Чтение RSS
Рефераты:
 
Рефераты бесплатно
 

 

 

 

 

 

     
 
Паровые турбины и судовые дизеля


Чтобы попасть в машинное отделение судна, приходится долго спускаться вниз по многочисленным трапам и потом некоторое время не можешь отделаться от ощущения, что находишься в какой-то подводной лаборатории. Сверху пробивается дневной свет, бросая блики на деловито работающие шеренги могучих стальных машин. Здесь их немало, но первую скрипку в этом отлично сыгранном ансамбле играет главный двигатель. От него в корму по специальному туннелю проложен быстро вращающийся вал. На свободный конец вала насажен гребной винт. Главный двигатель, вращая гребной вал, заставляет тем самым вращаться винт, который и сообщает судну поступательное движение.
Кроме главного двигателя—множество насосов: одни из них подают масло, другие—жидкое топливо, третьи подводят к главному двигателю охлаждающую воду и т. д. В машинном отделении есть также сепараторы, которые очищают топливо и масло от примесей, компрессоры, подающие сжатый воздух для пуска двигателей. Довольно много места занимают так называемые вспомогательные двигатели; они вырабатывают электрическую энергию для освещения, отопления, для работы разных устройств и механизмов. Иногда здесь устанавливают довольно внушительный паровой котел, хотя для него обычно стараются выделить отдельное помещение. Паровой котел вырабатывает пар для отопления, для подогрева жидких грузов (на танкерах), для технологических нужд (на плавучих рыбозаводах) и т. д.
В машинном отделении обычно приходится располагать так много различного оборудования, что нередко здесь устраивают платформы, чтобы разместить на них часть машин и механизмов. Тут же, на платформе, предусматривается мастерская и машинная кладовая.
Для обеспечения естественной вентиляции и освещения над машинным отделением устраивается шахта, выходящая на верхнюю открытую палубу и закрытая световым, т. е. прозрачным, застекленным люком. Вот откуда в машинное отделение проникает дневной свет!

Массивный шаг в развитии пароатмосферных машин был сделан Томасом
Ньюкоменом (Tomas Newcomen, 1663-1729). Двигатель Ньюкомена работал на насыщенном паре, получаемым в котле при давлении, близком к атмосферному, а рабочий ход выполнялся за счет создания вакуума в рабочем цилиндре после его резкого охлаждения. Основой предпосылкой для создания пароатмосферного двигателя стала необходимость решения задачи дренажа шахт глубокого залегания.
Один из первых шахтных водоотливных насосов Ньюкомена с цилиндром диаметром в 8 дюймов (20,32 см) работал по приципу водяного насоса Отто фон Герике и поднимал воду на высоту в 162 фута (49,4 м), при этом суммарный столб поднимаемой воды был равен 3535 фунтам (1,6 т). Полезная работа (ход) насоса осуществлялась цилиндром диаметром 2 фута (61 см) с площадью в 452 кв. дюйма (0,292 кв.м). Избыточное давление пара в котле поддерживалось равным 10 фунтов на кв. дюйм (0,7 кг/кв.см), температура воды, используемой для конденсации пара и уплотнения зазоров поршня, - около 150 °F (65 °С).
Указанные параметры цилиндра позволяли создать избыточное усилие на поршне в 1324 фунтов (600 кгс или 5893 Н), половина из которого расходовалась на компенсацию тяжести противовеса, а 662 фунтов (300 кгс) обеспечивали работу механизма насоса. Двигатель работал со скоростью 15 циклов в минуту, при этом средняя скорость движения поршня достигала 75 футов в минуту (0,381 м/c), а полезная мощность была равна 265 125 фунтам на фут в минуту (6 кВт). Учитывая, что мощность в одну лошадиную силу эквивалентна 33 000 футов на фунт в минуту (745,7 Вт), двигатель Ньюкомена развивал мощность около 8 л.с.
Сравнительный анализ эффективности насосов Ньюкомена и Савери показал, что для вакуумного насоса Савери способного засосать воду не более чем на 32 фута (10 м), подъем столба воды весом в 1,6 т. на высоту в 130 ft (39,6 м) возможен только при давлении в котле не менее 60 фунтов на кв. дюйм (4,2 кг/кв.см), что было практически недостижимо для котлов начала XVIII в.

