Чтение RSS
Рефераты:
 
Рефераты бесплатно
 

 

 

 

 

 

     
 
Исследование путей повышения эффективности работы гусеничного двигателя /1-3/
Магистерская диссертация выполнена на тему: ”Исследование способов повышения эффективности работы гусеничного”.
Диссертация посвящена исследованию факторов, влияющих на работу гусеничного движителя, поиску путей увеличения к. п. д. гусеничного движителя, экономичности и экологичности его работы путем ведения новых конструктивных элементов, анализу физической осуществимости работы предложенных нововведений, а также практической оценке полученных результатов.
Студент продемонстрировал умение работать с научно-технической и справочной литературой, научными отчетами и патентами. Он умеет формулировать задачи исследования, выявлять противоречия при решении научных задач и разрабатывать методики по их разрешению.
При выполнении работы студент проявил высокую степень эрудированности, готовность к самостоятельной деятельности и поступлению в аспирантуру.
В первом разделе работы рассмотрено общее состояние вопроса и дан глубокий аналитический обзор. Рассмотрены пути повышения эффективности работы гусеничного движителя и поставлена задача исследования. Также предложена конструкция ведущего колеса с внутренним подрессориванием.
Второй раздел посвящён кинетическому исследованию работы представленного ведущего колеса, объяснен принцип его работы.
Третий раздел включает в себя кинетостатическое исследование механизма и дан расчет упругих элементов, обеспечивающих подрессоривание ведущего колеса гусеничного движителя.
В четвертом разделе приведен расчет навесоспособности и угловой жесткости модернизированного трактора, свидетельствующий о правоте выдвинутых предположений, а также показаны результаты компьютерного моделирования работы ведущего колеса гусеничного движителя с внутренним подрессориванием.
В этих разделах студент проявил способность самостоятельно разрабатывать методики научных расчетов, производить их сравнение с целью поиска оптимальной для данного типа задач и применять их для практических нужд.
Магистерская диссертация выполнена на высоком уровне, соответствует методическим указаниям для студентов направления 5514 “Наземные транспортные системы”, имеет научно-практическую ценность и заслуживает отличной оценки.
Студент Шаров Михаил Игоревич заслуживает присвоения степени магистра техники и технологии по направлению «Наземные транспортные системы».

