Чтение RSS
Рефераты:
 
Рефераты бесплатно
 

 

 

 

 

 

     
 
Эксплуатационные материалы

1. АВТОМОБИЛЬНЫЕ ТОПЛИВА

1.1. Автомобильные бензины

Основные виды топлива для автомобилей - продукты переработки нефти - бензины и дизельные топлива. Они представляют собой смеси углеводородов и присадок, предназначенных для улучшения их эксплуатационных свойств. В состав бензинов входят углеводороды, выкипающие при температуре от 35 до
200 "С, а в состав дизельных топлив - углеводороды, выкипающие в пределах
180...360 "С.

Бензины в силу своих физико-химических свойств применяются в двигателях с принудительным зажиганием (от искры). Более тяжелые дизельные топлива вследствие лучшей самовоспламеняемости применяются в двигателях с воспламенением от сжатия, т.е. дизелях.

К автомобильным бензинам предъявляются следующие требования:

•бесперебойная подача бензина в систему питания двигателя;

•образование топливовоздушной смеси требуемого состава;

•нормальное (без детонации) и полное сгорание смеси в двигателях;

•обеспечение быстрого и надежного пуска двигателя при различных температурах окружающего воздуха;

•отсутствие коррозии и коррозионных износов;

•минимальное образование отложений во впускном и выпускном трактах, камере сгорания;

•сохранение качества при хранении и транспортировке.

Для выполнения этих требований бензины должны обладать рядом свойств.
Рассмотрим наиболее важные из них.

Карбюр анионные свойства. Бензин, подаваемый в систему питания смешивается с воздухом и образует топливовоздушную смесь. Для полного сгорания необходимо обеспечить однородность смеси с определенным соотношением паров бензина и воздуха.

На протекание процессов смесеобразования влияют следующие физико- химические свойства.

Плотность топлива - при +20 "С должна составлять 690...750 кг/м . При низкой плотности поплавок карбюратора тонет и бензин свободно вытекает из распылителя, переобогащая смесь. Плотность бензина со снижением температуры на каждые 10 "С возрастает примерно на 1%.

Вязкость - с ее увеличением затрудняется протекание топлива через жиклеры, что ведет к обеднению смеси. Вязкость в значительной степени зависит от температуры. При изменении температуры от +40 до —40 °С расход бензина через жиклер меняется на 20...30%.

Испаряемость - способность переходить из жидкого состояния в газообразное. Автомобильные бензины должны обладать такой испаряемостью, чтобы обеспечивались легкий пуск двигателя (особенно зимой), его быстрый прогрев, полное сгорание топлива, а также исключалось образование паровых пробок в топливной системе.

Давление насыщенных паров - чем выше давление паров при испарении топлива в замкнутом пространстве, тем интенсивнее процесс их конденсации.
Стандартом ограничивается верхний предел давления паров летом - до 670 ГПа и зимой - от 670 до 930 ГПа. Бензины с более высоким давлением склонны к образованию паровых пробок, при их использовании снижается наполнение цилиндров и теряется мощность двигателя, увеличиваются потери от испарения при хранении в баках автомобилей и на складах.

Низкотемпературные свойства - характеризуют работоспособность топливоподающей системы зимой. При низких температурах происходит выпадение кристаллов льда в бензине и обледенение деталей карбюратора. В бензине в растворенном состоянии находится несколько сотых долей процента воды. С понижением температуры растворимость воды в бензине падает, и она образует кристаллы льда, которые нарушают подачу бензина в двигатель.

Сгорание бензина. Под "сгоранием" применительно к автомобильным двигателям понимают быструю реакцию взаимодействия углеводородов топлива с кислородом воздуха с выделением значительного количества тепла. Температура паров при горении достигает 1500...2400 °С.

Теплота сгорания (теплотворная способность) - количество тепла, которое выделяется при полном сгорании 1 кг жидкого или твердого и м3 газообразного топлива (табл. 17.1).

Таблица 1.1 Теплота сгорания различных топлив

|Топливо |Теплота сгорания, кДж/кг |
|Бензин Дизельное |44000 42 700 26000 |
|топливо Спирт этиловый | |

От теплоты сгорания зависит топливная экономичность: чем выше теплота, тем меньше топлива необходимо для м смеси.

Нормальное и детонационное сгорание. При нормальном сгорании процесс протекает плавно с почти полным окислением топлива и скоростью распространения пламени 10...40 м/с. Когда скорость распространения пламени возрастает и достигает 1500...2000 м/с, возникает детонационное сгорание, характеризующееся неравномерным протеканием процесса, скачкообразным изменением скорости движения пламени и возникновением ударной волны.

Детонация вызывается самовоспламенением наиболее удаленной от запальной свечи части бензино-воздушной смеси, горение которой приобретает взрывной характер. Условия для детонации наиболее благоприятны в той части камеры сгорания, где выше температура и больше время пребывания смеси.
Внешне детонация проявляется в появлении звонких металлических стуков - результата многократных отражений от стенок камеры сгорания образующихся ударных волн.