ПРИНЦИП РАБОТЫ ДВИГАТЕЛЯ НЬЮКОМЕНА.
| |После заполнения цилиндра | |
|[ Cхема двигателя Ньюкомена ]|паром его подвод перекрывался |Схема |
| |и открывался клапан, |двигателя |
| |обеспечивающий доступ воды из |Ползунова |
| |водяного бака в цилиндр, после| |
|Реконструкция двигателя |чего пар, заполняющий рабочий |P - паровой |
|Ньюкомена |цилиндр, конденсировался и под|котел, |
| |действием разряжения поршень |Т - водяной |
| |двигался вниз. Затем кран |охладитель, |
| |подвода воды в цилиндр |А, В - |
| |закрывался, вода и конденсат |цилиндры, |
| |сливались и открывался подвод |а ,в - поршни,|
| |пара в цилиндр, при этом | |
| |коромысло двигателя, под |f - кулиса, |
| |действием веса столба воды в |m - клапан, |
| |водоподъемнике опускалось |d1, d2 - |
| |вниз, поднимая при этом |штанги, |
| |рабочий поршень вверх, и цикл |l1, l2 - |
| |повторялся вновь. Противовесы |кулачки. |
| |служили для компенсации массы | |
| |деталей, участвующих в работе | |
| |подъемника. | |
| |Первые двигатели Ньюкомена | |
| |выполняли 6 - 8 ходов в | |
| |минуту, позже скорость | |
| |движения была доведена до 10 -| |
| |12 ходов в минуту. Основной | |
| |недостаток двигателей Нюкомена| |
| |был связан с их чрезвычайной | |
| |громоздкостью и прерывистым | |
| |характером движения насоса. | |
| |Способ преодоления последнего | |
| |недостатка был найден Иваном | |
| |Ивановичем Ползуновым | |
| |(1728-66), разработавшим в | |
| |1763 г. | |

двухцилиндровую пароатмосферную машину.
В машине И. Ползунова впрыск воды в цилиндр для создания вакуума осуществлялся поочередно с использованием специального кулисного механизма.
На приведенном справа рисунке показана схема двигателя И. Ползунова.
Пробный пуск машины И. Ползунова состоялся в 1766 г., через неделю после смерти ее изобретателя, но из-за износа кожаного уплотнения цилиндров и течи в котле машина проработала всего 43 дня и в 1780 г. была демонтирована и уничтожена.
Первый насос Ньюкомена был установлен в 1712 г. в графстве Стаффордшир
(Staffordshire), а в общем несколько сотен паровых насосов Ньюкомена и
Савери использовались в Европе до появления двигателя Дж.Уатта.
Дальнейшее развитие пароатмосферных двигателей уткнулось в проблему габаритов, т.к. при использовании только потенциала атмосферного давления увеличение мощности двигателя достигалось за счет увеличения габаритов рабочего цилиндра, длина которых на последних двигателех Ньюкомена достигала уже 10 футов (3 м).
Доктор Робисон (Dr. Robison), автор "Философии механики (Mеchanical
Philosophy)", одной из немногих работ, посвященных истории развития машиностроения, следующим образом описывает двигатели Ньюкомена, проработавшие в Шотландии до 1790 г. Диаметр цилиндра водоотливных насосов
- 40-44" (100-112 см), диаметр рабочего цилиндра - 60" (152 см), ход поршня
- 6 ft (183 см). Избыточное давление в котле - 2.77 ft/кв. дюйм (1,95 кг/кв.см), в цилиндре - 2.63 ft/кв. дюйм (1,85 кг/кв.см). Скорость работы насоса - 15-18 циклов в минуту, развиваемая мощность - 20 л.с. (14,7 кВт).

Паровой двигатель Джеймса Уатта

Следующий шаг в развитии двигателестроения связан с открытием в 1761 г. понятия скрытой теплоты, названной в последствии энтальпией, и разработкой методов ее расчета. Исследования проводил Джозеф Блэк, (Joseph Black, 1728-
1799), профессор университета Глазго, которому помогал выпускник университета, "гражданский инженер" Джеймс Уатт (James Watt, 1736-1819).
Фундаментальное для дальнейшего развития техники явление было открыто в результате исследования причин неизменности температуры смеси воды и тающего льда в при ее нагревании.
Осознание возможности выполнения полезной работы путем использования скрытой энергии пара и установление ее численной взааимосвязи с температурой и давлением рабочей среды стало возможным только после завершения формирования кинетической теории газов и понимания сущности энергии, на что потребовалось почти 60 лет.
Хронология формирования теоретической базы термодинамики
1709: Изобретение спиртового термометра, Габриэль Фарангейт (Gabriel
Fahrenheit);
1714: Закон сохранения энергии (первый закон термодинамики), Готфрид
Лейбниц (Gottfreid Leibniz);
1714: Изобретение ртутного термометра, Габриэль Фарангейт (Gabriel
Fahrenheit);
1724: Открытие явления переохлаждения воды, Габриэль Фарангейт (Gabriel
Fahrenheit);
1731: Водо-спиртовой термометр, Рене Реомюр (Rene Reaumur);
1738: Кинетическая теория газов, Данил Бернулли (Daniel Bernoulli);
1738: Гидродинамика, Данил Бернулли (Daniel Bernoulli);
1742: Обратная стоградусная температурная шкала, Андреас Цельсий (Anders
Celsius);
1743: Прямая температурная шкала Цельсия, Жан Кристин (Jean Christin);
1743: Введение понятия энергии в Ньютоновскую механику, Жан де Аламбер
(Jean d'Alembert);
1744: Введение понятия энергии в гидродинамику, Жан де Аламбер (Jean d'Alembert);
1744: Открытие взаимосвязи температуры со скоростью движения молекул, Михал
Ломоносов (Mikhail Lomonosov);
1748: Закон сохранения массы и энергии, Михал Ломоносов (Mikhail
Lomonosov);
1752: Открытие вязкости жидких сред, Жан де Аламбер (Jean d'Alembert);
1761: Опыты по фазовым превращениям воды. Открытие скрытой теплоты, Джозеф
Блэк (Joseph Black) – официальная дата появления термодинамики.
В 1765 г. Джеймс Уатт создает первую действующую модель двигателя, рабочий ход которого обеспечивался не созданием вакуума, а избыточным давлением, подаваемым в цилиндр для подъема груза.
В период с 1765 по 1769 Уатт создает последовательный ряд все более мощных моделей и в 1769 г. получает патент на свое изобретение. Несмотря на то, что первые двигатели Уатта были одностороннего действия, т.к. для шахтных подъемников не было необходимости обеспечивать полезную нагрузку обратного хода, преимущество его перед двигателем Ньюкомена была очевидна – мощность двигателя определялась уже не только габаритами цилиндра, но и давлением пара.
С 1774 на заводе М. Болтона (Matthew Boulton), вблизи Бирмингема, начинается выпуск насосов Дж. Уатта, представляющих модернизированный вариант насоса Ньюкомена.
Начало эпохи транспортного машиностроения относится к 1781 г., когда Уатт создает двигатель с вращающимся моментом на валу, на котором впервые применяются планетарный механизм преобразования поступательного движения, регулятор частоты вращения и водомерное стекло на котле.
В 1784 г. Уатт создает первый двигатель двойного действия с кривошипно- шатунным механизмом, который на долгие годы стал главной энергетической установкой морских паровых судов
|Эволюция паровой машины Дж.Уатта |
| | | |
|1774 г. |1781 г. |1784 г. |


