Чтение RSS
Рефераты:
 
Рефераты бесплатно
 

 

 

 

 

 

     
 
Физиология человека
0001 Физиологические реакции живого организма

Всякий живой организм и все его клетки обладают раздражимостью, т. е. способностью отвечать на воздействия внешней среды или нарушения их состояния изменением своей структуры, возникновением, усилением или ослаблением своей активной деятельности, что неразрывно связано с качественными и количественными изменениями обмена веществ и энергии. Изменения структуры и функций организма и его клеток в ответ на различные воздействия называют биологическими реакциями, а воздействия, их вызывающие, - раздражителями, или стимулами.
Понятие биологической реакции – это все виды ответной деятельности организма, его органов и клеток на различные воздействия.
Реакции клеток проявляются в изменении их формы, структуры, их роста и процесса деления, в образовании в них различных химических соединений, преобразовании потенциальной энергии в кинетическую (электрическую, механическую, тепловую, световую), совершении той или иной работы (перемещении в пространстве, выделении тех или иных веществ, осмотической работе по концентрированию в клетке определенных электролитов).
Реакции целостного организма чрезвычайно многообразны. В процессе их осуществления изменяется деятельность многих органов и бесчисленного множества клеток, ибо организм всегда реагирует на различные воздействия как целое, как единая сложная система. Поэтому хотя реакции организма и совершаются благодаря деятельности клеток, однако они не могут быть сведены к реакциям отдельных клеток. В этом проявляется общее правило, что закономерности системы не могут быть сведены к закономерностям отдельных образующих систему элементов.

Раздражение
Раздражителем живой клетки или организма как целого может оказаться любое изменение внешней среды или внутреннего состояния организма, если оно достаточно велико, возникло достаточно быстро и продолжается достаточно долго.
Все бесконечное разнообразие возможных раздражителей клеток и тканей можно разделить на три группы: физические, физико-химические и химические. К числу физических раздражителей принадлежат температурные, механические (удар, укол, давление, перемещение в пространстве, ускорение и др.), электрические, световые, звуковые. Физико-химическими раздражителями являются изменения осмотического давления, активной реакции среды, электролитного состава коллоидального состояния. К числу химических раздражителей относится множество веществ, имеющих различный состав и свойства, изменяющих обмен веществ или структуру клеток. Химическими раздражителями, способными вызывать физиологические реакции, являются поступающие из внешней среды вещества пищи, лекарственные препараты, яды, а также многие химические соединения, образующиеся в организме, например гормоны, продукты обмена веществ. Раздражителями клеток, вызывающими их деятельность, являются нервные импульсы. Нервные импульсы, поступая по нервным волокнам от нервных окончаний в центральную нервную систему или приходя от нее к периферическим органам - мышцам, железам, вызывают изменения их состояния и деятельности.
По своему физиологическому значению все раздражители делят на адекватные и неадекватные.
Адекватными называются те раздражители, которые действуют на данную биологическую структуру в естественных условиях, к восприятию которых она специально приспособлена и чувствительность к которым у нее чрезвычайно велика. Для палочек и колбочек сетчатки глаза адекватным раздражителем являются лучи видимой части солнечного спектра, для тактильных рецепторов кожи - давление, для вкусовых сосочков языка - разнообразные химические вещества, для скелетных мышц - нервные импульсы, притекающие к ним по моторным нервам.
Неадекватными называются те раздражители, для восприятия которых данная клетка или орган специально не приспособлены. Так, мышца сокращается при воздействии кислоты или щелочи, электрического тока, внезапного растяжения, механического удара, быстрого согревания и т. д.
Клетки значительно более чувствительны по отношению к своим адекватным раздражителям, чем к неадекватным. Это является выражением функционального приспособления, выработавшегося в процессе эволюции.

