смотреть на рефераты похожие на "Светолокационный измерительный преобразователь расстояния до нижней границы облаков"
Неблагоприятная экологическая обстановка на территории Российской
Федерации требует уделения особого внимания вопросам охраны природы и
экологического воспитания. Контроль за воздействием от хозяйственной
деятельности человека на окружающую среду и природный комплекс -
необходимая составная часть мероприятий по улучшению использования
природных ресурсов. Многие отрасли промышленности, сельского хозяйства в
большой степени зависят от четкости, оперативности работы и надежности
прогнозов федеральной системы наблюдений и контроля за окружающей средой.
Оперативность и своевременность подачи штормовых предупреждений,
заблаговременный прогноз опасных и особо опасных явлений погоды являются
неотъемлемой частью успешной и безопасной работы многих отраслей хозяйства
и транспорта, а долгосрочные метеорологические прогнозы играют решающую
роль в организации сельскохозяйственного производства.
Одним из важнейших параметров, определяющих возможность прогнозирования опасных погодных явлений, является высота нижней границы облаков.
Принцип измерения высоты нижней границы облаков, использующийся в измерители высоты облачности ИВО-1М и регистраторе РВО-2.
Под высотой облаков в метеорологии понимают высоту их нижней границы над поверхностью земли. В основном измеряют высоту облаков среднего и нижнего ярусов ( не выше 2500 м.). При этом определяется высота самых нижних облаков. При тумане высота облаков принимается равной нулю, и в аэропортах в данных случаях измеряется “вертикальная видимость”. В основу измерения высоты нижней границы облаков в ИВО-1М и РВО-2 положен метод светолокации.
Этим методом высота нижней границы облаков определяется по времени прохождения светом пути от излучателя света до облака и обратно. Высота облаков Н определяется по формуле:
где - скорость света
- время прохождения света до облака и обратно.
Световой импульс посылается излучателем и после отражения принимается приемником. Излучатель и приемник располагаются в непосредственной близости друг от друга.
Принцип работы измерителя и регистратора нижней границы облаков.
1. Измеритель высоты нижней границы облаков ИВО-1М.
ИВО-1М состоит из передатчика и приемника световых импульсов, пульта управления и комплекта соединительных кабелей. Приемник и передатчик устанавливаются на открытой площадке на расстоянии 8-10 метров друг от друга. Передатчик и приемник аналогичны по конструкции и содержат параболические зеркала, защитные стекла и крышки, которые перед измерениями поднимаются при помощи электродвигателей.
В качестве источника световых импульсов используется троботрон типа
ИСШ-100. Мощные световые импульсы прямоугольной формы длительностью около
1мс и частотой 20Гц излучаются вертикально вверх. Часть рассеянной облаком
энергии( световые импульсы с гармониками, кратными основной частоте
сигнала) возвращается к приемнику и преобразуется фотоэлектронным
умножителем ФЭУ-1 в электрические импульсы. Непосредственно в приемнике
расположен предварительный широкополосный усилитель. который позволяет
уменьшить влияние помех при передаче сигнала к пульту управления,
расположенному в помещении на расстоянии до 50 м. от приемопередатчика.
С помощью пульта управления, содержащего электронно-лучевую трубку,
оператор может вручную измерять время запаздывания эхо-сигнала, отраженного
облаком, относительно зондирующего сигнала, излученного передатчиком.
Измерение производится с помощью схемы компенсации, которая содержит
регулируемый источник питания и позволяет менять напряжение на правой по
схеме пластине ЭЛТ (рис.1).
Поворачивая ручку потанциометра , на которой закреплен указатель шкалы высот, оператор компенсирует напряжение, поступающее от генератора развертки на левую пластину ЭЛТ. Напряжение на выходе генератора развертки за один период излучения возрастает пропорционально времени, прошедшему с момента излучения зондирующего сигнала, и по достижении некоторого уровня, соответствующего диапазону измерения, возвращается к исходному уровню. В соответствии с этим электронный луч пробегает вдоль экрана ЭЛТ слева на право с частотой излучения 20 раз в секунду.
Рис.1 Блок- схема ИВО-1М.
передатчик приемник
8-10 м.
1 2
ЭЛТ
3
4 5
6 пульт управления
может стыковаться с ДВ-1М
1-схема компенсации 4-генератор меток
2-видеоусилитель 5-АРУ
3-генератор разразвертки 6-блок питания
Такая частота повторения ЭЛТ позволяет наблюдать на экране непрерывно- светящуюся картину развертки луча трубки. При наличии эхо-сигнала. поступающего на нижнюю пластину ЭЛТ от видеоусилителя, на линии развертки появится импульс, положение которого относительно линии развертки соответствует запаздыванию эхо-сигнала по отношению к зондирующему. Это запаздывание пропорционально высоте облаков. Отсчет высоты облаков производится оператором после установки середины переднего фронта эхо- сигнала на вертикальную черту в центре экрана.