Возникновению детонации способствует повышение степени сжатия, увеличение угла опережения зажигания, повышенная температура окружающего воздуха и его низкая влажность, особенности конструкции камеры сгорания.
Вероятность детонационного сгорания топлива возрастает при наличии нагара в камере сгорания и по мере ухудшения технического состояния двигателя. В результате детонации снижаются экономические показатели двигателя, уменьшается его мощность, ухудшаются токсические показатели отработавших газов.

Бездетонационная работа двигателя достигается применением бензина с соответствующей детонационной скоростью. Углеводороды, входящие в состав бензинов, различаются по детонационной стойкости. Наименее стойки к детонации нормальные парафиновые углеводороды, наиболее - ароматические.
Остальные углеводороды входящие в состав бензинов, по детонационной стойкости занимают промежуточное положение. Варьируя углеводородным составом, получают бензины с различной детонационной стойкостью, которая характеризуется октановым числом (04).

04 - это условный показатель детонационной стойкости бензина, численно равный процентному содержанию (по объему) изооктана в смеси с нормальным гептаном, равноценной по детонагщонной стойкости испытуемому топливу.

Для любого бензина октановое число определяют путем подбора смеси из двух эталонных углеводородов (нормального гептана C7Hi6 с 04=0 и изооктана
С^Н^ с 04=100), которая по детонационным свойствам эквивалентна испытуемому бензину. Процентное содержание в этой смеси изооктана принимают за 04 бензина.

Определение 04 производится на специальных моторных установках.
Существуют два метода определения 04 - исследовательский (04И - октановое число по исследовательскому методу) и моторный (04М - октановое число по моторному методу). Моторный метод лучше характеризует антидетонационные свойства бензина в условиях форсированной работы двигателя и его высокой теплонапряженности, а исследовательский - при эксплуатации в условиях города, когда работа двигателя связана с относительно невысокими скоростями, частыми остановками и меньшей теплонапряженностью.

Наиболее важным конструктивным фактором, определяющим требования двигателя к октановому числу, является степень сжатия. Повышение степени сжатия двигателей автомобилей позволяет улучшить их технико-экономические и эксплуатационные показатели. При этом возрастает мощность и снижается удельный расход топлива. Однако с увеличением степени сжатия необходимо повышать октановое число бензина. Поэтому важнейшим условием бездетонационной работы двигателей является соответствие требований к детонационной стойкости двигателей октановому числу применяемых бензинов.

В топлива, детонационная стойкость которых не соответствуют требованиям, добавляют высокооктановые компоненты (бензол, этиловый спирт) или антидетонаторы.

Антидетонаторы. Несколько , десятилетий применяют тетраэтилсвинец (ТЭС) РЬ^СзЬ^д в сочетании с веществами, обеспечивающими отсутствие отложений окислов свинца в камере сгорания, так называемыми выносителями. Например, в 1 кг бензина А-76 содержится 0,24 г ТЭС.

В чистом виде ТЭС не применяют, а используют этиловую жидкость (ЭЖ), состоящую из ТЭС, выносителей и красителей. ТЭС ядовит, поэтому искусственное окрашивание бензина , предупреждает об опасности. Добавлением
ЭЖ увеличивают 04 на 8...12 единиц. Главный недостаток ТЭС - ядовитость.

Ведутся исследования по созданию антидетонаторов на основе марганца.
Один из них - циклопентадиенилтрикарбонил марганца -широко не применяется, так как отсутствует эффективный выноситель для него.

Для определения детонационной стойкости бензинов, полученных смешением двух марок с различными октановыми числами (по моторному методу), используется формула:

ОЧ=ОЧ„+Дп(ОЧв-ОЧн)/100, (17.1)

где ОЧц и ОЧв - октановые числа (по моторному методу) соответственно низко- и высокооктанового бензина;

Дв - доля высокооктанового бензина в смеси, %.

Следует обратить внимание на то, что октановое число бензина АИ-93 по моторному методу составляет не менее 85, а бензина А-76 по исследовательскому методу - 80...82.

Отечественная промышленность выпускает бензины следующих марок; А-76,
А-80, АИ-92, АИ-93, АИ-95, АИ-98.

Маркировка бензинов включает одну или две буквы и цифру: буква «А» - бензин автомобильный, «И» - исследовательский метод определения 04 (если нет «И» - то моторный), цифра указывает на октановое число.

Автомобильные бензины, за исключением марки АИ-98, подразделяются на виды: летний - для применения во всех районах, кроме северных и северовосточных, в период с 1 апреля до 1 октября; в южных районах допускается применять летний вид бензина в течение всего года; зимний - для применения в течение всех сезонов в северных и северо- восточных районах; в остальных районах - с 1 октября до 1 апреля.