Реферат
Магистерская диссертация выполнена на 78 страницах машинописного текста и включает 12 рисунков, 2 таблицы и список литературы из 27 наименований.
Ключевые слова: эффективность, принцип работы, гусеничный движитель, ведущая звездочка, навесоспособность, плавность хода, почвосбережение, внутреннее подрессоривание, упругий элемент, машинное моделирование.
Работа посвящена исследованию некоторых аспектов эффективности работы гусеничного движителя трактора. В ней была поднята проблема обеспечения требований к характеристикам почвосбережения, экономичности, экологичности, плавности хода гусеничных машин, условий труда оператора на рабочем месте.
Согласно поставленной задаче было проведено исследование возможных конструкций гусеничного тягово-транспортного средства, отвечающего выставленным требованиям, предложена конструкция гусеничного движителя с ведущим колесом, опущенным на грунт, и конструкция ведущей звёздочки с внутренним подрессориванием.
Произведена оценка предложенной конструкции с точки зрения кинематики и кинетостатики. Сделан вывод о кинематической и кинетостатической реализуемости данного механизма. Также произведен расчет упругих элементов колеса на изгиб, и расчет координат точек шарниров упругих элементов, как однозначно задающих положение колеса в пространстве.
На основе произведенных вычислений, на ПЭВМ была реализована электронная модель колеса, что позволило произвести анализ изменения величины крутящего момента за один цикл. Также проведена оценка навесоспособности, угловой жесткости и распределения масс новой конструкции. Сделан вывод о конкурентоспособности данной модели и ряде преимуществ по сравнению с серийным трактором ВТ–100.
Содержание
1. ВВЕДЕНИЕ
2. АНАЛИТИЧЕСКИЙ ОБЗОР И СОСТОЯНИЕ ВОПРОСА
2.1 АНАЛИЗ ЛИТЕРАТУРНЫХ ИСТОЧНИКОВ
2.2 ПАТЕНТНОЕ ИССЛЕДОВАНИЕ
2.2.1 АС № 821229 «УПРУГОЕ КОЛЕСО ТРАНСПОРТНОГО СРЕДСТВА СО СТУПИЦЕЙ И ОБВОДОМ»
2.2.2 АС № 933481 «МЕТАЛЛОЭЛАСТИЧНОЕ КОЛЕСО ТРАНСПОРТНОГО СРЕДСТВА»
2.2.3 АС № 160092 «ОПОРНЫЙ КАТОК ГУСЕНИЧНЫХ МАШИН»
2.2.4 ПАТЕНТ США № 5125443 «ПРУЖИННО ПОДВЕШЕННОЕ КОЛЕСНОЕ УСТРОЙСТВО»
2.2.5 ДОСТОИНСТВА И НЕДОСТАТКИ РАССМОТРЕННЫХ КОНСТРУКЦИЙ
3. АНАЛИЗ РАБОТЫ ОБЪЕКТА ИССЛЕДОВАНИЯ
3.1 ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К КОНСТРУКЦИИ
3.2 ОПИСАНИЕ КОНСТРУКЦИИ И ПРИНЦИПА РАБОТЫ ВЕДУЩЕГО КОЛЕСА С ВНУТРЕННИМ ПОДРЕССОРИВАНИЕМ
3.3 КИНЕМАТИЧЕСКИЙ РАСЧЕТ ИССЛЕДУЕМОЙ КОНСТРУКЦИИ
3.3.1 ОПРЕДЕЛЕНИЕ ТОЧЕК КРИВОЙ ТРАЕКТОРИИ ДВИЖЕНИЯ КОНЦА УПРУГОГО ЭЛЕМЕНТА
3.3.2 ОПРЕДЕЛЕНИЕ РАДИУСА ВЕДУЩЕГО КОЛЕСА ПО ТРЁМ ТОЧКАМ
3.3.3 ОПРЕДЕЛЕНИЕ КООРДИНАТ ШАРНИРОВ УПРУГИХ ЭЛЕМЕНТОВ КОЛЕСА В ЛЮБОЙ МОМЕНТ ВРЕМЕНИ
4. ФИЗИЧЕСКАЯ ОСУЩЕСТВИМОСТЬ КИНЕМАТИЧЕСКОЙ МОДЕЛИ ВЕДУЩЕГО КОЛЕСА С ВНУТРЕННИМ ПОДРЕССОРИВАНИЕМ
4.1 КИНЕТОСТАТИЧЕСКИЙ АНАЛИЗ РАБОТЫ ВЕДУЩЕГО КОЛЕСА С ВНУТРЕННИМ ПОДРЕССОРИВАНИЕМ.
4.1.1 РАСЧЕТНАЯ СХЕМА
4.1.2 ОПРЕДЕЛЕНИЕ НЕИЗВЕСТНЫХ РЕАКЦИЙ В ШАРНИРАХ УПРУГОГО ЭЛЕМЕНТА
4.2 РАСЧЕТ НА ИЗГИБ ПЛАСТИНЧАТЫХ УПРУГИХ ЭЛЕМЕНТОВ, РАСПОЛОЖЕННЫХ В ПЛОСКОСТИ, ПЕРПЕНДИКУЛЯРНОЙ ОСИ СТУПИЦЫ
5. АНАЛИЗ РЕЗУЛЬТАТОВ ПРОВЕДЁННЫХ ИССЛЕДОВАНИЙ
5.1 ПРОГРАММНАЯ ЭМУЛЯЦИЯ РАБОТЫ ВЕДУЩЕГО КОЛЕСА С ВНУТРЕННИМ ПОДРЕССОРИВАНИЕМ НА ПОВЕРХНОСТИ С НЕРОВНОСТЯМИ ПОЧВЫ
5.2 РАСЧЕТ НАВЕСОСПОСОБНОСТИ ТРАКТОРА С ВЕДУЩИМ КОЛЕСОМ С ВНУТРЕННИМ ПОДРЕССОРИВАНИЕМ
5.3 РАСЧЕТ УГЛОВОЙ ЖЕСТКОСТИ ТРАКТОРА С ВЕДУЩИМ КОЛЕСОМ С ВНУТРЕННИМ ПОДРЕССОРИВАНИЕМ
6. ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
Введение
Сравнительный анализ и сопоставление колесных и гусеничных машин при эксплуатации их в тяжелых дорожных, а особенно во внедорожных, условиях показывает преимущество последних по таким важнейшим показателям, как проходимость, производительность, манёвренность, тягово-сцепные качества, удобство и надежность работы. Многоприводные автомобили и автопоезда даже при наличии четырех-пяти ведущих мостов не могут обеспечить в условиях бездорожья такую же реализацию тяговых качеств, как и гусеничные машины. При этом сложность и громоздкость активного привода к колесам ликвидирует такое важное достоинство автомобиля, как простота конструкций. Следовательно, необходимость в разработке новых и модификации старых конструкций тягово-транспортных средств с приводом от гусеничного движителя была и остаётся высокой. По-прежнему, эффективная работа целых отраслей народного хозяйства зависит от прогресса в разработках конструкторов гусеничных машин.
Машины с гусеничным приводом очень разнообразны по конструкции и назначению. Это промышленные и сельскохозяйственные тракторы, снегоболотоходные транспортеры, специальные тягачи, различные установки на гусеничном ходу, используемые для монтажа производственного или технологического оборудования, трубоукладчики на строительстве нефте- и газопроводов и т.д. Гусеничный движитель является одним из важнейших механизмов, определяющих тяговые качества, производительность, экономичность и надежность всех этих машин. Поэтому совершенствование конструкции движителя, выбор оптимальных параметров, рациональное сочетание характеристик отдельных его элементов, разработка более совершенной схемы привода и формы обвода гусениц представляют ответственный этап при создании или модернизации гусеничных машин.