В пульте управления имеется также схема АРУ, которая позволяет
поддерживать неизменной амплитуду эхо-сигналов во всем диапазоне измерения.
Генератор меток предназначен для периодической проверки сохранности
градуировки шкалы высот в условиях эксплуатации.
Приемник и передатчик должны устанавливаться на расстоянии не менее 200 метров от радиолокационных станций и не менее 500 метров от средневолновых радиостанций.
2.Регистратор нижней границы облаков РВО-2.
Регистратов высоты облачности РВО-2 является усовершенствованным вариантом ИВО-1М, имеет лучшие эксплуатацинно-технические характеристики и более широкие возможности применения.
В РВО-2 улучшена шкала высот. Она разбита на десятки метров, что позволяет произвести считывание показаний о ВНГО с погрешностью не более 5 метров. За счет уменьшения длительности светового импульса, увеличения напряжения на конденсаторе основного разряда импульсной лампы, увеличения крутизны фронтов светового импульса передний фронт сигнала на ЭЛТ пульта управления круче - это обеспечивает более точное измерение ВНГО. Но указанный режим питания импульсной лампы значительно снижает ее ресурс.
РВО-2 электромагнитно совместим с радиотехническими средствами и не
имеет таких ограничений по установки приемника и передатчика, как ИВО-
1М.
Для устранения запотевания и обмерзания стекол приемника и передатчика
обеспечено их подогревание обогревательным элементом мощностью порядка 200
Вт.
РВО-2 комплектуются в 3-х вариантах:
. в первый вариант (РВО-2) входят: передатчик, приемник световых импульсов и пульт управления;
. во второй вариант(РВО-2-01) входят: передатчик и приемник световых импульсов, пуль управления, регистратор. Этот вариант обеспечивает измерение ВНГО до 2000 метров и автоматическую регистрацию ее до 1000 метров при расположении пульта управления и регистратора на расстоянии до
50-70 метров от места установки передатчика и приемника;
. в третий вариант (РВО-2-02) входят: передатчик и приемник световых импульсов, пульт управления, регистратор и выносной пульт. Этот вариант дает возможность измерять и регистрировать ВНГО так же, как и РВО-2-01, и измерять и регистрировать ВНГО до 1000 м. по самописцу выносного пульта при расположении последнего на расстоянии до 8 км. от места установки передатчика и приемник.
Погрешность измерений ВНГО у РВО-2 такая же, как и у ИВО-1М. РВО-2-
01 и РВО-2-02 обеспечивают автоматическое измерение и регистрацию ВНГО
через 15, 30 или 60 минут в соответствии с установкой “интервал”, при
необходимости возможна регистрация ВНГО с интервалом в 3 минуты и
непрерывная регистрация втечение 1,5 минуты.
3. Приставка ДВ-1М.
Дистанционная приставка ДВ-1М предназначена для дистанционного измерения ВНГО в комплекте с ИВО-1М или РВО-2 и передачи в канал связи результатов измерений (структурная схема на рис. 2).Основными узлами приставки являются: блок преобразования и блок логической обработки.
Блок преобразования позволяет получить на логическом выходе напряжение постоянного тока, прямопропорциональное времени запаздывания эхо-сигнала относительно зондирующего импульса. С этой целью в блоке преобразования последовательно соединены ждущий мультивибратор, генератор пилообразного напряжения и пиковый детектор.
Особенностью схемы ДВ-1 является наличие дополнительного пикового
детектора и схемы сравнения выходных напряжений двух пиковых детекторов.
Такая схема позволяет осуществлять логическую фильтрацию результатов
измерений на выходе устройства по критерию отношения сигнал/помеха. При
отсутствии помехи и наличии эхо-сигнала на входе устройства на выходе обоих
пиковых детекторов оказываются равными. Если же облаков нет и отсутствует
шумовая помеха (например, при измерениях ночью), то различие напряжений на
выходах детекторов будет максимальным. При этом пиковый детектор 1 отключен
от ГПИ, который в этом случае формирует импульсы максимальной амплитуды на
входе пикового детектора 2. При наличии эхо-сигнала и помехи разность
напряжений на пиковых детекторах будет тем больше, чем больше уровень
помехи. Такая структурная схема обеспечивает надежную защиту от шумов
фоновой засветки без снижения чувствительности к полезным сигналам. Это
происходит потому, что при наличии низкой облачности уровень фоновой
засветки резко снижается, что и гарантирует достаточно высокий уровень
отношения сигнал/шум.