С созданим парового двигателя двухстороннего действия с КШМ начинается разделение энергетических установок на стационарные и транспортные.
Объектом дальнейшего рассмотрения является конкретный класс транспортных объектов - судовые энергетические установки, тепловозные, автомобильные и авиационные рассматриваются только в целях сравнительного анализа их конструктивных и технических параметров.

Роберт Фултон и первые пароходы.

| |
|Паровой буксир Дж.Халлса (патент,|
|1736 г). |


История создание судов, движимых силой пара, насчитывает несколько столетий. Привелегии (авторство) на паровые механизмы движения транспортных судов и лодок в Европе получили: Рамсей (Ramsay, 1578), Грант (Grant,
1630), Лин (Lin, 1632), Форд (Ford, 1637), лорд Сомерсет (Marquis
Worcester, 1640), Чешем (Chatham, 1661), Тугод (Twogood, 1667), Аллен
(Allen, 1682), Халлс (Hulls, 1730), но ни одна из этих моделей не описывает способа преобразования прямолинейного движения поршня теплового двигателя во вращательное. Как правило, все схемы движения воспроизводили галерную схему весельного привода.
В 1730 г. доктор Джон Аллен предложил прототип водометного двигателя, в котором движение судна обеспечивалось переодическим закачиванием и выбросом воды из кормовых сопел, для чего предлагалась схема создания вакуума, применяемая в насосе Савери.
| |
|Пароход Саймингтона и |
|Миллера (1788 г., 20 т,|
|UK) |


Идея преобразования поступательного движения парового двигателя во вращательное была предложена англичанином Джонатаном Халлсом (Jonathan
Hulls), получившим в 1736 году первый в истории флота патент на паровое судно для буксировки кораблей в гавани.
Патент предусматривал использование парового двигателя Ньюкомена, однако низкая мощность и громоздкость пароатмосферной машины не позволили реально осуществить этот проект. Реальные попытки установить паровой двигатель на судно начались только после изобретения Дж. Уаттом паровой машины избыточного давления (1774 г.).
Эру паровой навигации открывает Клод Франциск Жофрей де Аббанс (Claude
Francois Jouffroy d'Abbans), построивший судно, способное двигаться по воде без паруса и весел. Первая попытка маркиза де Аббанса построить паровое судно была предпринята в 1774 г., но окончилась неудачно. Вторую попытку маркиз осуществил 9 лет спустя. построив колесный пароход "Пироскаф"
("Pyroscaphe") длиной 148,5 ft/45 м.
| |
|Пароход Дж.Фитча (1790, 30 |
|т). |


На испытаниях. проведенных в 1783 г. на р. Сона вблизи Лиона (Saone,
Lyons). судно 15 минут двигалось против течения с грузом в 182 т., однако производительность парового котла оказалась слишком низкой для более продолжительного движения.
В 1787 г. Джеймс Рамсей из Мэриленда (James Rumsey of Maryland) построил и продемонстрировал на р. Потомак (Potomac) пароход, приводимый в движение паром, выпускаемым под давлением из специальных сопел в корме судна, при этом его скорость достигала 4 mi/hr (6.4 км/час).
Практическая эксплутация пароходов началась в США благодаря выдающемуся американскому инженеру и изобретателю Дж. Фитчу (John Fitchs, 1743-1798), создавшему первые в истории флота линейные паровые суда. В схеме своего первого парохода (1787 г.) Дж. Фитч в качестве движителя весла, но уже на втором паровом судне (1788 г.) Дж. Фитч объединил три весла в круг, воссоздав в Новом Свете гребное колесо.
| |
|Винтовое судно Дж.Фитча|
| |
|(1796, 10 т). |


