузка ферросплавов в разливочный пролет производится в бункерах, имеющих специальную маркировку.
Завалка. Завалка сыпучих материалов производится по следующей схеме: на подину равномерно заваливается руда, а на руду - известняк. При использовании в завалке неметаллических углеродосодержащих материалов их заваливают в печь на подину или после завалки руды. Каждый слой сыпучих материалов прогревается в течение 5-7 минут, на сыпучие материалы производится завалка легковесного, а затем тяжеловесного лома в средние окна. Твердый чугун заваливается в последнюю очередь. Продолжительность завалки около 2-х часов. После окончания завалки немедленно подсыпают пороги, для чего бункер с доломитом подается к моменту окончания завалки. Шихта перед заливкой чугуна должна прогреваться в течении 30-90 минут, но прогрев не должен привести к “закозлению” или оплавлению шихты, т.е. к ее перегреву. Заливка чугуна производится через два желоба. Продолжительность заливки чугуна не превышает 30 минут.
Расплавление. В момент полного расплавления металла отбирается проба металла и шлака и замеряется температура металла. В пробе металла определяется содержание углерода, марганца, серы и фосфора; в пробе шлака - оксида железа и основность. Содержание углерода по расплавлении должно быть на 0,25-0,65% выше заданного для данной марки стали при содержании серы не более 0,055%. Если содержание углерода выше, то в печь доливают чугун.
Полировка. К началу полировки металл должен быть полностью расплавлен, а шлак - сформирован. Температура металла должна быть не менее 1530°С и не более 1580°С. После оплавления в печь присаживают окислители, известь, известняк.
Обязательной является наводка шлака которая начинается после скачки предыдущего. Содержание фосфора к началу периода чистого кипения должно быть не более 0,03%, а основность шлака от 2 до 4.
Чистое кипение начинается когда ванна энергично закипает после наводки шлака ровным пузырем на 1/2 площади ее поверхности. На протяжении всего периода кипения отбираются пробы металла через каждые 10 минут. Продолжительность периода зависит от типа выплавляемой стали: кипящая, полуспокойная и спокойная от 30 до 60 минут; низколегированная от 45 до 90 минут. Концом периода чистого кипения считается момент присадки в печь раскислителей или извести для загущения шлака, или момент отбора последней пробы металла. По окончании периода необходимо обеспечить следующие значения технологических параметров: основность шлака - от 2 до 4; содержание FeO в шлаке не менее 8%; содержание серы должно соответствовать данной марке стали.
Раскисление и выпуск стали. Раскисление стали производится в печи, ковше или комбинированно. Общая продолжительность периода раскисления и выпуска стали должна быть не менее 1 часа, а при легировании стали хромом в печи не менее 1 часа 15 минут. При выпуске стали в третий ковш продолжительность увеличивается примерно на 10 минут. Температура металла перед раскислением должна быть в пределах 1570-1640°С. Выпуск плавки прекращается при появлении шлака в струе металла. По технологии производства вся выплавляемая сталь разделена на пять групп: кипящая, полуспокойная, спокойная, низкоуглеродистая низколегированная и среднеуглеродистая низколегированная. Раскисление различных типов стали отличается друг от друга и ведется под управлением ответственных мастеров цеха.
Тепловой режим ведется по показаниям приборов, характеру факела пламени и состоянию свода рабочего пространства, горелок, регенеративных насадок. Для поддержания заданного теплового режима мартеновские печи оборудованы приборами теплового контроля и автоматического регулирования, которые смонтированы на тепловом щите в пультах управления печами (перечень метрологических средств ведения теплового режима приведен в приложении 2). Тепловой режим по периодам плавки должен вестись в соответствии с таблицей 3.2.
Таблица 3.2. Тепловой режим по периодам плавки.
Периоды плавки Продолжительность периода, мин. Тепловая нагрузка, *106кДж/ч. Заправка 30 85,8 - 134,0 Завалка 130 154,0 - 197,0 Прогрев 60 142,0 - 190,0 Заливка чугуна 30 129,0 - 178,0 Периоды плавки Продолжительность периода, мин. Тепловая нагрузка, *106кДж/ч. Плавление 230 137,3 - 178,4 Полировка 210 142,0 - 180,0 Чистое кипение 60 145,0 - 159,1 Раскисление и выпуск 30 129,8 - 138,2Продолжительность всей плавки равна примерно 13 часов. Для печи №11 продолжительность всей плавки равна примерно 15 часов 40 минут т.к. некоторые периоды плавки на этой печи более продолжительны чем на остальных печах.