В промышленно развитых странах применяется в основном четыре типа бензинов: обычный неэтилированный с 04=92..95, обычный этилированный с
04=92..95, «Супер» неэтилированный с 04=96..98, «Супер» этилированный с
04=96..98. В'разных странах они называются по-разному, но, зная возможные варианты, можно всегда определить, к какому типу относится тот или иной бензин.

Например, в Германии используют следующие бензины: «Bleifrei»
(дословный перевод «без свинца») с 04=95, «Verbleit» (дословный перевод «со свинцом») с 04=95, «Super bleifrei» с 04=96..98, «Super verbleit» с
04=96...98, «Super plus bleifrei» с 04=98.

1.2. Дизельные топлива

Дизельные двигатели в силу особенностей рабочего процесса на 25...30% экономичнее бензиновых двигателей, что и предопределило их широкое применение. В настоящие время они устанавливается на большинство грузовых автомобилей и автобусов, а также на часть легковых.

Эксплуатационные требования к дизельным топливам (ДТ):

•бесперебойная подача топлива в систему питания двигателя;

•обеспечение хорошего смесеобразования;

•отсутствие коррозии и коррозионных износов;

•минимальное образование отложений в выпускном тракте, камере сгорания, на игле и распылителе форсунки;

•сохранение качества при хранении и транспортировке. Наиболее важными эксплуатационными свойствами дизельного топлива являются его испаряемость, воспламеняемость и низкотемпературные свойства.

Испаряемость топлива определяется (^р^ционным составом. При облегчении топлива ухудшается пуск дизелей, так как легкие фракции имеют худшую по сравнению с тяжелыми фракциями самовоспламеняемость. Поэтому пусковые свойства дизельных топлив для автомобилей в некоторой степени определяет температура выкипания 50% топлива. Температура выкипания 96% топлива регламентирует содержание в топливе наиболее тяжелых фракций, увеличение которых ухудшает смесеобразование, снижает экономичность, повышает нагарообразование и дымность отработавших газов.

Воспламеняемость ДТ характеризует его способность к самовоспламенению в камере сгорания. Это свойство в значительной мере определяет подготовительную фазу процесса сгорания - период задержки воспламенения, который в свою очередь складывается из времени, затрачиваемого на распад топливной струи на капли, частичное их испарение и смешение паров потлива с воздухом (физическая составляющая), а также времени, необходимого для завершения предпламенных реакций и формирование очагов самовоспламенения (химическая составляющая).

Физическая составляющая времени задержки воспламенения зависит от конструктивных особенностей двигателя, а химическая - от свойств применяемого топлива. Длительность периода задержки воспламенения существенно влияет на последующее течение всего процесса сгорания. При большой длительности периода задержки воспламенения увеличивается количество топлива, химически подготовленного для самовоспламенения.
Сгорание топливовоздушной смеси в этом случае происходит с большей скоростью, что сопровождается резким нарастанием давления в камере сгорания. В этом случае дизель работает «жестко».

«Жесткость» работы оценивают по нарастанию давления на 1° поворота коленчатого вала (KB). Двигатель работает мягко при нарастании давления
2,5...5,0 кгс/см' на 1" поворота KB, жестко - при 6...9 кгс/см , очень жестко - при нарастании давления более 9 кгс/см2. При жесткой работе поршень подвергается повышенному ударному воздействию. Это ведет к повышенному износу деталей кривошипно-шатунного механизма, снижает экономичность двигателя.

Склонность ДТ к самовоспламенению оценивают по цетановому числу (ЦЧ).

ЦЧ - это условный, показатель воспламеняемости дизельного топлива, численно равный объемному проценту цетана в эталонной смеси с альфаметилнафталином, которая равноценна, по воспламеняемости испытуемому топливу.

Для определения ЦЧ составляют эталонные смеси. В их состав входят цетан С|^Нз4 и а-метилнафталин СцНю. Склонность цетана к самовоспламенению принимают за 100 единиц, а альфаметилнафталина -за 0 единиц. Цетановое число смеси, составленной из них, численно равно процентному содержанию (по объему) цетана.

Оценку самовоспламеняемости ДТ производят аналогично методу оценки детонационной стойкости бензйнов. Образец сопоставляется с эталонными топливами на одноцилиндровых двигателях ИТ-9.

Самовоспламеняемость ДТ влияет на их склонность к образованию отложений, легкость пуска и работу двигателя. Для современных быстроходных дизелей применяются топлива с ЦЧ=45...50. Применение топлив с ЦЧ ниже 40 ведет к жесткой работе двигателя. Повышение ЦЧ выше 50 нецелесообразно, т.к. из-за малого периода задержки самовоспламенения топливо сгорает, не успев распространиться по всему объему камеры сгорания. При этом воздух, находящийся далеко от форсунки, не участвует в горении, поэтому топливо сгорает не полностью. Экономичность дизеля ухудшается, наблюдается дымление.

ЦЧ влияет на пусковые качества ДТ. При высоких ЦЧ время пуска снижается, особенно при низких температурах.

ЦЧ может быть повышено двумя способами: регулированием углеводородного состава и введением специальных присадок.