Первая в истории пароходов транспортная, а точнее, паромная линия длинной 8 миль (12.9 км) была открыта Дж. Фитчем на реке Делавер (Delaware) в 1790 г. между Филадельфией (Пенсильвания) и Бурлингтоном (Нью-Джерси) после длительного периода доводки судна (1788, 1789 гг.), в ходе которой средняя скорость движения паромов была увеличина с 4 до 7 узлов.
В 1796 г. Дж.Фитч строит паровой катер с гребным винтом "Collect" и начинает его испытания в Нью-Йоркской гавани, намного опередив свое время.
К сожалению, несмотря на то, что он отработал на пробных рейсах более 1000 км, изобретение оказалось потерянным после смерти его автора.
Характеристика линейных пароходов (stemboat) Дж. Фича: водоизмещение до 30 т, длина 45-60 фт./14-20 м, ширина 8-12 фт./ 3-5 м, двигатель 10 л.с., пассажировместимость до 30 человек.

Пароход Роберта Фултона (Robert Fulton, 1765 - 1815)

Раньше других оценил возможности парохода судья Ливингстон. Он не разбирался в технических деталях, но был весьма искушенным дельцом и быстро сообразил, что при надлежащем размахе и хорошей организации дела пароходное сообщение может дать очень неплохую прибыль.
В 1798 году Ливингстон добился права на установление регулярного пароходного сообщения по реке Гудзон. Несколько лет Ливингстон пытался построить паровое судно, привлекая различных механиков. Было сделано несколько паровых кораблей, но все они развивали скорость не более 5 км/ч.
Разуверившись в местных механиках, Ливингстон в 1801 году отправился во
Францию. Здесь он встретился со своим соотечественником инженером Робертом
Фултона, разрабатывающим для Франции проекты парохода и подводной лодки.
Первые опыты Фултона с самодвижущимися судами относились еще к 1793 году, когда он, исследуя различные типы гребного колеса, пришел к заключению, что наилучшим будет колесо с тремя или шестью лопастями. В 1794 году, побывав в
Манчестере, он убедился, что наилучшим двигателем для самодвижущегося корабля может быть только паровая машина Уатта двойного действия.
В 1797 г. Фултон приезжает во Францию и обращается к правительству
Французской республики с предложением о строительстве подводной лодки.
Предложение было отвергнуто, но настойчивый изобретатель добился аудиенции у первого консула Наполеона Бонапарта и заинтересовал его идеей подводного корабля. В 1800 г. Фултон строит подводную лодку и с двумя помощниками осуществляет погружение на глубину 7,5м. Через год он спускает на воду усовершенствованный "Наутилус", длиной 6,5 и шириной 2,2 м. Для своего времени лодка имела приличную глубину погружения – около 30 м.
В качестве движителя подводного хода использовался вращаемый вручную четырех- лопастной винт, позволявший развивать скорость около 1,5 уз. В надводном положении лодка двигалась под парусом со скоростью 3 – 4 уз.
Мачта для паруса была укреплена на шарнире. Перед погружением ее быстро снимали и укладывали в специальный желоб на корпусе. После подъема мачты развертывался парус, и корабль становился, похож на раковину моллюска наутилуса. Отсюда и появилось название, которое дал своей подводной лодке
Фултон, а спустя 70 лет заимствовал Жюль Верн для фантастического корабля капитана Немо.
Погружение и всплытие осуществлялись заполнением и осушением балластной цистерны. Наутилус был вооружен миной, представлявшей собой два медных бочонка с порохом, соединенных эластичной перемычкой. Изобретатель отказался от боевого применения Наутилуса из-за того, что французский морской министр не удовлетворил его требование присвоить членам экипажа лодки воинские звания, без чего англичане в случае захвата в плен повесили бы их как пиратов.
В 1802 г. году Фултон отправляется в Шотландию, чтобы ознакомиться с построенным там Уильямом Саймингтоном (William Symington) пароходом
"Шарлотой Дундас" ("Charlotte Dundas", 1802 г.), первым паровым судном не имевшим парусного вооружения. Пароход Саймингтона был несомненно удачной моделью. Средняя скорость его без груженых барж составляла около 10 км/ч.
Однако этот опыт не заинтересовал англичан. Вскоре пароход вытащили на берег и обрекли на слом. Фултон присутствовал при испытаниях "Шарлоты" и имел возможность ознакомиться с ее устройством. Более того, механик- строитель судна Арон Вейл (Aaron Vail) предоставляет Фултону все документы и спецификации для установки двигателя, а доктор Картвич (Dr. Cartwright) передает Фултону чертежи парохода.
Весной 1803 года Фултон приступил в Париже к строительству своего первого парохода. Он был плоскодонным, без выступающего киля, с обшивкой вгладь.
Паровая машина Уатта была взята напрокат у одного знакомого, но схему передаточного механизма придумал сам Фултон. Построенный корабль оказался недостаточно прочным - корпус не выдержал тяжести машины. Однажды во время сильного волнения на Сене днище проломилось и взятая в долг машина вместе со всем оборудованием пошла ко дну. С большим трудом все это удалось достать на поверхность, причем Фултон жестоко простудился во время спасательных работ. Вскоре был построен новый, гораздо более прочный корпус судна, имевший 23 м в длину и 2,5 м в ширину. В августе 1803 года на реке
Сена (Seine) было проведено пробное испытание. В течение полутора часов пароход двигался со скоростью 5 км/ч и показал хорошую маневренность.
Первым делом Фултон предложил свой пароход Наполеону, но тот не заинтересовался этим изобретением.
В мае 1804 г после заключения академика Французской академии наук Латобре
(Latrobe's) о бесперспективности паровой навигации Р. Фултон приезжает в
Англию, заказывает М. Болтону и Дж. Уатту паровой двигателем (диаметр цилиндра 2 фута (~600 мм), ход поршня 4 фута (~1200 мм), мощность 24 л.с.).
Здесь он пытается увлечь английское правительство проектом своей подводной лодки и одновременно следит за изготовлением паровой машины фирмой Болтон &
Уатт. Первые удачные опыты со взрывам судов не столько воодушевили, сколько привели в замешательство Британское адмиралтейство, по инициативе которого
Фултону была предложена пожизненная пенсия с условием - забыть про свое изобретение.
Между тем, Ливингстон настойчиво зовет Фултона в Америку. Его шурин и конкурент Стивенс начинает в 1806 году постройку парохода "Феникс", надеясь, что получит привилегию на маршрут Нью-Йорк-Олбани, срок которой у
Ливингстона истекал в 1807 году. Надо было спешить со строительством своего парохода. В конце 1806 г. в Нью-Йорк прибывает заказанный двигатель, и
Фултон немедленно заказывает корпус на верфи Чарлза Брауна. Машинная часть парохода состояла из котла в форме сундука длиной 6 м при высоте и ширине несколько более 2 м и вертикального парового цилиндра. Весной 1807 первый пароход, получивший имя "Клермонт" ("Clermont", водоизмещение ~100 т, длина
133 фт./~40 м, ширина 18 фт./~5 м, высота 9 фт./~2,5 м), был спущен на воду.
В августе 1807 г. двигатель был установлен на судно и испытан в работе, во время рейса Нью-Йорк - Олбани (Albany). Расстояние до Олбани составляло 150 миль (241 км), рейс длился 32 часа, возврат по течению реки занял 30 часов.
Паруса не использовались на всем пути. Пароход имел бортовой колесный привод. Это был первый безостановочный транспортный рейс длительностью более одних суток, выполненный паровым судном.
"Клермонт" держал эту линию в течение нескольких лет сразу столкнувшись с крайне враждебным отношением владельцев парусных и гребных судов на
Гудзоне, увидевших в пароходе грозного конкурента. Они то и дело подстраивали столкновения пароходов с шаландами и баркасами или устраивали на их пути заторы. В 1811 году в США был принят специальный закон, грозивший строгим наказанием за сознательный вред, принесенный пароходам.
Пароход Фултона ничем особенным не отличался от своих более ранних предшественников, однако именно ему суждено было открыть новую эру в истории судоходства, так как только за первый год эксплуатации "Клермонт" дал выручку 16 тысяч долларов, предъявив всему миру очевидное доказательство рентабельности парового флота. Небольшое относительно пароходов Дж.Фитча увеличение тоннажа судна и мощности машины положило конец эпохе энтузиастов парового движения и стало фактором экономического развития страны.
Хотя сам Фултон неоднократно подчеркивал, что идея парохода принадлежит не ему, именно он впервые удачно воплотил ее в жизнь, и именно с его легкой руки пароходство начало бурно развиваться сначала в Америке, а потом и во всем мире.

