Чтение RSS
Рефераты:
 
Рефераты бесплатно
 

 

 

 

 

 

     
 
Анализ и моделирование биполярных транзисторов


10. Математическая модель биполярного транзистора.

Общая эквивалентная схема транзистора, используемая при получении математической модели, показана на рис.10-1. Каждый p-n-переход представлен в виде диода, а их взаимодействие отражено генераторами токов. Если эмиттерный p-n-переход открыт, то в цепи коллектора будет протекать ток, несколько меньший эмиттерного (из-за процесса рекомбинации в базе). Он обеспечивается генератором тока . Индекс N означает нормальное включение. Так как в общем случае возможно и инверсное включение транзистора, при котором коллекторный p-n-переход открыт, а эмиттерный смещен в обратном направлении и прямому коллекторному току соответствует эмиттерный ток , в эквивалентную схему введен второй генератор тока , где - коэффициент передачи коллекторного тока.
Таким образом, токи эмиттера и коллектора в общем случае содержат две составляющие: инжектируемую ( или ) и собираемую ( или
):
,

(10.1)
Эмиттерный и коллекторный p-n -переходы транзистора аналогичны p-n
-переходу диода. При раздельном подключении напряжения к каждому переходу их вольтамперная характеристика определяется так же, как и в случае диода.
Однако если к одному из p-n -переходов приложить напряжение, а выводы другого p-n -перехода замкнуть между собой накоротко, то ток, протекающий через p-n -переход, к которому приложено напряжение, увеличится из-за изменения распределения неосновных носителей заряда в базе. Тогда:
, (10.2) где - тепловой ток эмиттерного p-n -перехода, измеренный при замкнутых накоротко выводах базы и коллектора; - тепловой ток коллекторного p-n
-перехода, измеренный при замкнутых накоротко выводах базы и эмиттера.

Рис. 10-1. Эквивалентная схема идеализированного транзистора

Связь между тепловыми токами p-n -переходов ,включенных раздельно, И тепловыми токами , получим из (10.1 и 10.2).
Пусть . Тогда . При . Подставив эти выражения в (10.1), для тока коллектора получим .
Соответственно для имеем
Токи коллектора и эмиттера с учетом (10.2) примут вид

(10.3)
На основании закона Кирхгофа ток базы
(10.4)
При использовании (10.1)-(10.4) следует помнить, что в полупроводниковых транзисторах в самом общем случае справедливо равенство

(10.5)
Решив уравнения (10.3) относительно , получим

(10.6)
Это уравнение описывает выходные характеристики транзистора.
Уравнения (10.3), решенные относительно , дают выражение, характеризующее идеализированные входные характеристики транзистора:
(10.7)
В реальном транзисторе кроме тепловых токов через переходы протекают токи генерации — рекомбинации, канальные токи и токи утечки. Поэтому
,, , как правило, неизвестны. В технических условиях на транзисторы обычно приводят значения обратных токов p-n-переходов
,. определенные как ток соответствующего перехода при неподключенном выводе другого перехода.
Если p-n-переход смещен в обратном направлении, то вместо теплового тока можно подставлять значение обратного тока, т. е. считать, что и .
В первом приближении это можно делать и при прямом смещении p-n-перехода.
При этом для кремниевых транзисторов вместо следует подставлять
, где коэффициент m учитывает влияние токов реального перехода (m = 2
- 4). С учетом этого уравнения (10.3), (10.5) часто записывают в другом виде, который более удобен для расчета цепей с реальными транзисторами:
(10.8)
(10.9)

(10.10) где .
Различают три основных режима работы биполярного транзистора: активный, отсечки, насыщения.
В активном режиме один из переходов биполярного транзистора смещен в прямом направлении приложенным к нему внешним напряжением, а другой - в обратном направлении. Соответственно в нормальном активном режиме в прямом направлении смещен эмиттерный переход, и в (10.3), (10.8) напряжение
имеет знак «+». Коллекторный переход смещен в обратном направлении, и напряжение в (10.3) имеет знак « - ». При инверсном включении в уравнения (10.3), (10.8) следует подставлять противоположные полярности напряжений , . При этом различия между инверсным и активным режимами носят только количественный характер.
Для активного режима, когда и (10.6) запишем в виде .
Учитывая, что обычно и , уравнение (10.7) можно упростить:
(10.11)
Таким образом, в идеализированном транзисторе ток коллектора и напряжение эмиттер-база при определенном значении тока не зависят от напряжения, приложенного к коллекторному переходу. В действительности изменение напряжения меняет ширину базы из-за изменения размеров коллекторного перехода и соответственно изменяет градиент концентрации неосновных носителей заряда. Так, с увеличением ширина базы уменьшается, градиент концентрации дырок в базе и ток увеличиваются. Кроме этого, уменьшается вероятность рекомбинации дырок и увеличивается коэффициент
. Для учета этого эффекта, который наиболее сильно проявляется при работе в активном режиме, в выражение (10.11) добавляют дополнительное слагаемое