Следует также учитывать, что в результате воздействия ходовых систем тракторов, в почве образуются уплотненные зоны, вызывая неравномерное распределение влаги и отрицательно влияющие на урожайности по всей ширине воздействия. Исследования влияния уплотнения почвы тяжелыми мобильными агрегатами на урожай сельскохозяйственных культур, проведённые в нашей стране, а также в США, Швеции, Японии показали, что урожай снижается на 20–35%. При этом большое влияние на уплотнение почвы оказывает среднее и максимальное удельные давления. Согласно данным [16] для большинства почв допустимое давление составляет 39–49 кПа, предельное — 98–147 кПа, а фактически же, оказываемое мобильными агрегатами давление достигает 294–420 кПа.
Создание долговечного, экономичного, экологичного гусеничного движителя является сложной научно-технической проблемой. Сложность ее обуславливается тяжелым режимом работы движителя, подвергающегося абразивному воздействию грунта, высокими динамическими нагрузками, нестабильностью геометрии и кинематики обвода, особенно при движении по пересеченной местности.
Стремление сократить до минимума все механические потери в движителе, иными словами обеспечить максимальный к. п. д., увеличить экономичность машины, повысить почвосбережение еще в большей степени усугубляет трудности решения этой задачи, так как неизбежным следствием повышения энергоемкости транспортного средства, уменьшения его массы является увеличение динамической нагруженности гусеничного движителя и уменьшение его надежности.
Существенное усовершенствование гусеничного движителя возможно только на базе серьезных теоретических и экспериментальных исследований. Теория гусеничного движителя была в основном разработана профессорами А. С. Антоновым, Е. Д. Львовым, М. К. Кристи, Л. В. Сергеевым, А. О. Никитиным, В. Ф. Платоновым и др. Она в достаточном объеме освещает вопросы кинематики нерастяжимого обвода, качения опорного катка по ровному основанию, потери мощности в движителе и взаимодействия опорной ветви с грунтом.
Применение новых конструктивных решений при создании современных ходовых систем гусеничных машин, а также необходимость улучшения их эксплуатационных показателей не могли не вызвать постановки и решения отдельных вопросов теории гусеничного движителя, разработки новых методов расчета его узлов и деталей. Это позволило развивать данную теорию в новых направлениях, позволяющих более полно и глубоко изучить динамическое нагружение гусеничного движителя, обосновать пути снижения его нагруженности и повышения надёжности.
Как часть данного направления можно рассматривать и текущую работу, основными задачами которой являлись изучение путей увеличения к. п. д. гусеничного движителя, экономичности и экологичности его работы путем введения новых конструктивных элементов, в частности ведущего колеса с внутренним подрессориванием, служащего одновременно ведущим и опорным элементом. Это позволяет при несущественном увеличении длины гусеничного обода увеличить базу, навесоспособность и устойчивость трактора от опрокидывания назад, а также значительно улучшить условия труда тракториста на рабочем месте путем улучшения характеристик плавности хода и шумности.
2. Аналитический обзор и состояние вопроса
2.1 Анализ литературных источников
Интерес к проблемам общей экологичности машины, и почвосбережения в частности, экономичности разрабатываемых конструкций, увеличения КПД никогда не ослабевал, а новые задачи, поставленные «Федеральной программой машиностроения для АПК России», утвержденной постановлением Правительства РФ от 19 апреля 1994 года №738 [1], увеличили круг затрагиваемых вопросов.
В аспекте создания новых типов гусеничных движителей, а также модернизации старых, с целью увеличения КПД движителя следует в первую очередь обратиться к работам [8, 9, 10]. В них широко рассматриваются как теоретические вопросы работы гусеничного движителя, так и практические задачи по решению проблем потери мощности в движителе, долговечности гусеничного движителя, динамики взаимодействия гусениц с направляющим и опорными катками, ведущим колесом, устойчивости обвода и пр.
Труды [8, 10, 14] показывают, что в последнее время использование гусеничных тракторов в сельском хозяйстве стало больше, чем колесных. В таблице 2.1 приведены результаты исследования уплотнений почвы после проходов тракторов с различными типами движителей. Из таблицы следует, что средине и максимальные давления на почву гусеничных сельскохозяйственных тракторов находятся с пределах, соответственно, 0,04–0,06 МПа и 0,154–0,240 МПа [16].
Машина, воздействующая на почву
Кратность воздействия при сплошном укатывании
Плотность почвы ? 103 кг/м3
в слое почвы, см
Показатель воздействия, кН/м