От парового двигателя к паровой турбине.
| |
|Паровая машина с |
|тройным |
|расширением пара |


К концу XIX века трансатлантическую линию Европа – США обслуживали пароходы длиной от 350 до 450 фт. (~100-140 м) с паровыми машинами мощностью 3000-
4000 л.с. Линейные пароходы пересекали Атлантику за 10 - 11 дней и расходовали от 70 до 100 тонн угля в день.
Низкий к.п.д. паровых двигателей существенно уменьшал полезную грузоподъемность паровых судов и настоятельно требовал поиска более эффективных методов топливоиспользования.
Верхом совершенства в изготовлении судовых паровых машин стали двигатели с тройным расширением пара линейных судов серии "Oceanic", которые строились на Ирландских верфях с 1870 г.
В 1877 г. пароходы "Германик" ("Germanic") и "Британик" ("Britannic") поставили рекорд скорости пересечения Атлантики на дистанции 2,830 миль:
Германик - 7 дней 11 часов 37 минут, Британик - 7 дней 10 часов и 53 минуты.
Рекорд скорости строительства судна и количества судов в серии принадлежит военно-транспортным пароходам проекта EC2, получившего наименование
"Liberty" (Либерти). В период с 1941 по 1947 гг. было построено 2751 судов этого типа. Первый пароход серии "Патрик Генри" (SS Patrick Henry) был заложен 27 сентября 1941 г. и строился 70 дней. Спустя несколько лет сборка парохода "Роберт Е. Пери" (SS Robert E. Peary) заняла четыре с половиной дня, а через семь дней после закладки киля судно прошло швартовые испытания и, приняв груз, вышло в рейс.
| |
|Военно-транспортный пароход проекта |
|"Liberty" |
|(10000 т, 2500 л.с., 11 узлов) |