Возбудимость
Некоторые клетки и ткани (нервная, мышечная и железистая) специально приспособлены к осуществлению быстрых реакций на раздражение. Такие клетки и ткани называют возбудимыми, а их способность отвечать на раздражение возбуждением называют возбудимостью.
Мерой возбудимости служит та минимальная сила раздражителя, которая вызывает возбуждение. Эта минимальная сила раздражения носит название порога раздражения. Чем больше минимальная сила раздражения, требуемая для вызова реакций, чем выше порог раздражения, тем ниже возбудимость, и, наоборот, чем ниже порог раздражения, тем выше возбудимость. По отношению к разным раздражителям порог раздражения может быть различен. Особенно высока возбудимость рецепторов по отношению к адекватным раздражителям, например, для раздражения обонятельной клетки достаточно, чтобы на нее подействовало всего несколько молекул пахучего вещества.

Возбуждение
Для возбудимых клеток характерна специфическая форма реагирования на действие раздражителей: в них возникает волнообразный физиологический процесс - возбуждение представляет собой сложную биологическую реакцию, проявляющуюся в совокупности физических, физико-химических, химических процессов и функциональных изменений. Обязательным признаком возбуждения является изменение электрического состояния поверхностной клеточной мембраны. Клетки при возбуждении переходят от состояния физиологического покоя к состоянию свойственной данной клетке физиологической деятельности: мышечное волокно сокращается, железистая клетка выделяет секрет..
В возбудимой клетке постоянно имеется разность электрических потенциалов между ее цитоплазмой и внешней средой, т. е. по обе стороны поверхностной клеточной мембраны. Последняя является, таким образом, поляризованной - ее внутренняя поверхность заряжена отрицательно по отношению к наружной. Эту разность потенциалов называют мембранным потенциалом. Причиной такой разности потенциалов является неравенство концентрации ионов внутри клетки - в ее цитоплазме и снаружи клетки - в окружающей тканевой жидкости: в цитоплазме содержится больше ионов калия и меньше ионов натрия по сравнению с тканевой жидкостью. В состоянии покоя мембрана клетки мало проницаема для ионов Na°. При возбуждении проницаемость мембраны увеличивается, и она пропускает положительно заряженные ионы натрия внутрь клетки, что приводит к понижению мембранной разности потенциалов (деполяризации мембраны) и даже к появлению разности потенциалов противоположного знака.
Изменение электрической разности потенциалов при возбуждении получило название потенциала действия. Электрический же ток, возникающий при соединении возбужденного участка ткани с невозбужденным, называют током действия.
Возбуждение представляет собой как бы взрывной процесс, возникающий в результате изменения проницаемости мембраны под влиянием раздражителя. Это изменение вначале относительно невелико и сопровождается лишь небольшой деполяризацией, небольшим уменьшением мембранного потенциала в том месте, где было приложено раздражение, и не распространяется вдоль возбудимой ткани (это так называемое местное возбуждение). Достигнув критического – порогового - уровня, изменение разности потенциалов лавинообразно нарастает и быстро - в нерве за несколько десятитысячных долей секунды - достигает своего максимума.
Восстановление исходной разности потенциалов – реполяризация мембраны - происходит вначале за счет выхода ионов калия из клетки. Затем благодаря особому физиологическому механизму, так называемому натрий-калиевому насосу, восстанавливается неравенство ионных концентраций между цитоплазмой и окружающей клетку средой (ионы калия обратно входят в клетку, а ионы натрия выходят из нее). Этот восстановительный процесс требует некоторой затраты энергии, поставщиком которой являются процессы обмена веществ.
Характерной особенностью клетки в момент ее возбуждения - в период максимальной деполяризации мембраны - является ее неспособность отвечать на новое раздражение. Состояние невозбудимости клетки во время ее возбуждения носит название рефрактерности.
Возбуждение - волнообразно распространяющийся процесс. Возникнув в одной клетке или в одном ее участке, например в одном участке нервного волокна, возбуждение распространяется, переходит на другие клетки или на другие участки той же клетки. Проведение возбуждения обусловлено тем, что потенциал действия, возникший в одной клетке или в одном ее участке, становится раздражителем, вызывающим возбуждение нужных участков.
Возбуждение от одной нервной клетки к другой или от нервного волокна к мышечной или железистой клетке передается химическим путем. В нервном окончании образуются химические соединения - передатчики нервного импульса (ацетилхолин, норадреналин и др.), вызывающие возбуждение в той возбудимой клетке, на которой расположено нервное окончание. Химические передатчики нервного импульса называются медиаторами.