0–10
10–20
20–40

Без уплотнения
0
1,31
1,45
1,5

ДТ–75
1
3
1,35
1,40
1,48
1,49
1,52
1,52
112
165
Т–150К
1
3
1,38
1,41
1,48
1,49
1,54
1,54
184
270
К–700
1
3
1,38
1,44
1,52
1,52
1,56
1,56
240
354
Таким образом, гусеничные тракторы обладают меньшим показателем воздействия и удельным давлением, большей проходимостью, позволяя на одну-две недели раньше начинать полевые работы, что даёт возможность получать более высокие урожаи не только за счёт меньшего уплотнения почвы, но и за счёт повышения качества технологического процесса.
Эксперименты НАТИ [16, 23–26]показали, что при изменении давления на почву весьма значительно снижается прирост удельного сопротивления вспашке. По следу трактора Т–150 он в 4,34 раза меньше, чем по следу трактора К–150К, при этом производительность труда в 1,18–1,4 раза больше, а погектарный расход топлива снизился, соответственно, в 1,38–1,07 раза. В среднем, по всем видам работ, производительность МТА с допустимым давлением на почву возрастает в 1,27 раза, а расход топлива снижается в 1,22 раза (экономия до 4000 кг топлива в год только одной машиной).
Благодаря этому и другим, описанным ниже, преимуществам, в современном зарубежном тракторостроении также наметилась тенденция использования гусеничных тракторов в сельском хозяйстве.
Стоит также упомянуть и о затронутом в различных источниках, как зарубежных, так и отечественных, анализе развития современных технологий, указывающем на постоянно возникающий дисбаланс масс в конструкциях создаваемых машин и о путях его устранения.
Как видно из таблицы 2.2, основные массы трактора — это двигатель и навесные устройства. Исторически сложилось так, что при компоновка узлов машины эти две основные массы уравновешивают друг друга. Однако, современная наука не стоит на месте. Начинают применяться новые материалы, новые технологии, новые энергоносители, что в контексте развития двигателе- и тракторостроения приводит к парадоксу, из которого, казалось бы, нет выхода.

Составляющая
Трактор
Среднее значение, %

Т-38М
Т-74
ДТ-75М
Т-150
Т-4
Т-108

Трактор без водителя
4100
5880
6570
7000
8140
11510
105
Балласт

130
200




Топливо
100
180
210
270
260
195

Возимые ЗИП
20
25
25
30
30
80

Вода системы охлаждения
30
45
60
45
50
75

Конструктивный вес
3950
5500
6100
6655
7750
11160
100
Двигатель в сборе с муфтой сцепления и воздухоочистителем
750
760
1050
1130
1290
2400
17,0
Радиаторы (водяной и масляный
70
150
180
90
105
110
1,6
Коробка передач
160
250
340
660
300
350
5,0
Задний мост и редуктор ВОМ
410
480
450
430
600
1010
8,5
Конечные передачи со звёздочками (две)
570
370
540
340
610
960
8,5
Рычаги управления и приборы
40
60
85
100
95
90
1,1
Рама

750
750
640


7,9
Полурама
190



310
370

Тележки с опорными катками
390



1410
2010
14,2
Каретки эластичной подвески

760
720
420



Поддерживающие ролики
30
90
110
130
120
180
1,5
Гусеницы
530
860
880
980
1500
2120
16,7
Кабина с оборудованием
110
130
130
340
260
315
3,0
Сидение, пол, крылья
80
100
100
105
120
105
1,5
Облицовка и капот
60
70
70
85
110
125
1,2
Прицепное приспособление