(10.12)
- дифференциальное сопротивление запертого коллекторного p-n- перехода.
Влияние напряжения на ток оценивается с помощью коэффициента обратной связи по напряжению
, который показывает, во сколько раз следует изменять напряжение для получения такого же изменения тока , какое дает изменение напряжения
. Знак минус означает, что для обеспечения = const приращения напряжений должны иметь противоположную полярность. Коэффициент достаточно мал (), поэтому при практических расчетах влиянием коллекторного напряжения на эмиттерное часто пренебрегают.
В режиме глубокой отсечки оба перехода транзистора смещены в обратном направлении с помощью внешних напряжений. Значения их модулей должны превышать . Если модули обратных напряжений приложенных к переходам транзистора окажутся меньше , то транзистор также будет находиться в области отсечки. Однако токи его электродов окажутся больше, чем в области глубокой отсечки.
Учитывая, что напряжения и имеют знак минус, и считая, что
и , выражение (10.9) запишем в виде

(10.13)
Подставив в (10.13) значение , найденное из (10.8), и раскрыв значение коэффициента А, получим

(10.14) что , а , то выражения (10.14) существенно упростятся и примут вид

(10.15) где ;
Из (10.15) видно, что в режиме глубокой отсечки ток коллектора имеет минимальное значение, равное току единичного p-n-перехода, смещенного в обратном направлении. Ток эмиттера имеет противоположный знак и значительно меньше тока коллектора, так как . Поэтому во многих случаях его считают равным нулю: .
Ток базы в режиме глубокой отсечки приблизительно равен току коллектора:

(10.15)
Режим глубокой отсечки характеризует запертое состояние транзистора, в котором его сопротивление максимально, а токи электродов минимальны. Он широко используется в импульсных устройствах, где биполярный транзистор выполняет функции электронного ключа.
При режиме насыщения оба p-n-перехода транзистора с помощью приложенных внешних напряжений смещены в прямом направлении. При этом падение напряжения на транзисторе () минимально и оценивается десятками милливольт. Режим насыщения возникает тогда, когда ток коллектора транзистора ограничен параметрами внешнего источника энергии и при данной схеме включения не может превысить какое-то значение . В то же время параметры источника внешнего сигнала взяты такими, что ток эмиттера существенно больше максимального значения тока в коллекторной цепи:
.
Тогда коллекторный переход оказывается открытым, падение напряжения на транзисторе—минимальным и не зависящим от тока эмиттера. Его значение для нормального включения при малом токе () равно

(10.16)
Для инверсного включения

(10.16)
В режиме насыщения уравнение (10.12) теряет свою справедливость. Из сказанного ясно, что, для того чтобы транзистор из активного режима перешел в режим насыщения, необходимо увеличить ток эмиттера (при нормальном включении) так, чтобы начало выполняться условие . Причем значение тока , при котором начинается этот режим, зависит от тока , определяемого параметрами внешней цепи, в которую включен транзистор.


 
     
Бесплатные рефераты
 
Банк рефератов
 
Бесплатные рефераты скачать
| мероприятия при чрезвычайной ситуации | Чрезвычайная ситуация | аварийно-восстановительные работы при ЧС | аварийно-восстановительные мероприятия при ЧС | Интенсификация изучения иностранного языка с использованием компьютерных технологий | Лыжный спорт | САИД Ахмад | экономическая дипломатия | Влияние экономической войны на глобальную экономику | экономическая война | экономическая война и дипломатия | Экономический шпионаж | АК Моор рефераты | АК Моор реферат | ноосфера ба забони точики | чесменское сражение | Закон всемирного тяготения | рефераты темы | иохан себастиян бах маълумот | Тарых | шерхо дар борат биология | скачать еротик китоб | Семетей | Караш | Influence of English in mass culture дипломная | Количественные отношения в английском языках | 6466 | чистонхои химия | Гунны | Чистон
 
Рефераты Онлайн
 
Скачать реферат
 
 
 
 
  Все права защищены. Бесплатные рефераты и сочинения. Коллекция бесплатных рефератов! Коллекция рефератов!