Система контроля параметров теплового режима обеспечивает контроль следующих параметров:
Объемных расходов природного газа, мазута, воздуха, кислорода, коксового газа на запально-зажигательном устройстве;
Температуры дымовых газов в борове и верха насадок горячих камер регенераторов;
Давления в рабочем пространстве печи;
Разрежения в борове печи;
Давления природного газа.
Автоматическое регулирование объемных расходов природного газа, мазута и кислорода производится регулятором типа РП2-П3 на печах №1-4,6,10-12, микроконтроллером Р-100 на печи №5 и Р-110 на печах №8,9. Измерение температуры металла производится термопарой погружения. Для этого применяется термопара градуировки ПП и компенсатор самопишущий потенциометрический КСП-4. Замер температуры металла производится через третье или пятое завалочные окна печи. Сменный блок термопары погружается на глубину 400-500 мм и фиксируется в этом положении в течении 4-5 секунд. Момент окончания замера определяется по световому или звуковому сигналу прибора. Замер температуры металла производится в следующие периоды:
по расплавлении;
в начале чистого кипения;
в период раскисления;
после выпуска первого ковша;
в каждом ковше.
Замеры производятся не ранее, чем за 10 минут до начала каждого периода и сразу после налива ковша.
Конвертерный цех
Состав конвертерного цеха:
· два 350-тонных конвертера;
· три МНЛЗ криволинейного типа.
Сталь выплавляется в 350-тонных конвертерах с продувкой чистым кислородом сверху при интенсивности подачи кислорода 600-800м3/мин или 1000-1300м3/мин.
Кислородно-конвертерный процесс с верхней продувкой заключается в продувке жидкого чугуна кислородом, подводимым к металлу сверху через сопла водо-охлаждаемой фурмы. При этом выгорают примеси чугуна - углерод, кремний, марганец, сера, фосфор и т.д. Кислород подается в конвертер под давлением 1 - 1.5 МПа по водо-охлаждаемой фурме. Вода под давлением 0.6-1 МПа подается в пространство между внутренней и средней трубами фурмы и удаляется из пространства между внешней и средней трубой, обеспечивая охлаждение фурмы.
Завалка и заливка. В конвертер загружают стальной лом и часть извести (в течении 2 минут). Затем заливают чугун. При этом происходит плавление лома находящегося в конвертере. Масса металлошихты должна обеспечивать массу жидкой стали не более 350 тонн. Массовый расход чугуна и металлолома для плавки определяют по рекомендациям АСУТП. Массовый расход чугуна и лома должны обеспечить после окончания продувки заданные значения содержания углерода в металле, FeO В шлаке и температуры. При отклонении этих параметров от заданных значений, в том числе по температуре металла более чем на 20 град., производят перешихтовку плавки.
Продувка. Продувку плавок производят по режимам с частичным или с полным дожиганием окиси углерода. Положение кислородной фурмы относительно уровня металла в ванне, при расходе кислорода 1100-1300 м3/мин устанавливают исходя из нормативов, определяемых содержанием углерода в ванне, а также заданным количеством углерода в стали. Для продувки используют кислород чистотой не ниже 99.5% с содержанием азота не более 0.15%. Давление кислорода в цеховой магистрали перед фурмой должно быть не менее:
· 2.2 МПа - при расходе кислорода 1100 - 1300 м3/мин;
· 2.3 МПа - при расходе кислорода 600 - 800 м3/мин.
После окончания продувки производят замер температуры и отбор проб металла и шлака с обязательным спуском шлака. В пробах шлака определяют содержание CaO, MgO, SiO, Al2O3, PbO3, Cr2O3,S, FeO и основность. В пробах металла определяют содержание С, Mn, S, F, Cu, Ni, Cr, N. Температура металла перед выпуском плавки должна быть в следующих пределах: 1580 °С - 1600 °С - при разливке стали в слябы толщиной 250 мм; 1575 °С - 1595 °С - при разливке стали в слябы толщиной 300 мм. Выпуск плавки производят после получения анализа металла на содержание C, S, P и температуры заданного значения. Продолжительность выпуска плавки должна составлять не менее 6 мин.
Повалка. Установление заданной концентрации С в стали достигается с помощью промежуточной плавки. При этом фурму поднимают, выключают дутье, переводят конвертер в горизонтальное положение, отбирают пробы металла и шлака и замеряют температуру ванны с помощью термопары погружения. Ожидая результаты анализа, немного поворачивают конвертер .