Строительство "Либерти" было организовано по конвеерному принципу, при котором все 250000 деталей, входящих в спецификацию судна, собирались в стандартизованных 250-тонных секциях, перемещаемых между заводами в соответствии с технологией монтажа судового оборудования. После комплектации секции доставлялись на верфи, где и происходила окончательная сборка судна. Строительная стоимость парохода составляла $ 2,000,000.
Характеристики парохода: длина - 441 ft (134 м), ширина 56 ft (17 м), средняя скорость - 11 узлов. В 5 трюмах пароход перевозил до 9000 тонн груза, а на палубе - самолеты, танки или локомотивы.
В состав энергетической установки входил паровой двигатель мощностью 2500 л.с. с тройным расширением пара (трехцилиндровый) и два паровых котла, работающие на жидком топливе (топочном мазуте).
За время Второй мировой войны "Либерти" перевезли 2840 самолетов, 440 танков и 230 миллионов ящиков боеприпасов. В команду парохода входили 44 члена экипажа и от 12 до 25 военных моряков сопровождения и охраны судна.
После войны ВМС США продали почти все суда данной серии, а последние
"Либерти" эксплуатировались до начала 70-х годов, т.е. в течение 25 лет после окончания войны.
Однако кардинальное повышение эффективности судовых энергетических установок было связано не с совершенствованием паровых двигателей, а с изобретением турбин, позволивших не только поднять к.п.д. СЭУ, но и на порядок уменьшить массогабаритные характеристики судового двигателя.
Термин турбина происходит от французкого слова - turbine, пришедшего из латинского turbo — вихрь, вращение с большой скоростью, впервые использованного Героном Александрийским при описании принципа реактивного движения "Элоопила" (~130 г до н.э.).
| |
|"Элоопил", 130 г. |
|до.н.э. |


Однако вплоть до начала промышленного использования паровых машин подогреваемый огнем шар с водой, вращающийся под действием струи пара, был не более чем игрушкой. Только успехи в применении паровых машин заставили обратить внимание на свойства колеса, вращающегося под напором струи пара.
Первое упоминание о паровой турбине в Европе связано с именем итальянского инженера Джованни Бранка (Giovanni Branca), предложившего в 1629 г. использовать рабочее колесо турбины для размельчения угля и серы при производстве пороха (см. лекцию 1).
В 1837 г. в Англии и США было сделано несколько паровых колес, например колесо Авери (Avery at Syracuse, New York) имело диаметр 5 фт (~1,5 м), однако низкая эффективность одноступенчатой турбины с атмосферным противодавлением не могла составить конкуренцию паровому двигателю.
Для создания промышленной паровой турбины было необходимо завершить формулировку законов термодинамики и найти новые инженерные решения для производства работы с использованием тепловых свойств воды и водяного пара.
Хронология формирования теории тепловых машин - термодинамики.
1798: Выдвижение идеи о взаимосвязи температуры и энергии, Коунт Рамфорд
(Count Rumford);
1824: Формирование теории тепловых машин, Сади Карно (Sadi Carnot);
1827: Открытие Бруоновского движения молекул воды, Роберт Броун
1834: Формулировка второго закона термодинамики, Клайперон (Benoit-Pierre
Clapeyron);
1843: Экспериментальное определение механического эквивалента тепла, Джеймс
Джоуль (James Joule);
1848: Определение абсолютного нуля температуры, Лорд Кельвин, (Lord
Kelvin);
1852: Определение взаимосвязи объема температуры (расширяющийся газ охлаждается), Джеймс Джоуль и Лорд Кельвин (James Joule, Lord Kelvin);
1859: Закон распределения молекулярных скоростей, Джеймс Клерк Максвелл,
(James Clerk Maxwell);
1874: Второй закон термодинамики, Лорд Келвин, (Lord Kelvin);
1876 - 1878: Формирование законов и понятий химической термодинамики, Иосиф
Гиббс (Josiah Gibbs);
Начиная с 1879 г. термодинамика ориентируется на углубление знаний о природе тепловых процессов и перестает быть прикладной наукой для инженеров.
1879: Понятие излучения черного тела, Иозеф Стефан (Josef Stefan);
1906: Третий закон термодинамики, Вальтер Нернст (Walther Nernst);
1916: Кинетическая теория газов, Сидней Чапмен и Дэвид Енски (Sydney
Chapman and David Enskog);
1957: Комптоновское распределение для уравнения Фоккера-Планка, A.S.
Kompaneets. .....
| |
|Колесо Авери, |
|1837 |