1-й способ. В порядке убывания ЦЧ углеводороды располагаются следующим образом: нормальные парафины - изопарафины - нафтены -ароматические. ЦЧ можно существенно повысить, увеличивая концентрацию нормальных парафинов и снижая содержание ароматических.

2-й способ более эффективен. Вводят специальные кислородосодержащие присадки - органические перекиси, сложные эфиры азотной кислоты и др. Эти присадки являются сильными окислителями и способствуют зарождению и развитию процесса горения. Пример: добавление 1% изопропилнитрата повышает ЦЧ на 10...12 единиц. Кроме того, эта присадка улучшает пусковые качества при низкой температуре и снижает нагарообразование.

Низкотемпературные свойства. При низких температурах высокоплавкие углеводороды, прежде всего нормальные парафины, кристаллизуются. По мере понижения температуры дизельное топливо проходит через три стадии; вначале мутнеет, затем достигает так называемого предела фильтруемости и, наконец, застывает. Связано это с тем, что сначала в топливе появляются разрозненные кристаллы, которые оседают на фильтрах и ухудшают подачу топлива. При дальнейшем охлаждении теряется подвижность нефтепродуктов вследствие образования из кристаллизующихся углеводородов каркаса.

Показатели, характеризующие начало кристаллизации углеводородов в топливе и потерю их подвижности стандартизованы.

Температурой помутнения называют температуру, при которой топливо теряет прозрачность в результате выпадения кристаллов углеводородов и льда.
Бесперебойная работа двигателя обеспечивается при температуре помутнения топлива на 5...10 °С ниже температуры воздуха, при которой эксплуатируется автомобиль.

Температурой застывания называют температуру, при которой ДТ теряет подвижность, что определяют в стандартном приборе, наклоненном под углом 45° к горизонтали, в течение 1 мин. Дизель работает бесперебойно при температуре застывания топлива на 5...10 °С ниже температуры воздуха, при которой эксплуатируется автомобиль.

На нефтеперерабатывающих заводах температуру помутнения и температуру застывания понижают удалением избытка высокоплавких углеводородов
(депарафинизация).

В эксплуатации такого же эффекта добиваются добавлением реактивного топлива. Например, при добавке 25% топлива Т-1 температура застывания летнего ДТ снижается на 8...12 °С.

Низкотемпературные свойства ДТ могут быть улучшены путем добавления присадок-депрессаторов (присадка "А", АзНИИ-ЦИАТИМ-1, полиметакрилат "Д").

Ассортимент ДТ:

•ДЛ - дизельное летнее - для эксплуатации при температуре окружающего воздуха не ниже 0 "С;

•ДЗ - дизельное зимнее - для эксплуатации при температуре окружающего воздуха не ниже -30 "С;

•ДА - дизельное арктическое - для эксплуатации при температуре окружающего воздуха не ниже -50 "С.

Таблица 1.1

Требования к дизельным топливам

|Показатели |ДЛ |ДЗ |ДА |
|Цетановое число, не менее 45 45 45 |
|Температура застывания (°С), не выше -10 -45 -55 |
|Температура помутнения ("С), не выше -5 -35 |
|Температура вспышки ("С), не ниже 50 35 30 |

Таблица 1.2

Эффективность депрессорных присадок

|Состав |Изготовитель присадки|Показатели |
| | | |
| | |Я 0й 0. |с. ^ |^ ^•1 |
| | |^ |&. 5 |и. 5 g S|
| | |^§ |>1 ПЗ 0 | |
| | |g-ё |- С; s |^ |
| | |1^ |IIIй |E— rt эт|
| | |" s |2 с S | |
| | |(- 0 |^ § | |
| | |с |-9- | |
|ДЛ (без присадок) |- |-5 |-7 |-13 |
|ДЛ + «STP Diesel Anti |First Brands Corp. |-7 |-15 |-22 |
| |(США) | | | |

|Gel» | | | | |
|ДЛ+«К&УАп1;Ое1» |K&W Prod. (США) |-6 |-18 |-28 |
|Jet go Diesel Fuel |Jet go Products Inc. |-6 |-18 |-25 |
|Conditioner |(США) | | | |
|Wynn's Ice proof for |Wynn's Belgium N.V. |-6 |-10 |-22 |
|diesel |(Бельгия) | | | |
|«Аспект-Модификатор» |АО «Аспект» (Россия) |-6 |-20 |-28 |
|ДЗ (без присадок) | |-25 |-15 |-35 |

1.3. Газообразные топлива

По физическому состоянию горючие газы делятся на две группы: сжатые и сжиженные. Если критическая температура углеводородов ниже обычных температур при эксплуатации автомобилей, то их применяют в сжатом виде, а если выше - то в сжиженном виде под давлением 1,5...2,0 МПа.

Требования к газообразным топливам:

•обеспечение хорошего смесеобразования;

•высокая калорийность горючей смеси;

•отсутствие коррозии и коррозионных износов;

•минимальное образование отложений во впускном и выпускном трактах;

•сохранение качества при хранении и транспортировании;

•низкая стоимость производства и транспортирования.