50
50
60
120
260
1,2
Механизм навески с цилиндром
230
270
270
320
350

5,0
Бак гидросистемы с маслом
30
65
65
60
60

1,4
Распределитель и арматура
20
25
30
25
30


Топливный бак
40
50
50
50
70
165
0,9
Напомню, что положение центра тяжести, согласно [11], определяется координатами: горизонтальной — от оси ведущего колеса , вертикальной от поверхности почвы и поперечным смещением по горизонтали от плоскости симметрии .
Координаты центра тяжести для вновь проектируемого трактора находят графически или графоаналитически. На боковой проекции трактора выделяют контуры основных узлов и механизмов и наносят векторы их веса, приложенные к центрам тяжести. При графическом методе построением веревочных многоугольников находят вертикальную и горизонтальную равнодействующие суммы весов, точка пересечения которых определит положение центра тяжести. При графоаналитическом методе находят координаты центра тяжести каждого узла или механизма , , а затем общие координаты центра тяжести:
,
где Gуз — вес узла.
Координаты центра тяжести трактора с навешенным орудием в транспортном положении можно определить по формуле
,
где Q — вес орудия;
ан — проекция на плоскость пути расстояния центра тяжести орудия от оси ведущих (задних) колес (звездочек); берётся со знаком «минус», если направлена в сторону, противоположную центру тяжести трактора;
hн — высота центра тяжести орудия в транспортном положении.
Итак, очевидно, что на величину горизонтальной координаты центра тяжести трактора наибольшее влияние оказывают двигатель (энергетическая установка) и навешенное орудие, как элементы с наибольшим весом на самых больших расстояниях от предполагаемого центра масс. Однако теперь следует обратиться к истории развития тракторостроения.
Одной из насущных задач в тракторостроении всегда был вопрос повышения энергоемкости машинно-транспортного агрегата. Достигается это, в первую очередь, модернизацией двигателя путём применения новых материалов и технологий. Это приводит, с одной стороны, к снижению веса ДВС, а с другой к увеличению числа и/или массы навешенных на трактор орудий. И первый, и второй из перечисленных факторов приводит к уменьшению величины горизонтальной координаты центра тяжести (его смещению по направлению к навеске трактора). Получается некий замкнутый круг: снижение веса двигателя трактора и увеличение его мощности — увеличение числа и/или массы навешиваемых орудий — увеличение мощности двигателя и снижение его веса и т.д. Это приводит к попыткам конструкторов вынести максимально вперёд массу двигателя с целью увеличить его плечо (в качестве примера можно привести модельный ряд тракторов ВГТЗ серий ДТ-175 и ВТ-100) и/или разместить спереди трактора балластные грузы.
Альтернативным вариантом решения этой задачи может стать увеличение продольной базы трактора путем опускания ведущего колеса на грунт [20, 21]. Это позволить снизить массу балластных грузов, что приводит к экономии материалов, снижению общего веса конструкции, и, следовательно, снижению воздействия МТА на почву, решению ряда вопросов, связанных с эксплуатацией трактора без навешенных на него орудий. Однако данное решение также имеет ряд недостатков. В первую очередь это ведёт к увеличению момента сопротивления повороту. А самое главное, на ведущее колесо теперь будут действовать ничем не компенсируемые силы, которые могут привести к выходу из строя конечной передачи.
Еще одним решением проблемы может стать кардинальное изменение схемы работы движителя и, как следствие, полная перекомпоновка узлов трактора. Имеется в виду так называемый трактор с «треугольным обводом», примером которого может послужить опытный образец, разработанный в стенах НАТИ в начале 90-х годов (см рисунок 2.1). Однако, обладая рядом безусловных преимуществ, среди которых, наиболее рациональное, среди всех типов компоновок, расположение центра масс, самая большая навесоспособность, данная модель обладает и рядом недостатков, наиболее существенные из которых, это незамкнутый силовой контур машины и увеличенный износ гусениц ввиду добавления второго изгиба в форме обвода.

Стоит также упомянуть и о различных видах и типах гусениц как средстве увеличения эффективности работы гусеничного движителя.
На рисунке 2.2 показано влияние сопротивления качению, буксования и удельной силы тяги на КПД ходовой системы [13]. Из графиков видно, что чем меньше сопротивление качению и буксование, тем выше коэффициент полезного действия. Увеличивается КПД и при росте тяговой нагрузки. Это указывает на важность обеспечения высоких тяговых качеств трактора за счет его ходовой системы и объясняет преимущества гусеничной ходовой системы перед колесной при работе на мягких (легкодеформируемых) почвах с орудиями, требующими реализации высоких тяговых усилий. На тяговые качества трактора определяющее влияние оказывают конструктивные параметры ходовой системы.
Для работы с минимальными потерями мощности важное значение имеет натяжение гусеницы. Недостаточное натяжение приводит к ухудшению распределения давления на почву и увеличивает ее деформацию, способствует спаданию гусеницы с опорных катков, а чрезмерное — к росту потерь на трение и ускорению износа шарниров.