0002 Стресс

При взаимодействии человека и животных с внешней средой, возникают ситуации, характеризующиеся конфликтом между потребностями и возможностями их удовлетворения. Они ведут к формированию состояния напряжения - эмоционального стресса (понятие стресса введено Селье и Леви), приспособительное значение которого проявляется в мобилизации защитных сил, направленных на преодоление конфликта. Невозможность его разрешения приводит к формированию длительного застойного эмоционального возбуждения, проявляющегося в нарушениях мотивационно-эмоциональной сферы и в различных соматических заболеваниях.
Эмоциональный стресс может привести к развитию ишемической болезни сердца, гипертензии, язвообразованию, дисфункции эндокринной системы. При этом наблюдаются глубокие изменения баланса нейромедиаторов и нейропептидов в ЦНС.
У человека такие нарушения связаны преимущественно с социальными конфликтами. Некоторые из этих проявлений могут быть промоделированы на животных. Так, у вожака стада обезьян, изолированного, но имеющего возможность наблюдать последующие иерархические изменения во взаимоотношениях ранее подчинявшихся ему животных, развивается артериальная гипертензия, а в некоторых случаях и инфаркт миокарда.
Степень устойчивости животных к действию стрессорных факторов различна и может быть установлена в специальных экспериментах. Так, менее устойчивые к стрессу животные отвечают на стимуляцию отрицательных эмоциогенных зон вентромедиального гипоталамуса преимущественно прессорными сосудистыми реакциями, а более устойчивые - прессорно-депрессорными. Снижение эмоционального напряжения и соответственное предотвращение висцеральных нарушений достигается стимуляцией «зон награды» или введением фармакологических препаратов, нормализующих баланс нейромедиаторов в ЦНС.

0004 ГОМЕОСТАЗ
Внутренняя среда организма, в которой живут все его клетки, - это кровь, лимфа, межтканевая жидкость. Ее характеризует относительное постоянство — гомеостаз различных показателей, так как любые ее изменения приводят к нарушению функций клеток и тканей организма, особенно высокоспециализированных клеток центральной нервной системы. К таким постоянным показателям гомеостаза относятся температура внутренних отделов тела, сохраняемая в пределах 36-37° С, кислотно-основное равновесие крови, характеризуемое величиной рН = 7.4-7.35, осмотическое давление крови (7.6-7.8 атм.), концентрация гемоглобина в крови — 120-140 г/ли др.
Гомеостаз представляет собой не статическое явление, а динамическое равновесие. Способность сохранять гомеостаз в условиях постоянного обмена веществ и значительных колебаний факторов внешней среды обеспечивается комплексом регуляторных функций организма. Эти регуляторные процессы поддержания динамического равновесия получили название гомеокинеза.
Степень сдвига показателей гомеостаза при существенных колебаниях условий внешней среды или при тяжелой работе у большинства людей очень невелика. Например, длительное изменение рН крови всего на 0.1 -0.2 может привести к смертельному исходу. Однако, в общей популяции имеются отдельные индивиды, обладающие способностью переносить гораздо большие сдвига показателей внутренней среды. У высококвалифицированных спортсменов-бегунов в результате большого поступления молочной кислоты из скелетных мышц в кровь во время бега на средние и длинные дистанции рН крови может снижаться до величин 7.0 и даже 6.9. Лишь несколько человек в мире оказались способными подняться на высоту порядка 8800 м над уровнем моря (на вершину Эвереста) без кислородного прибора, т. е. существовать и двигаться в условиях крайнего недостатка кислорода в воздухе и, соответственно, в тканях организма. Эта способность определяется врожденными особенностями человека — так называемой его генетической нормой реакции, которая даже для достаточно постоянных функциональных показателей организма имеет широкие индивидуальные различия.