Удаление ДВ-1М от места установки ИВО-1М или РВО-2 до 5 километров.
Основные нормативно-технические характеристики ИВО и РВО.
|Параметры |Значения |
|Диапазон измерений расстояния до | |
|светоотражающей поверхности твердой |от 50 до 450 |
|мишени, м | |
|Предел допускаемой погрешности | |
|измерителя, м | |
|50-150 м |не более (0,1Н+5) |
|150-500 м |не более (0,074Н+10) |
|Диапазон измерения времени ( ) | |
|прохождения световым импульсом | |
|расстояние Н до отражающей поверхности и|от 333 до 3000 |
|обратно, нс | |
| Предел допускаемой погрешности в | |
|диапазоне | |
|333-1000 нс |не более (0,1 +33) |
|1000-3000 нс |не более (0,07 +67) |
|Полный диапазон измерений расстояния до | |
|НГО, м |от 50 до 2000 |
Поверка светолокационного преобразователя ИВО.
При проведении поверки выполняются следующие операции:
1. внешний осмотр;
2. опробование;
3. определение метрологических параметров.
Средства и условия поверки.
При проведении поверки применяются следующие средства поверки:
. комплект образцовых линий задержки электрического сигнала на 200, 333,
533, 867, 1400, 2133 и 3000 нс, с погрешностью указанной в таблице (см. ниже);
. вольтметр переменного тока для измерения напряжений питающей сети 1-го класса.
Нормативно-технические характеристики комплекта образцовых кабельных линий задержки для поверки преобразователей типа ИВО и РВО.
|время задержки сигнала | предел допускаемой |имитируемая высота, |
|( ), нс |погрешности определения |м |
| |( ), нс | |
|200 |13 |28-32 |
|333 |16 |48-52 |
|533 |21 |77-83 |
|867 |26 |126-134 |
|1400 |41 |204-216 |
|2133 |54 |312-328 |
|3000 |73 |439-461 |
При проведении поверки должны выполнятся следующие условия:
. преобразователь предъявляемый на периодическую поверку должен быть в исправном состоянии;
. к проведению поверки допускают лиц, прошедших специальную подготовку и имеющих право проведения ведомственной или государственной поверок;
. при проведении поверки должны соблюдаться условия, обеспечивающие сохранность метрологических характеристик преобразователя и контрольно- поверочной аппаратуры;
. при проведении поверки допускается нахождение приемника и передатчика в естественных условиях открытой атмосферы, при отсутствии сильных и умеренных осадков и туманов;
. при проведении поверки должны соблюдаться требования техники безопасности.
Подготовка к поверки и проведение поверки.
Перед проведением поверки проверяется наличие и полнота комплекта и преобразователя и сопроводительной документации, Затем необходимо развернуть приемник и передатчик на местах их установки и замкнуть световой канал с помощью полуоткрытых крышек (ИВО) или наклонных щитов (РВО).
Затем отсоединяется кабель приемника от пульта управления преобразователя и в разрыв включается кабельная вставка с подсоединенным к ней замыкателем. С помощью вольтметра переменного тока проверяется наличие напряжения питания преобразователя, которое должно быть в установленных пределах. Необходимо заранее подготовить протоколы поверки, зафиксировать в них метеорологические параметры окружающей Среды, данные приемника, передатчика и пульта управления, напряжение сети.
Рис. 3 Схема замыкания светового канала преобразователя типа ИВО или
РВО для проведения поверки.
L
Проведение поверки начинается с внешнего осмотра. Маркировка всех частей преобразователя должна должна быть отчетливо различима. органы регулировки и настройки должны вращаться плавно, без заеданий, кнопки при нажатии не должны западать. Защитные стекла и отражатели не должны иметь загрязнений, трещин и дефектов. Части разъемов должны легко соединяться и размыкаться. Крышки приемника и передатчика должны свободно открываться и закрываться как в ручную, так и автоматически.
Следующая стадия поверки - опробование. При включении преобразователя в работу должна мигать лампа передатчика. и на экране ЭЛТ появиться линия развертки и сигнал. При включенном обогреве (РВО) защитные стекла приемника и передатчика будут теплыми.