При работе с большими тяговыми усилиями опрокидывающий момент от тягового сопротивления орудий приводит к перераспределению нагрузок на опорные катки: передние — разгружаются, задние — догружаются. Поэтому у большинства гусеничных тракторов, работающих с задними орудиями, центр тяжести смещен вперед от середины опорной поверхности или имеются передние грузы, которые должны быть установлены при тяжелых условиях работы, так как наибольший КПД наблюдается при равномерном распределении нагрузок по опорным каткам.
Из конструктивных параметров ходовой системы наибольшее влияние оказывают на тяговые качества длина опорной поверхности гусениц, число опорных катков и шаг гусеничной цепи. Увеличение этих параметров способствует повышению коэффициента полезного действия ходовой системы благодаря снижению сопротивления качению и буксования. Этим объясняются конструктивные особенности болотоходных тракторов и увеличенный шаг гусениц на промышленных тракторах.
Тракторы Т-70С, ДТ-75БВ и Т-130Б могут работать с гусеницами различной ширины. Необходимо иметь в виду, что увеличение ширины гусеницы способствует повышению тяговых качеств только на слабых, легкодеформируемых почвах (болота, снежная целина, пески). На почвах и грунтах средней и высокой плотности увеличение ширины гусеницы эффекта не дает, так как приводит к росту массы ходовой системы, а, следовательно, и к повышению потерь на трение, ухудшает заглубление почвозацепов и увеличивает буксование. В результате КПД снижается.
При неизменной длине опорной поверхности увеличение числа опорных катков способствует росту КПД ходовой системы на легкодеформируемых почвах и грунтах. На плотных почвах и грунтах лучшие показатели имеет ходовая система с меньшим числом опорных катков большего диаметра, что объясняется уменьшением сопротивления качению и лучшим заглублением почвозацепов под опорными катками.
Из всех типов подвесок наиболее высокие тяговые качества обеспечивает упругая индивидуальная система подрессоривания опорных катков благодаря более равномерному распределению давления на почву.
Лучшими тяговыми качествами обладают составные гусеницы с уплотнениями и смазкой шарниров, а также гусеницы с резинометаллическими шарнирами. Это объясняется постоянством шага гусеницы, обеспечивающим минимум потерь в зацеплении с ведущим колесом, пониженным трением в шарнирах, а также более равномерным распределением давления на почву при наличии упругих моментов в шарнире.
Оптимальная форма почвозацепа звена гусениц — расчлененный почвозацеп с увеличивающимся к краям углом между упорной кромкой и осью шарнира.
2.2 Патентное исследование
Современная конструкторская мысль уделяет большое внимание проблеме усовершенствования конструкции всего гусеничного движителя в целом и ведущего колеса в частности. Были исследованы патенты с глубиной выборки сорок лет для патентов России/СССР и тридцать лет для патентов США (согласно [2]). Поиск показал, что конструкции ведущего колеса подобные проектируемому существуют. Однако, как уже указывалось выше, на практике такие колёса получили распространение только на промышленных тракторах. Кратко рассмотрим некоторые из существующих патентов [3–7] и проанализируем их достоинства и недостатки.
2.2.1 АС № 821229 «Упругое колесо транспортного средства со ступицей и обводом»
1. Колесо изображено на рисунке 2.3.
2. Описание колеса в статике:
Упругое колесо состоит из ступицы 1, бандажа 2, разделенных между собой расположенными по окружности пакетами 3, каждый из которых размешен в цилиндрическом гнезде и состоит из стальных разрезных гильз переменной толщины, удерживаемых от поворота вокруг своей оси стопорящей планкой 4, размещенной на торцовых прорезях гильз и жестко связанной со ступицей, при этом от выпадения пакеты удерживаются также кольцевой планкой 5, жестко соединенной с бандажом винтами 6 и образующей радиальный зазор со ступицей 1, а внутренняя гильза каждого пакета 3 имеет резиновую вставку 7.

Регулирование жесткости колеса производят следующим образом.
Для регулирования жесткости колеса отвинчивают винты 6, снимают планку 5, удаляют из торцовых канавок пакетов 3 планки 4 и поворачивают пакет 3 или каждую гильзу пакета 3 на определенный угол.
Так как грузоподъемность транспортного средства может быть различной, упругое колесо с регулируемой жесткостью позволяет привести ее к оптимальной и таким образом снизить динамические нагрузки на узлы транспортного средства.
3. Цель изобретения - регулирование жесткости колеса.
Цель достигается тем, что упругие элементы выполнены в виде расположенных в цилиндрических гнездах пакетов разрезных металлических гильз переменной толщины, имеющих на торцах радиальные канавки, вмещающие стопорный элемент. При этом колесо может быть снабжено резиновыми вставками, расположенными во внутренних гильзах пакетов.
2.2.2 АС № 933481 «Металлоэластичное колесо транспортного средства»
1. Колесо изображено на рисунке 2.4
2. Металлоэластичное колесо состоит из ступицы 1, гибкого обода 2, включающего траки 3 с резиновыми грунтозацепами, соединенные шарнирами 4, балансиры 5, установленные на внутренней стороне соседних траков 3 одним концом шарнирно, а другим скользящими по внутренней стороне обода. На каждом балансире 5 в середине его установлен шарнир 6; соединенный с шарниром 7 на ступице через спицы 8, которые выполнены в виде двух соединенных между собой шарниром 9 рычагов. Причем каждый шарнир 9 соединен с шарниром 6 и шарниром 7 соседних спиц с помощью упругих элементов (пружин) 10.