0005 РЕГУЛЯЦИЯ ФУНКЦИЙ ОРГАНИЗМА

У простейших одноклеточных животных одна единственная клетка осуществляет разнообразные функции. Усложнение же деятельности организма в процессе эволюции привело к разделению функций различных клеток — их специализации. Для управления такими сложными многоклеточными системами уже было недостаточно древнего способа — переноса регулирующих жизнедеятельность веществ жидкими средами организма.
Регуляция различных функций у высокоорганизованных животных и человека осуществляется двумя путями: гуморальным (лат. Гумор - жидкость) - через кровь, лимфу и тканевую жидкость и нервным.
Возможности гуморальной регуляции функций ограничены тем, что она действует сравнительно медленно и не может обеспечить срочных ответов организма (быстрых движений, мгновенной реакции на экстренные раздражители). Кроме того, гуморальным путем происходит широкое вовлечение различных органов и тканей в реакцию (по принципу «Всем, всем, всем!»). В отличие от этого, с помощью нервной системы возможно быстрое и точное управление различными отделами целостного организма, доставка сообщений точному адресату. Оба эти механизма тесно связаны, однако ведущую роль в регуляции функций играет нервная система.
В регуляции функционального состояния органов и тканей принимают участие особые вещества—нейропептиды, выделяемые железой внутренней секреции гипофизом и нервными клетками спинного и головного мозга. В настоящее время известно около сотни подобных веществ, которые являются осколками белков и, не вызывая сами возбуждения клеток, могут заметно изменять их функциональное состояние. Они влияют на сон, процессы обучения и памяти, на мышечный тонус (в частности, на позную асимметрию), вызывают обездвижение или обширные судороги мышц, обладают обезболивающим и наркотическим эффектом. Оказалось, что концентрация нейропептидов в плазме крови у спортсменов может превышать средний уровень у нетренированных лиц в 6-8 раз, повышая эффективность соревновательной деятельности. В условиях чрезмерных тренировочных занятий происходит истощение нейропептидов и срыв адаптации спортсмена к физическим нагрузкам.