Создание термодинамики, т.е. теоретической базы для расчета тепловых машин, поставило перед практикой задачу разработки энергетической установки на базе паровой турбины с вакуумным конденсатором. Патент на первый паротурбинный двигатель получил американский морской инженер, адмирал
Бенжамин Франклин Изервуд (Benjamin Franklin Isherwood, 1822-1915) в 1857 г.
После проведения в 1870 г. инженерных разработок несколько паротурбинных установок (ПТУ) были установлены на военные фрегаты серии USS "Wampanoag".
Новый двигатель позволил обеспечить относительно высокую скорость (17,75 узла/33 км.час), но ПТУ на базе одноступенчатой турбины оказались слишком сложными в изготовлении, но не более эффективными, чем паровые машины
(к.п.д. 6-8%), вследствие чего нашли применение лишь в качестве двигателей судов береговой охраны (USGS), предназначенных для перехвата контрабандистов.
Массовое применение паротурбинных установок на флоте связано с созданием многоступенчатых паровых турбин, позволивших поднять КПД паровых машин с 4-
5% до 15-18%., что было незамедлительно использовано в промышленной и морской энергетике. Создание современных паровых турбин связано с именами выдающихся инженеров XIX века: шведом К. Лавалем и англичанином Ч.
Парсоном.
В 1878 г. шведский инженер Карл Густав Патрик де Лаваль (Carl Gustav Patric de Laval, 1845 -1913) изобрел центробежный сепаратор, принцип работы которого был позже применен для изготовления стеклянных бутылок.
В 1882 г. Лаваль создал первую импульсную паровую турбину, в 1883 г. построил и использовал морскую реверсивную турбину, запатентованную в 1883 г., частота вращения которой достигала 42 000 оборотов в минуту.
| |
|Первая морская турбина Парсонса,|
|1894 |
|[ увеличить ] |


В 1896 г. Лаваль разработал паровую турбину для электростанции, работа которой требовала создания давления в 3400 фунтов на кв. дюйм (239 бар/кг.кв.см), что было не достижимо для технологий конца XIX века.
Главная заслуга Лаваля в разработке паровых турбин заключалась в том, что конструкция его сопла позволила примерно в 5 раз увеличить возможность использования потенциальной энергии струи пара, повысив скорость его истечения c 800 ft/с (244 м/c) до 4000 ft/c (1220 м/c), но несмотря на это, одноступенчатые паровые турбины не позволяли дать однозначного заключения об их приемуществе перед паровыми машинами.
Промышленное использование паровых турбин стало возможным лишь после того, как сэр Чалз А. Парсонс (Sir Charles Algernon Parsons, 1854-1931) создал в
1884 первую мнгогоступенчатую паровую турбину мощностью 10 л.с. (18 000 об/мин). Турбины Парсонса использовались для привода электрогенераторов, мощность которых на первом этапе развития электроэнергетики составляла от 1 до 75 кВт.
| |
|Многоступенчатый паротурбогенератор |


Основное значение паровых турбин в истории техники заключается в том, что они обеспечили экономическую рентабельность использования паровой энергии не только для промышленности, но и для бытового обслуживания населения. В частности, первое в истории уличное освещение было установлено в Кэмбридже в 1895 г., для чего использовались четыре 100 кВт генератора с турбинами
Парсонса.
Современные турбины представляют многоступенчатые агрегаты, собираемые в блоки, включающие последовательность из нескольких турбин высокого, среднего и низкого давления. Такая компоновка позволяет достигнуть высокой эффективности использования тепловой энергии пара (свыше 40 %), что сопоставимо с эффективностью современных мощных малооборотных дизелей.
Эти показатели в сочетании с относительной дешевизной топлива для ТЭЦ и АЭС делают паровую турбину основным элементом современных электростанций.
Мощность современных паровых турбин достигает 1000 мегаватт.
В 1899 г. на ходовых испытаниях корабли легко показали скорость свыше 30 узлов, однако их судьба оказалась печальной. В том же году "Гадюка" разбилась, наскочив на мель в Ла Манше, а месяцем позже "Кобра" взорвалась на рейде Тейна ("Tyne"). Несмотря на то, что по результатам расследования аварии Адмиралтейство полностью реабилитировало фирму Чарльза Парсонса, трагедия, унесшая жизнь 77 человек, включая его сотрудников, очень серьезно сказалась на его здоровье и привела к почти двухлетнему отказу от активной производственной деятельности.
В 1902 г. Британское Адмиралтейство модернизировало энергетическую установку 15-летнего эсминца "Velox" и по итогам годовой эксплуатации ПТУ приняло решение о том, что с 1905 г. все новые корабли Великобритании должны оснащаться только паротурбинными двигателями.
В 1905 - 1906 гг. Адмиралтейство ввело в строй корабли нового поколения, оснащенные паротурбинными установками, обеспечившими техническую базу для качественного скачка в строительстве военного флота: крейсер HMS Amethist
(110 м, 3000 т, ПТУ - 14000 л.с., 23-33 узла) и линейный корабль HMS
Dreadnought.
Характеристики линкора "Дредноут": L/B/D: 160.3x25x8.8 м, водоизмещение -
21845 т., экипаж: 657-773 чел.; вооружение 10 x 12". Бронирование: броневой пояс - 11", палуба - 4"; машина: ПТУ - 23000 л.с., винтов - 4 , скорость -
21 узел.
С точки зрения развития СЭУ линкор "Дредноут" открыл новою эпоху в военном судостроении, закончившуюся созданием в 1941 г. четырехвинтовых линейных кораблей Yamato ("Ямато") и Musashi (“Мусаси”) водоизмещением 72 809 т и мощностью ПТУ - 150 000 л.с.

