При - корни вещественные
Сумма двух экспонент представляет собой:
Если , то корни комплексно-сопряженные и решение будет представлять собой периодическую функцию. В реальной системе, переключений не более 5 - 6.
3. Метод поверхности переключений
Данный метод позволяет найти управление функций переменной состояния для случая когда оптимальное управление носит релейный характер
.
Таким образом этот метод можно применять при решении задач оптимального быстродействия, для объекта с аддитивным управлением
,
.
Суть метода заключается в том, чтобы во всём пространстве состояний выделить точки, где происходит смена знака управления и объединить их в общую поверхность переключений.
,
- поверхность переключений
.
Закон управления будет иметь следующий вид
.
Для формирования поверхности переключений удобнее рассматривать переход из произвольной начальной точки в начало координат
.
Если конечная точка не совпадает с началом координат, то необходимо выбрать новые переменные, для которых это условие будет справедливо.
Имеем объект вида
.
Рассматриваем переход , с критерием оптимальности
.
Этот критерий позволяет найти закон управления такого вида
,
с неизвестным , начальные условия нам также неизвестны.
Рассматриваем переход:
Метод обратного времени
(метод попятного движения)
Этот метод позволяет определить поверхности переключений.
Суть метода заключается в том, что начальная и конечная точки меняются местами, при этом вместо двух совокупностей начальных условий остаётся одна для .
Каждая из этих траекторий будет оптимальна. Сначала находим точки, где управление меняет знак и объединяем их в поверхность, а затем направление движения меняем на противоположное.
Пример
Передаточная функция объекта имеет вид
.
Критерий оптимальности быстродействия
Ограничение на управление .
Рассмотрим переход
.
1)
,
2)
.
3)
оптимальное управление будет иметь релейный характер
.
4) Перейдём в обратное время (т.е. ). В обратном времени задача будет иметь такой вид
.
5) Рассмотрим два случая:
1.
Получим уравнения замкнутой системы
.
Воспользуемся методом непосредственного интегрирования, получим зависимость от и поскольку -, то имеем
,
т.к. начальные и конечные точки поменяли местами, то , получим
,
(*)
аналогично
подставив (*), получим
,
отсюда
.
Построим получившееся и по методу фазовой плоскости определим направление
2.
Применив метод непосредственного интегрирования, получим:
,
,
.
Функция будет иметь вид:
Изменив направление
точка смены знака
(точка переключения)
Общее аналитическое выражение:
.
Уравнение поверхности:
.
Оптимальный закон управления:
,
подставив уравнение поверхности, получим:
.
2.5. Субоптимальные системы
Субоптимальные системы - это системы близкие по свойствам к оптимальным
- характеризуется критерием оптимальности.
- абсолютная погрешность.
- относительная погрешность.
Субоптимальным называют процесс близкий к оптимальному с заданной точностью.
Субоптимальная система - система где есть хоть один субоптимальный процесс.
Субоптимальные системы получаются в следующих случаях:
1. при аппроксимации поверхности переключений (с помощью кусочно- линейной аппроксимации, аппроксимация с помощью сплайнов);
при в субоптимальной системе будет возникать оптимальный процесс.
2. ограничение рабочей области пространства состояний;