0003 Адаптация

Адаптация (от лат.-приспособление) в самом общем виде может быть определена как совокупность приспособительных реакций и морфологических изменений, позволяющих организму сохранить относительное постоянство внутренней среды в изменяющихся условиях внешней среды. У человека адаптация выступает как свойство организма, которое обеспечивается автоматизированными самонастраивающимися, саморегулирующимися системами - сердечно-сосудистой, дыхательной, выделительной и др. В каждой из этих систем можно выделить несколько уровней адаптации - от субклеточного до органного. Но конечный ее смысл не теряется ни на одном из уровней - это повышение жизнестойкости, устойчивости системы к факторам среды.
Адаптация - это эффективная и экономная, адекватная приспособительная деятельность организма к воздействию факторов внешней среды. В адаптации можно выделить две противоборствующие тенденции: с одной стороны, отчетливые изменения, затрагивающие в той или иной мере все системы организма, с другой - сохранение гомеостаза, перевод организма на новый уровень функционирования при непременном условии - поддержании динамическою равновесия.
Согласно представлениям П.К. Анохина, адаптацию следует рассматривать как формирование новой функциональной системы, в которой заложен приспособительный эффект. Сама функциональная система выступает как сложный физиологический механизм, сущностным содержанием которого является получение полезного приспособительного результата. Типичным примером адаптации с положительным результатом является приспособление к физическим нагрузкам.
Системная организация адаптивных реакций предполагает возможность их осуществления как на уровне физиологически зрелого организма, так и задолго до наступления физиологической зрелости. Концепция системогенеза П.К. Анохина дает объяснение этому: в ходе индивидуального развития в первую очередь формируются системы, обеспечивающие выживание ребенка после рождения. При оценке адаптивных возможностей детей и подростков к физической нагрузке необходимо выделять не столько абсолютные сдвиги в работе отдельных систем и органов, сколько показатели их согласованности, интегративной функции, обеспечивающей сам адаптационный эффект. Чем выше уровень интеграции, координированности сложных регуляторных процессов, тем эффективнее адаптация.
Совершенствование механизмов адаптации — это прежде всего улучшение процессов регуляции и соотношений физиологических функций. Адаптация целостного организма не исключает, а предполагает, что функциональные и структурные изменения происходят как на органном, так и на клеточном уровнях.
Адаптация на клеточном уровне сопряжена с активацией энергетических и пластических процессов. В первую очередь затрагиваются резервы аденозинтрифосфорной кислоты (АТФ). Отношение продуктов распада АТФ к оставшемуся ее количеству возрастает. Хорошо известны результаты увеличения продуктов энергообмена АТФ: они активируют окислительное фосфорилирование, т.е. запасание энергии в макроэргах (высокоэнергетических соединениях). Это, в свою очередь, приводит к интенсивному биосинтезу по цепочке: ДНК—РНК—белок. Увеличивается биомасса органа, активируется система передачи действия повреждающего агента на цитоплазму через встроенный в мембрану фермент аденилатциклазу. Молекула аденилатциклазы располагается в оболочке клетки таким образом, что часть ее выходит наружу, а часть — внутрь. Под воздействием сигнала извне аденилатциклаза активируется и катализирует образование циклической аденозин-монофосфорной кислоты (АМФ) из аденозинтрифосфорной кислоты. Концентрация циклической АМФ возрастает в 10 — 20 раз.
Основным механизмом клеточной адаптации является поддержание постоянства основного энергетического соединения- АТФ. Это постоянство обеспечивается усилением жиромобилизующего действия гормонов надпочечников, а также повышением эффективности окислительного цикла (цикл трикарбоновых кислот Кребса).
Природа потенциала покоя.