Для обеспечения поперечной устойчивости колеса спицы с упругими элементами расположены в два ряда симметрично относительно вертикальной оси.
Колесо, работает следующим образом.
Крутящий момент независимо от направления движения передается от ступицы 1 через рычаги спиц 8, элементы 10 и балансиры 5 к ободу 2 и вследствие взаимодействия последнего с почвой реализуется в тяговое усилие колеса. Благодаря тому, что угол между рычагами, образующими спицу 8, отличен от 180?, элементы 10 в нижней части колеса под воздействием вертикальной нагрузки сжаты. Передача крутящего момента осуществляется также за счет сжатия этих элементов, причем независимо от направления движения колеса. Таким образом, из-за того, что элементы 10 в нижней части колеса всегда сжаты, а крутящий момент от ступицы 1 к ободу 2 передается через них, работа колеса идентична как при движении вперед, так и назад.
Плавность хода колеса и допустимое давление на грунт обеспечиваются регулированием упругих качеств колеса за счет подбора элементов 10 определенной жесткости и необходимого комплекта спиц 8 с упругими элементами. Вертикальную нагрузку воспринимают все элементы 10, сжимаясь или растягиваясь при этом в зависимости от места расположения их.
3. Целью изобретения является повышение надежности в работе колеса. Для этого обод выполнен из шарнирно соединенных друг с другом траков, каждая пара которых связана балансиром, а каждый шарнир, соединяющий рычаги спицы, связан с шарниром, соединяющим рычаг со ступицей, и шарниром, связывающим, рычаг с балансиром соседних спиц упругими элементами.
2.2.3 АС № 160092 «Опорный каток гусеничных машин»
1. Колесо изображено на рисунке 2.5.
2. Опорный каток гусеничных машин, включающий обод и ступицу, между которыми размешен кольцевой резиновый амортизатор и крепежные детали, отличающийся тем, что, с целью улучшения характеристики амортизатора, он выполнен из нескольких колец, одни из которых посажены свободно, воспринимают радиальные нагрузки, а другие посажены с предварительным натягом, работают на сдвиг и смятие, воспринимают радиальные и осевые нагрузки и фиксируют обод на ступице. Колесо содержит обод 1 с коническими поверхностями 2 и 3 , сопрягающиеся с коническими поверхностями 4 и 5 ступицы 6.