Додувка. Когда после продувки содержание S и F в стали, или его температура не соответствуют заданным значениям параметров, производят додувки плавок. Додувки металла на серу и фосфор рекомендуется осуществлять по следующему режиму:
·положение фурмы выше базового положения на 300-1500 мм;
·интенсивность продувки в пределах от 1000 до 1300 м/мин;
·расход извести из расчета от 3 до 5 т. на каждую минуту додувки;
Додувки металла на температуру производят по следующему режиму:
положение фурмы обычное, либо повышенное на 300-1500 мм,
продолжительность додувки определяют по технологическому расчету;
при содержании С в металле равном не менее 0.085 производят присадку О2 и термоантрацита из расчета 300 кг на одну минуту додувки.
Выпуск. При выпуске стали конвертер наклоняют. Сталь сливают через выпускное отверстие в сталеразливочный ковш, шлак - в чашу.
Доводка. Сталь в ковше подвергается внепечной обработке вакуумом, аргоном, азотом и т.д. Раскисление и легирование металла производят в сталеразливочном ковше. Расход раскислителей и легирующих добавок определяют из расчета получения среднезаданного содержания элементов в готовой стали. Длительность всего цикла составляет 30-45 мин.
Внепечная обработка металла. Проведение технологических операций вне плавильного агрегата называют вторичной металлургией или внепечной обработкой. Вся сталь, выплавляемая в конвертерном цехе подвергается обработке в ковшах. В конвертерном цехе производят следующие виды внепечной обработки стали:
обработка аргоном;
обработка жидким синтетическим шлаком;
обработка твердыми шлакообразующими смесями;
доводка металла по химическому составу и температуре;
микролегирование и рафинирование порошкообразными реагентами;
порционное вакуумирование с вводом раскислителей и легирующих.
Процесс продувки металла аргоном характеризуется уменьшением содержания газов в металле, интенсивным перемешиванием расплава, улучшением условий протекания процессов перевода в шлак неметаллических включений, усреднением состава металла, улучшением условий для окисления углерода, снижением температуры металла. Для обеспечения максимального контакта вдуваемых твердых реагентов с металлом производится продувка металла порошкообразными материалами. Обработка металла вакуумом влияет на протекание тех реакций и процессов, в которых принимает участие газовая фаза. Основной целью обработки вакуумом является снижение содержания газов в стали. При внепечной обработке металла контролируют следующие параметры:
1) температуру синтетического шлака,
2) массу и состав шихтовых материалов для синтетического шлака,
3) температуру стали в ковше,
4) объемный расход аргона при продувке,
5) давление аргона,
6) время продувки,
7) массу корректирующих присадок,
8) массу вдуваемого порошка,
9) объемный расход и давление кислорода.
МНЛЗ. В состав конвертерного цеха комбината ‘’ Азовсталь ‘’ входят 3 машины непрерывного литья заготовок. Технические данные машин приведены в таблице 4.1.
Таблица 4.1. Технические характеристики МНЛЗ.
Параметр Характеристика Количество ручьев каждой МНЛЗ 2 Емкость разливочного ковша по жидкому металлу, т. 350 Емкость промежуточного ковша, т. : обычного при уровне металла 700 мм увеличенного при уровне металла 1100 мм 23 38 Размеры отливаемых слябов, мм толщина ширина 200-315 1250-1900 Скорость разливки(вытягивания слитка), обеспечиваемая механизмами, м/мин 0.2-0.3 Радиус базовой стенки кристаллизатора, мм 10000 Металлургическая длина машины, мм в том числе радиального участка криволинейного участка 37000 12840 6520 Расстояние между осями ручьев, мм 6000 Длина медной стенки кристаллизатора, мм 1200 Высота подъема разливочного ковша на стенде, мм 800 Высота подъема промежуточного ковша на стенде, мм 600 Время поворота траверзы сталеразливочного стенда на 180 °,с 30 Скорость перемещения тележек для промежуточных ковшей, м/мин 30 Закон возвратно-поступательного движения кристаллизатора синусоидальный Частота качания кристаллизатора в минуту 10-120 Ход движения кристаллизатора, мм 12Разливка стали. Разливку стали начинают по команде мастера или старшего разливщика. Наполнив промежуточный ковш сталью на высоту от 250 до 300 мм от боевой части ковша, производят плавное