Yamato ("Ямато"), линкор класса Yamato. L/B/D: 263х38.9х10.4 м, водоизмещение - 72809 т, корпус - сталь, экипаж - 2500 чел., вооружение -
9x18.4", 12x6.2", 12x5.1", 24x25мм. Бронирование: броневой пояс - 16.4", палуба - 9.2". Скорость 27 узлов. Линкор был потоплен в конце Второй мировой войны (6 апреля 1945 г.) в результате атаки более 400 самолетов морской авиции США при сражении за Окинаву. 10 авиационных торпед и 58 бомб поставили точку на пяти столетиях артиллерийских морских сражений.
В 1943 г. военно-морские силы США начали принимать на вооружение линкоры класса Iowa ("Айова") водоизмещением 55 250 т, мощностью ПТУ - 212 000 л.с., скоростью 33 узла, но на военном флоте дальнейшее развитие СЭУ уже не было связано с линейными кораблями.
Первым пассажирским турбоходом стал построенный в 1901 г. "King Edward"
("Король Эдуард", 76 м., 650 т., 8500 л.с., 20-48 уз.). В 1905 г. началась регулярная трансатлантическая навигация паротурбинных пассажирских судов
"Victorian" ("Викторианец") и "Virginian" ("Виржинец"), а с 1907 г. на линию выходят самые большие четырехвинтовые пассажирские суда с ПТУ мощностью 73000 л.с. - "Mauretania" ("Мавритания") и "Luisitania"
("Лузитания"), построенные для перевозки эмигрантов в США.
Оба судна способны были развивать скорость от 25 до 26 узлов (42 км/час), что до их создания считалось невозможным для таких больших судов: длина -
240.8 м , ширина - 26.8 м, водоизмещение - 31938 т. В каютах первого класса размещались 563 пассажира, второго - 464, третьего - 1138, экипаж судна -
812 чел.
"Мавритания" в течение 20 лет была самым быстрым лайнером и семь раз била свой рекорд на скорость пересечения Атлантики. В 1921 г. котлы, работающие на угле, были переведены на жидкое топливо, а последний рекорд был поставлен 20-25 августа 1924 г. Дистанцию от Амброуза (Ambrose) до Шербура
(Cherbourg) теплоход прошел за 5 дней, 1 час и 49 минут со средней скоростью - 26.25 узла.

"Мавритания" (32 000 т) и "Турбиния"(44 т), 1908 г.

Дизельные энергетические установки

Поиск способов использования тепловой энергии был неразрывно связан с прогрессом в развитии тепловых машин. Паровые машины, равно как и турбины, требовали наличия для двигателей внешнего сгорания двух элементов, обеспечивающих движение судна: парового котла и двигателя.
Стремление избавиться от парового котла и связанных с ним технических и технологических проблем привело к появлению двигателей внутреннего сгорания и газотурбинных ЭУ.
Создание ДВС в его настоящем виде стало возможным только после создания в
1824 С. Карно (Nicolas Leonard Sadi Carnot, 1796 - 1832) теории тепловых машин. Именно тогда Карно установил, что температура воздуха, сжатого в отношении 15 к 1, будет достаточной для самовоспламенения сухой древесины
(572°F / 300°C / 573 °K), что и было впоследствии реализовано Р. Дизелем в двигателях внутреннего сгорания (ДВС) с воспламенением топлива от сжатия.
После того, как Сади Карно сформировал теорию тепловых машин, особое внимание инженеров XIX века было направлено на техническую реализацию теоретического цикла тепловой машины, что привело к появлению двух классов тепловых двигателей, работающих по циклам Отто и Дизеля, объединение которых в цикле Тринклера положено в основу современных ДВС.
Высокая экономическая эффективность судовых двигателей внутреннего сгорания обусловила их массовое внедрение в качестве главных двигателей СЭУ, но главный результат их изобретения связан с созданием нового класса военных кораблей - подводных лодок, представляющих серьезную опасность для всех без исключения типов надводных судов.
История подводных лодок начинается

 
     
Бесплатные рефераты
 
Банк рефератов
 
Бесплатные рефераты скачать
| мероприятия при чрезвычайной ситуации | Чрезвычайная ситуация | аварийно-восстановительные работы при ЧС | аварийно-восстановительные мероприятия при ЧС | Интенсификация изучения иностранного языка с использованием компьютерных технологий | Лыжный спорт | САИД Ахмад | экономическая дипломатия | Влияние экономической войны на глобальную экономику | экономическая война | экономическая война и дипломатия | Экономический шпионаж | АК Моор рефераты | АК Моор реферат | ноосфера ба забони точики | чесменское сражение | Закон всемирного тяготения | рефераты темы | иохан себастиян бах маълумот | Тарых | шерхо дар борат биология | скачать еротик китоб | Семетей | Караш | Influence of English in mass culture дипломная | Количественные отношения в английском языках | 6466 | чистонхои химия | Гунны | Чистон
 
Рефераты Онлайн
 
Скачать реферат
 
 
 
 
  Все права защищены. Бесплатные рефераты и сочинения. Коллекция бесплатных рефератов! Коллекция рефератов!