2.2.4 Патент США № 5125443 «Пружинно подвешенное колесное устройство»
1. Колесо изображено на рисунке 2.6.
Описание колеса в статике:
Упомянутым в патенте изобретением снабдили колесо, состоящее из круглого остова или обода, соединённого множеством пружин с центральной ступицей. Круглый обод лежит в плоскости вращения, ось которой преимущественно перпендикулярна данной плоскости и проходит через середину плоскости вращения, образуемой ободом. Более того, механизм колеса включает в себя дугообразные элементы пружин, которые расходятся лучами по спирали в радиальном направлении от ступицы до обода и обеспечивают наружную жесткость обода колеса с целью повышения эластичности и добавления большей ударопрочности.
Также в конструкции колеса предусмотрены два набора спиралевидных пружин, по одному с каждой стороны от плоскости вращения, передвигающихся, в основном, конически от каждой из сторон ступицы до обода колеса.
Еще в реализованном изобретении каждая из пружин в каждом из наборов имеет сопряженную пружину в другом наборе так, что первая пара сопрягается со второй парой в точке расхождения по длине до точки прикрепления к ступице.
Далее конструкция отличается тем, что спиральные элементы в одном блоке не выровнены относительно друг друга, соседа или оппозитного элемента, так чтобы не организовать заранее отобранные шаблоны.
Спиральные элементы в одной группе растягиваются по спирали по часовой стрелке от центра к периферии, тогда как пружины другой группы растягиваются против часовой стрелки, если смотреть на колесо сбоку от плоскости вращения.
Также в конструкции ось колеса разъединена между ступицами, т.е. колесо закреплено двумя вставками, соединяющими с обеих сторон вилку и ступицу. Промежуток между ступицами остаётся, то есть отсутствует соединение между оппозитными ступицами.
Выбор специфической конфигурации или модели двойных спиралевидных деталей в изобретенном колесном устройстве позволяет, по крайней мере, добиться искомого распределения усилий или достичь требуемой в ряде задач поворачиваемости и сцепления. Таким образом, горные велосипедные шины могут нуждаться в соприкосновении обоих сторон спиралевидных элементов для передачи наибольшей гибкости и улучшенной упругости, поскольку в значительной степени идентичность или согласованность блоков спиральных шестерен может придать большую поворачиваемость единичному колесу лопастного типа роликовых коньков, т.е. так называемым роликовым лезвиям.
2. Цель изобретения. Данный патент США можно считать логическим завершением целой цепочки изобретений (патенты США №№ 813423, 1141078, 515456, 2869608, 1253975), постепенно развивающих и улучшающих данный конструкционный узел машины путем введения и модернизации связей различного типа в колесе с внутренним подрессориванием. Например, патент США №813423 Хилла показывает когтеобразное удерживающее устройство для прикрепления колеса к оси. Конструкция Хилла включает в себя прочные спицы из металлической проволоки, которые соединяют каждую ступицу с ободом колеса, что распределяет усилия так же, как и ось, располагающаяся, как правило, между этими ступицами. Патент США №1141078 Шеффела улучшает конструкцию Хилла путём исключения удерживающих устройств, крепящих ступицу к оси. Шеффел также предлагает ввести прочные спицы из проволоки и единый вал колеса. Патент США №515456 Вуда направлен, в основном, на конструкцию ступицы колеса, и показывает дугообразные спицы, лежащие вне плоскости вращения колеса, и перемещающиеся по дуге от ступицы к ободу колеса. Патент США №2869608 Чамберлена и др. защищает конструкцию пружинного колеса под автомобильные шины, имеющую плоские ленточные пружины (вместо спиц), которые внутренне расходятся от каждой ступицы до обода колеса, при этом полностью находясь вне плоскости вращения обода. Наконец, патент США №1253975 Ховарда и др. защищает конструкцию с множеством некомпланарных спиц, прикрепленных к множеству независимых ободов. Данный же патент США №5125443, в свою очередь, содержит колесо открытого типа, имеющее круглый обод, расположенный в плоскости вращения колеса, две оппозитные ступицы, размещённые по обе стороны плоскости вращения колеса на его оси вращения, саму ось, пересекающую плоскость вращения в центре круга, очерченного ободом, и множественные пружины, расположенные противоположно друг другу, причем каждая из этих пружин расходится от центра к периферии по радиальной и спиралевидной траектории от точек прикрепления к ободу до точек прикрепления к ступицам, в связи с чем колесо наделяется способностью лучше противостоять радиальным и/или боковым деформациям, обеспечивая притом хорошую самоцентровку и возврат в начальное положение, когда обод колеса перемещается из нормального положения в плоскости вращения или по оси вращения.
2.2.5 Достоинства и недостатки рассмотренных конструкций
Все вышеописанные изобретения обладают рядом недостатков, не позволяющих применить эти колёса как ведущие на гусеничных тракторах.
Первый недостаток всех изобретений — они проектировались не для гусеничных тракторов, следовательно, абсолютно не учитывают специфику работы данного тапа машин. Более того, каждое из приведенных выше изобретений, несмотря на оригинальные идеи, не подходят конструктору гусеничных машин по ряду причин. Так у первого изобретения значительная металлоёмкость и небольшая величина хода обода, что значительно снижает плавность хода и удорожает конструкцию. То же можно сказать и о третьем из списка изобретении, которое идеально подходит для применения в опорных катках гусеничного движителя. Второе из описанных изобретений имеет и малую металлоемкость, и хорошую плавность хода, но всё же оно недостаточно удовлетворяет требованием жесткости в боковом направлении для данного типа ведущих колес. Последний из описанных патентов и авторских свидетельств хотя и обладает достаточно малой металлоемкостью и хорошей плавностью хода, что не маловажно, тем не менее, не содержит возможность обратимости движения (за исключением последней из предложенных конструкций), имеет большую степень детализации, что снижает его эксплуатационные качества, а главное, идеология данного изобретения подразумевает наличие гибкого обода колеса, что недопустимо в гусеничных движителях из-за необходимости обеспечивания адекватного натяжения гусеницы и обеспечения её несоскальзывания.
Несмотря на все описанные выше недостатки, большинство оригинальных идей, примененных в данных изобретениях требуют отдельного более пристального изучения при синтезе новой конструкции опущенного на грунт ведущего колеса с внутренним подрессориванием гусеничного трактора.


 
     
Бесплатные рефераты
 
Банк рефератов
 
Бесплатные рефераты скачать
| мероприятия при чрезвычайной ситуации | Чрезвычайная ситуация | аварийно-восстановительные работы при ЧС | аварийно-восстановительные мероприятия при ЧС | Интенсификация изучения иностранного языка с использованием компьютерных технологий | Лыжный спорт | САИД Ахмад | экономическая дипломатия | Влияние экономической войны на глобальную экономику | экономическая война | экономическая война и дипломатия | Экономический шпионаж | АК Моор рефераты | АК Моор реферат | ноосфера ба забони точики | чесменское сражение | Закон всемирного тяготения | рефераты темы | иохан себастиян бах маълумот | Тарых | шерхо дар борат биология | скачать еротик китоб | Семетей | Караш | Influence of English in mass culture дипломная | Количественные отношения в английском языках | 6466 | чистонхои химия | Гунны | Чистон
 
Рефераты Онлайн
 
Скачать реферат
 
 
 
 
  Все права защищены. Бесплатные рефераты и сочинения. Коллекция бесплатных рефератов! Коллекция рефератов!