Сжиженные газы. Основные компоненты - пропан СзНу, бутан С4Ню.
Получают из попутных нефтяных газов, из газообразных фракций при переработке нефтепродуктов и каменных углей. Поэтому они получили название сжиженных нефтяных газов. Для их обозначения часто используют аббревиатуру «СНГ».

Критические температуры пропана (+97 "С) и бутана (+126 "С) выше температуры окружающей среды, поэтому их легко можно перевести в жидкое состояние. При +20 °С пропан сжижается при 0,716, а бутан - при 0,103 МПа.

СНГ хранят под давлением 1,6 МПа. Давление насыщенных парав СНГ изменяется от 0,27 МПа при -10 °С до 1,6 МПа при +45 °С. СНГ имеет высокий коэс})фициент теплового расширения. Повышение температуры на 1 °С влечет за собой рост давления в газовом баллоне на О,б...0,7 МПа, что может привести к его разрушению. Поэтому в баллонах предусматривается паровая подушка объемом не менее 10% полезной емкости.

Промышленность выпускает СНГ для автомобилей двух марок:

•СПБТЗ - смесь пропана и бутана техническая зимняя;

•СПБТЛ - ... летняя.

Таблица 1.1 Компонентный состав сжиженных нефтяных газов

|Компоненты |Содержание компонентов (% массовые) |
| |СПБТЗ |СПБТЛ |
|Метан, этан и этилен |4 76 20 |6 |
|Пропан и пропилен Бутан| |34 60 |
|и бутилен | | |

В состав СНГ добавляют специальные вещества (одоранты), имеющие сильный запах, т.к. СНГ не имеет ни цвета не запаха, и обнаружить их утечку сложно. Для этой цели используют этилмеркаптан C2H4SH, имеющий резкий неприятный запах, который ощущается уже при концентрации 0,19 г на 1000 м3 воздуха.

Иногда утечку удается определить на слух или с помощью приборов.

Эксплуатационные свойства автомобилей с газовыми двигателями, работающими на СНГ, в сравнении с автомобилями, работающими на бензине, оцениваются следующим образом:

•пусковые качества до -5 "С равноценны; при более низких температурах запуск холодного двигателя затруднен;

•показатели динамичности автомобиля ухудшается на 5...8%;

•повышается мощность и улучшается топливная экономичность двигателей, так как детонационная стойкость СНГ выше (04 выше 100 единиц), чем у бензина, и можно форсировать двигатель по степени сжатия;

•снижается токсичность отработавших газов: по окиси углерода - в 3...4 раза, по окислам азота - в 1,2...2,0 раза, по углеводородам - в 1,2...1,4 раза;

•периодичность смены масла увеличивается в 2,0...2,5 раза;

•межремонтный ресурс двигателя увеличивается в 1,4...2,0 раза;

•трудоемкость ТО и Р возрастает на 3...5%, но эти затраты перекрываются экономией от увеличения межремонтного ресурса двигателей.

В настоящее время выпускаются газобаллонные автомобили двух типов: со специальными двигателями, предназначенными для работы на СНГ и имеющими резервную систему питания для кратковременной работы на бензине; с универсальными двигателями, допускающими работу как на СНГ, так и на бензине (у автомобилей этой группы мощность снижается примерно на 10%).

Сжатые газы. Основные компоненты - метан СН», окись углерода СО и водород Нз. Получают из горючих газов различного происхождения -природных, попутных нефтяных, коксовых и других. Их называют сжатыми природными газами или СПГ. Содержание метана в СПГ составляет 40... 82%. Критическая температура метана составляет -82 °С, поэтому без охлаждения СПГ перевести в жидкое состояние нельзя. Существует две марки СПГ - А и Б, которые отличаются содержанием метана и азота (табл. 17.4).

Таблица 1.2 Компонентный состав сжатых природных газов

|Компоненты |Содержание компонентов (% массовые) |
| |марка А |марка Б |
|Метан Азот |95 О...4 |90 |
| | |4...7 |

Газобаллонные установки для СПГ рассчитаны на работу при давлении 19,6
МПА. Баллоны для СПГ изготавливаются толстостенными и имеют большую массу.
Так, батарея из 8 50-литровых баллонов весит более 0,5 т. Следовательно, существенно снижается грузоподъемность автомобиля. Кроме того пробег автомобиля на одной заправке при работе на СПГ в 2 раза меньше, чем на бензине. Более перспективна криогенная технология хранения СПГ в сжиженном виде.

Метан легче воздуха, поэтому при утечках скапливается в верхней части помещения.

Метан имеет высокую детонационную стойкость, поэтому двигатели можно форсировать по степени сжатия.

СПГ воспламеняется в камере сгорания при температуре 635...645 °С, что значительно выше температуры воспламенения бензина. Это затрудняет пуск двигателя, особенно при низких температурах воздуха. В то же время по опасности воспламенения и пожароопасносности они значительно безопаснее бензина.