После опробования определяются метрологические параметры
преобразователя. Для этого отсоединяют от кабельной вставки замыкатель L3
(см. рис. 4) и на его место подключают к разъемам Ш1 и Ш2 кабельные линии
задержки, начиная с линии с минимальной временной задержкой, имитирующей
расстояние до НГО, и далее последовательно подключаются линии на 533 нс(80
м), 867 нс(130 м), 1400 нс(210 м), 2133 нс(320 м) и 3000 нс(450 м). Затем
операцию повторяют и обратной последовательности.
Рис. 4 Схема подключения при поверки ИВО и РВО.
4 5 6
1 2
3
1- передатчик 4- пульт управления
2- приемник 5- приставка ДВ-1
3- кабельная линия задержки 6- стрелочный указатель
Рис.5 Кабельная вставка для проверки преобразователя типа ИВО или РВО.
Ш2-1 Ш2-2
Ш1 Ш2
L3
|Обозначение |Наименование |
|Ш2-1 |Розетка ШР32ПК12НГ |
|Ш2-2 |Вилка ШР32ПК12НШ |
|Ш1, Ш2 |Соединитель радиочастотный СР-50 |
|L3 |Кабальный замыкатель из кабеля РК-50 |
| |длиной 0,2 м |
Полученные результаты заносятся в протокол. Протокол должен содержать информацию о составе поверяемого прибора (заводские номера всех поверяемых приборов, а так же номера ДВ-1 и стрелочного указателя), о метеорологических условиях в которых проходила поверка (температура окружающего воздуха, температура в помещениях, где были установлены пульт управления, ДВ-1 и стрелочный указатель. Кроме того, указываются средства и устройства поверки с заводскими номерами (термометры, вольтметр, рулетка измерительная, комплект линии задежки).
В протоколе указывается и погрешность преобразователя. Рассмотрим определяемые погрешности на примере.
|имитируемое |результат |разность а=Н-Н*, м|(а- ), |
|расстояние(Н), м |измерения(Н*),м | |м |
|59 |60 |-1 |1 |
|117 |120 |-3 |1 |
|138 |140 |-2 |0 |
|217 |220 |-3 |1 |
|329 |330 |-1 |1 |
|217 |220 |-3 |1 |
|138 |140 |-2 |0 |
|117 |120 |-3 |1 |
|59 |60 |-1 |1 |
|n=11 | | | |
Систематическая погрешность:
Оценка среднего квадратического отклонения:
Случайная погрешность ( при вероятности Р=0,9):
где - коэффициент Стьюдента.
Суммарная погрешность:
Максимальное значение суммарной погрешности не превышает-4 м.- не превышает
предельно допускаемой погрешности. следовательно преобразователь годен к
эксплуатации.
Предел допускаемой погрешности:
|Имитируемая высота, м |50 |110 |130 |210 |320 |450 |
|Значение предела, м |10 |16 |18 |25 |32 |42 |
На преобразователь, пригодный к эксплуатации, выдается свидетельство о поверке или делается соответствующая запись в формуляре прибора. При отрицательной поверки, прибор снимается с эксплуатации и в его документах делается запись о непригодности и о ее причинах.
Своевременная поверка приборов предохраняет от дополнительных и
неоправданных расходов. Если допустить, что аэропорт г.Омска был временно
закрыт, то ближайшие аэропорты, которые могут принять самолеты находятся в
Тюмени и Новосибирске, и при нынешней стоимости авиатоплива, это обернется
большими неоправданными затратами.
Принятые сокращения:
ИВО - измеритель высоты облачности
РВО - реистратор высоты облачности
ЭЛТ - электронно-лучевая трубка
АРУ - автоматическая регулировка усиления
ВНГО - высота нижней границы атмосферы
ГПН - генератор пилообразного напряжения
МУ - методические указания
СИ - средства измерений.
Литература:
1.АфиногеновЛ.П. Романов Е.В.
“Приборы и установки для метеорологических измерений на аэродромах”
Ленинград, Гидрометеоиздат, 1981.
2.Городецкий О.А. Гуральник И.И. Ларин В.В.
“Метеорология, методы и технические средства наблюдений”
Ленинград, Гидрометеоиздат, 1984
3.“Правила эксплуатации метеорологического оборудования аэродромов гражданской авиации СССР” Москва, Гидрометеоиздат, 1981
4.Тюрин Н.И.
“Введение в метеорологию” Москва, Издательство стандартов, 1976
Российский Государственный Гидрометеорологический Институт
Факультет заочного обучения
Кафедра экспериментальной физики атмосферы
КУРСОВАЯ РАБОТА
На тему:
“Светолокационный измерительный преобразователь расстояния до нижней границы облаков”
Проверил: ______________
Выполнил: Колосов Ю.В.
Факультет - “Метеорология “
IV курс.
ОМСК
1995