Преимущества СПГ перед бензинами:

•повышается срок службы моторного масла в 2,0...3,0 раза;

•увеличивается ресурс двигателя на 35...40% вследствие отсутствия нагара на деталях цилиндро-поршневой группы;

•увеличивается на 40% срок службы свечей зажигания;

•на 90% снижается выброс вредных веществ с отработавшими газами, особенно СО. Недостатки СПГ:

•цена автомобиля возрастает примерно на 27%;

•трудоемкость ТО и ТР возрастает на 7...8;

•мощность двигателя снижается на 18...20%, время разгона увеличивается на 24...30%, максимальная скорость уменьшается на 5...6%, максимальные углы преодолеваемых подъемов уменьшаются на 30...40%, эксплуатация автомобиля с прицепом затрудняется;

•дальность ездки на одной заправке не превышает 200...250 км;

•грузоподъемность автомобиля снижается 9...14%.

С учетом достоинств и недостатков автомобилей, работающих на СПГ, определена область их рационального использования - перевозки в крупных городах и прилегающих к ним районах.

2. МАСЛА И СМАЗКИ

2.7. Моторные масла

Моторные масла обеспечивают:

•снижение трения и износа трущихся деталей двигателя за счет создания на их поверхностях прочной масляной пленки;

•уплотнение зазоров в сопряжениях и, в первую очередь, деталей цилиндро-поршневой группы (ЦПГ);

•отвод тепла от трущихся деталей, удаление продуктов износа из зон трения;

•защиту рабочих поверхностей трущихся деталей от коррозии продуктами окисления масла и сгорания топлива;

•предотвращение всех видов отложений (нагары, лаки, зольные отложения).

Эксплуатационные требования к моторным маслам:

•оптимальная вязкость, определяющая надежную и экономичную работу агрегатов на всех режимах;

•хорошая смазывающая способность;

•устойчивость к испарению, вспениванию, выпадению присадок;

•отсутствие коррозии и коррозионных износов;

•малый расход масла при работе двигателя;

•большой срок службы масла до замены без ущерба для надежности двигателя;

•сохранение качества при хранении и транспортировке. Для выполнения этих требований моторные масла обладают рядом свойств, к важнейшими из которых относятся вязкостные и низкотемпературные.

От вязкости зависят режим смазки, отвод тепла от рабочих поверхностей, уплотнение зазоров, энергетические потери в двигателе, быстрота запуска двигателя и т.д.

Вязкость моторных масел измеряют в следующих единицах:

•кинематическая вязкость v - 1 мм2/c=} сСт (сантистокс);

•динамическая вязкость т) - 1 Па-с=10 П (Пуаз); 1 МПа-с=1 сП
(сантипуаз).

На вязкость моторных масел существенно влияет температура. При ее снижении вязкость резко увеличивается. Так, в интервале температур от 100 до 0 °С вязкость различных масел может возрастать в 300 раз и более (табл.
18.1).

Таблица 2.1 Классы вязкости моторных масел по ГОСТ 17479.1-85

|Класс |Упри lOO^MNr/c |vm;.x |Класс |Упри 100 "С, |^мах |
|вязкости| |при |вязкост|мм^с |при |
| | |-18°С,|и | |-18°С,|
| | | | | | |
| | |MM'/C | | |MM /С |
| |не менее|не более| | |не |не более| |
| | | | | |менее | | |
|Зз |3.8 |- |1250 |3,,/8 7,0 |9,5 |1250 |
|4.з |4,1 |- |2600 |4,з/6 |5,6 |7,0 |2600 |
|5з |5,6 |- |6000 |4,/8 |7,0 |9.5 |2600 |
|6з |5,6 |- |10400 |4,/10 |9,5 |11,5 |2600 |
|6 |5,6 |7,0 |- |5.3/10 |9,5 |11,5 |6000 |
|8 |7,0 |9,5 |- |5,/12 |11,5 |13,0 |6000 |
|10 |9,5 |11,5 |- |5.з/14 |13,0 |15,0 |6000 |
|12 |11,5 |13,0 |- |6,/Ю |9,5 |11,5 |10400 |
|14 |13,0 |15,0 |- |6,/14 |13,0 |15,0 |10400 |
|16 |15,0 |18,0 |- |6/16 |15,0 |18,0 |10400 |
|20 |18,0 |23,0 |- | | |

Степень изменения вязкости в зависимости от температуры характеризуется индексом вязкости (ИВ), определяемым по значениям вязкости масла при 50 и 100 °С. Чем меньше изменение вязкости масла в заданном интервале температур, тем лучше его вязкостно-температурные свойства и тем больше индекс вязкости этого масла. Для летних масел индекс вязкости, как правило, не превышает 90, а для зимних и всесезонных (загущенных) он составляет 95-125 и выше. При определенной температуре масло вообще теряет подвижность. Эта температура называется температурой застывания масла. Для моторных масел температура застывания, как правило, составляет: -15 °С - для летних, —25...—30 С - для зимних, —35...-45 °С - для загущенных.

Вязкостно-температурные свойства в первую очередь определяют выбор моторного масла для конкретного типа двигателя и условий его эксплуатации. При предельно высоких рабочих температурах в двигателе вязкость масла должна быть достаточной, чтобы обеспечить надежную смазку и работу узлов трения, низкий износ деталей, эффективное уплотнение сопряжении, малый прорыв картерных газов и расход масла на угар. При отрицательных температурах масло должно иметь относительно низкую вязкость, обеспечивающую эффективный пуск двигателя, своевременную подачу масла к парам трения и т.д.

Однако для обычных (незагущенных) минеральных масел - это трудносочетаемые требования. Поэтому масла с вязкостью б... 8 мм2/с при 100
"С применяют в зимний период, а более вязкие (10...14 мм^с при 100 °С) - в летний.

В настоящее время находят широкое применение всесезонные моторные масла, для которых при высоких температурах характерны значения вязкости летних образцов, а при отрицательных температурах -зимних.

Классификация (обозначение) масел. Для правильного подбора моторного масла по вязкости к конкретному типу двигателя и условиям его эксплуатации следует руководствоваться ГОСТ 17479.1-85 "Масла моторные, трансмиссионные и жидкости гидравлические. Система обозначений". По этому ГОСТу моторные масла разделяют на различные классы по вязкости (табл. 18.1) и различают по сезонности применения, т.е. они дифференцируются на зимние (вязкость 6...8 мм^с при 100 °С), летние (10...20 мм""/с при 100 С) и всесезонные.

Для сезонных (незагущенных) масел нормируются значения вязкости при
100 °С. Для всесезонных (загущенных) масел в знаменателе дробного обозначения указывается вязкость при 100 С, цифра в числителе характеризует предельно допустимую вязкость при -18 "С.

При подборе масла для конкретного типа двигателя наряду с установлением требуемых вязкостных показателей определяют также необходимый для этого двигателя уровень качества масла, т.е. группу масла по эксплуатационным свойствам.

До 1974 г. в нашей стране деление масел по уровню качества не производилось. Масла выпускались , с буквенным обозначением, характеризующим область их применения, - А, Д, М и МТ (А - для смазки карбюраторных двигателей, Д - автотракторных и судовых дизелей, М
-поршневых авиационных двигателей, МТ - транспортных дизелей; особенности технологии получения масел указывались буквами: К -кислотная, С
- селективная очистка, П - масло с присадками, 3 -загущенное масло).
Например, автомобильное масло селективной очистки АС-8, авиационное масло
МС-20, загущенные масла с присадками АКЗп-6 и АСЗп-10, масло для транспортных дизелей МТ-16п и т.д. Цифры в обозначении масел характеризовали их вязкость в сСт (мм2/^) при температуре 100 "С.

Обеспечение надежной и экономичной работы современных двигателей возможно только при условии применения в них моторных масел с определенными свойствами, отвечающих необходимым требованиям.

Моторные масла по ГОСТ 17479.1-85 подразделяются на группы по эксплуатационным свойствам, характеризующие условия работы масла в двигателях конкретного уровня форсирования (табл. 18.2).

Таблица 2.2

Группы моторных масел в зависимости от уровня эксплуатационных свойств и области их применения

|Группа |Рекомендуемая область применения |
|А |Нефорсированные карбюраторные двигатели и дизели |
|Б, |Малофорсированные карбюраторные двигатели, работающие в |
| |условиях, способствующих образованию высокотемпературных |
| |отложений и коррозии подшипников |
|Б2 |Малофорсированные дизели |
|В, |Среднефорсированные карбюраторные двигатели, работающие в |
| |неблагоприятных условиях, способствующих окислению масла и |
| |образованию всех видов отложений |
|Вз |Среднефорсированные дизели, предъявляющие повышенные |
| |требования к антикоррозионным, противоизносным свойствам масел|
| |и их склонности к образованию высокотемпературных отложений |
|Г, |Высокофорсированные карбюраторные двигатели, работающие в |
| |тяжелых эксплуатационных условиях, способствующих окислению |
| |масла, образованию всех видов отложений, коррозии и ржавлению |
|Г2 |Высокофорсированные дизели .без надува или с умеренным |
| |наддувом, работающие в неблагоприятных эксплуатационных |
| |условиях, способствующих образованию высокотемпературных |
| |отложений |
|Д |Высокофорсированные дизели с наддувом, работающие в тяжелых |
| |эксплуатационных условиях или когда применяемое топливо |
| |требует использования масел с высокой нейтрализующей |
| |способностью, антикоррозионными и противоизносными свойствами,|
| |малой склонностью к образованию всех видов отложений |
|Е |Лубрикаторные системы смазки цилиндров дизелей, работающих на |
| |топливе с высоким содержанием серы |

Зная уровень форсирования двигателя и условия его эксплуатации по табл. 18.2 производят выбор моторного масла требуемой группы качества.
Одновременно, исходя из предполагаемого температурного диапазона работы масла, по табл. 18.1 устанавливают требуемый класс вязкости.

В зависимости от вязкости и эксплуатационных свойств ГОСТ 17479.1-85 устанавливает марки моторных масел (M-8Bi, М-6з/12Г1, М-ЮГз, М-10Д и т.д.), в условном обозначении которых заложены необходимые данные для правильного подбора масел для конкретного типа двигателя.

Например, масло М-8В]: буква "М" обозначает моторное масло, цифра 8 характеризует его вязкость при 100 'С в мм2/c, буква "В" с индексом "1" указывает, что масло по эксплуатационным свойствам относится к группе В и предназначено для среднефорсированных карбюраторных двигателей.

Масло М-6;/12Г[: буква "М" ,- моторное масло, цифра 6 свидетельствует, что это масло относится к классу, у которого вязкость при —18 С не должна превышать 10400 мм~/с, индекс "з" обозначает, что масло содержит загущающие
(вязкостные) присадки, цифра "12" после знака дроби показывает, что вязкость масла при температуре 100 °С равна 12 мм2/c, а буква "Г" с индексом "1" обозначает принадлежность масла по эксплуатационным свойствам к группе "Г" и указывает на возможность его использования для высокофорсированных карбюраторных двигателей.

Индекс "2" при буквенном обозначении группы указывает на то, что масло предназначено для дизелей, например М-8Гз.

Отсутствие цифрового индекса у масел группы Б, В, Г свидетельствует об универсальности масел и возможности их применения как в карбюраторных, так и дизельных двигателях (например, масло М-бз/ЮВ).

Отнесение масла к соответствующей группе свидетельствует об определенном уровне его эксплуатационных свойств (антиокислительных, моюще- диспергирующих, противокоррозионных, защитных и т.д.), характеризующем качество масел данной группы. Этот уровень в основном зависит от вида и концентрации вводимых присадок. Поэтому переход от масел низших групп (А,
Б) к высшим (В, Г), как правило, достигается путем расширения ассортимента и количественного увеличения присадок в маслах.

Принадлежность масел к той или иной группе устанавливают на основании результатов моторных испытаний на специальных одноцилиндровых или полноразмерных двигателях. Для масел различных групп установлены нормы на оценочные показатели, предусмотренные методами испытаний на двигателях.
Сопоставляя результаты моторных испытаний масла с нормами, устанавливают его принадлежность к соответствующей группе по эксплуатационным свойствам.

За рубежом подбор масел в зависимости от типа двигателя и условий его эксплуатации осуществляется также на основании соответствующих классификаций. Градацию масел по вязкости производят по классификации

SAE (Общество американских инженеров-автомобилистов), а по условиям и областям применения - согласно классификации API (Американский нефтяной институт).

По классификации SAE J300e масла разделяют на зимние (обозначаются буквой W), летние и всесезонные. Примерное соответствие классов вязкости моторных масел по ГОСТ 17479.1-85 и SAE J300e показано в табл. 18.3.

Таблица 2.3

Соответствие классов вязкости моторных масел по ГОСТ 17479.1-85 и классификация SAE J300e

|ГОСТ 17479.1-85 SAE J300e |ГОСТ 17479.1-85 SAE J300e |
|Зз 5W 4,з 10W 5з 15W 6.з 20W 6 20 8|20 50 З.з/8 5W-20 4,/6 10W-20 |
|20 10 30 12 30 14 40 16 40 |4з/8 10W-20 4,3/10 10W-30 5з/10 |
| |15W-30 5,з/12 15W-30 5,з/14 |
| |15W-40 6.3/10 20W-30 ' 6з/14 |
| |20W-40 |

Классификация API подразделяет масла на две категор

 
     
Бесплатные рефераты
 
Банк рефератов
 
Бесплатные рефераты скачать
| мероприятия при чрезвычайной ситуации | Чрезвычайная ситуация | аварийно-восстановительные работы при ЧС | аварийно-восстановительные мероприятия при ЧС | Интенсификация изучения иностранного языка с использованием компьютерных технологий | Лыжный спорт | САИД Ахмад | экономическая дипломатия | Влияние экономической войны на глобальную экономику | экономическая война | экономическая война и дипломатия | Экономический шпионаж | АК Моор рефераты | АК Моор реферат | ноосфера ба забони точики | чесменское сражение | Закон всемирного тяготения | рефераты темы | иохан себастиян бах маълумот | Тарых | шерхо дар борат биология | скачать еротик китоб | Семетей | Караш | Influence of English in mass culture дипломная | Количественные отношения в английском языках | 6466 | чистонхои химия | Гунны | Чистон
 
Рефераты Онлайн
 
Скачать реферат
 
 
 
 
  Все права защищены. Бесплатные рефераты и сочинения. Коллекция бесплатных рефератов! Коллекция рефератов!