Между наружной поверхностью клетки и ее протоплазмой в состоянии покоя существует разность потенциалов порядка 60—90 мВ, причем поверхность клетки заряжена электроположительно по отношению к протоплазме. Эту разность потенциалов принято называть потенциалом покоя, или мембранным потенциалом. Точное измерение потенциала покоя возможно только с помощью микроэлектродов, предназначенных для внутриклеточного отведения.
Как только микроэлектрод прокалывает покрывающую клетку мембрану, так сразу луч осциллографа отклоняется вниз от своего исходного положения и устанавливается на новом уровне, обнаруживая тем самым существование скачка потенциала между поверхностью и содержимым клетки.
При удачном введении микроэлектрода мембрана плотно охватывает его кончик, и клетка сохраняет способность функционировать в течение нескольких часов, не обнаруживая признаков повреждения.
Наличие разности потенциалов между наружной поверхностью клетки и ее содержимым может быть обнаружено и без помощи микроэлектродов. Для этого достаточно нанести поперечный разрез на нерв или мышцу и приложить отводящие электроды таким образом, чтобы один из них касался места разреза, а второй - неповрежденной поверхности. В этом случае электроизмерительный прибор покажет, что между указанными участками ткани протекает ток (ток покоя), причем неповрежденный участок оказывается заряженным электроположительно по отношению к месту разреза. Однако такой способ отведения не позволяет измерять полную разность потенциалов между наружной поверхностью и внутренним содержимым клетки, так как жидкость, омывающая ткань с поверхности и находящаяся в межклеточных щелях, шунтирует (закорачивает) регистрирующую систему. Поэтому измеряемая разность потенциалов между поврежденным и неповрежденным участком ткани не превышает обычно 30—50 мВ. Для объяснения природы потенциала покоя были предложены различные теории. У истоков современного понимания этой проблемы стоит работа В. Ю. Чаговца, который в 1896 г., будучи студентом-медиком, высказал мысль об ионной природе биоэлектрических процессов и сделал попытку применить теорию электролитической диссоциации Аррениуса для объяснения происхождения этих потенциалов. В дальнейшем в 1902 г. Ю. Бернштейном была развита мембранно-ионная теория, которая модифицирована и экспериментально обоснована А. Ходжкином и А. Хаксли (1952) и в настоящее время пользуется широким признанием. Согласно этой теории, биоэлектрические потенциалы обусловлены неодинаковой концентрацией ионов К', N3', СГ внутри и вне клетки и различной проницаемостью для них поверхностной мембраны.
Протоплазма нервных и мышечных клеток содержит в 30-50 раз больше ионов калия, в 8-10 раз меньше ионов натрия и в 50 раз меньше ионов хлора, чем внеклеточная жидкость.
Препятствием для быстрого выравнивания этой разности концентраций является тончайшая (около 100 А) плазматическая мембрана, покрывающая живые клетки.
Представления о структуре этой мембраны строятся на основании данных, полученных методами электронной микроскопии, оптической микроскопии, дифракции рентгеновых лучей и химического анализа. Предполагают, что мембрана состоит из двойного слоя молекул фосфолипидов, покрытого изнутри слоем белковых молекул, а снаружи слоем молекул сложных углеводов - мукополисахаридов.
В клеточной мембране имеются тончайшие канальцы - «поры» диаметром в несколько ангстрем. Через эти канальцы молекулы воды и других веществ, а также ионы, имеющие соответствующий размеру пор диаметр, входят в клетку и выходят из нее.
На структурных элементах мембраны фиксируются различные ионы, что придает стенкам ее пор тот или иной заряд и тем самым затрудняет или облегчает прохождение через них ионов. Так, предполагается, что наличие в мембране диссоциированных фосфатных и карбоксильных групп является причиной того, что мембрана нервных волокон значительно менее проницаема для анионов, чем для катионов. Проницаемость мембраны для различных катионов также неодинакова, и она закономерно изменяется при разных функциональных состояниях ткани. В покое мембрана нервных волокон примерно в 20-100 раз более проницаема для ионов К', чем для ионов N3', а при возбуждении натриевая проницаемость начинает значительно превышать калиевую проницаемость мембраны.


0007 Потенциал действия

Если участок нервного или мышечного волокна подвергнуть действию достаточно сильного раздражителя (например, толчка электрического тока), то в этом участке возникает возбуждение, одним из наиболее важных проявлений которого является быстрое колебание мембранного потенциала, называемое потенциалом действия.
Потенциал действия может быть зарегистрирован двояким способом: с помощью электродов, приложенных к внешней поверхности волокна (внеклеточное отведение), и с помощью микроэлектрода, введенного внутрь протоплазмы (внутриклеточное отведение).
При внеклеточном отведении можно обнаружить, что поверхность возбужденного участка волокна на очень короткий интервал, измеряемый тысячными долями секунды, становится заряженной электроотрицательно по отношению к соседнему покоящемуся участку.
Долгое время физиологи полагали, что потенциал действия представляет собой лишь результат кратковременного исчезновения той разности потенциалов, которая существует в покое между наружной и внутренней сторонами мембраны. Однако точные измерения, проведенные с помощью внутриклеточных микроэлектродов, показали, что амплитуда потенциала действия на 30-50 мВ превышает величину потенциала покоя. Причина этого превышения состоит в том, что при возбуждении происходит не просто исчезновение потенциала покоя, но возникает разность потенциалов обратного знака, в результате чего наружная поверхность мембраны становится заряженной электроотрицательно по отношению к ее внутренней стороне.
На кривой потенциала действия различают восходящую и нисходящую фазы. Поскольку во время восходящей фазы происходит исчезновение исходной поляризации мембраны, ее называют фазой деполяризации; соответственно нисходящую фазу, в течение которой поляризация мембраны возвращается к уровню покоя, называют фазой деполяризации.
Продолжительность потенциала действия в нервных и в скелетных мышечных волокнах варьирует в пределах 0,1 - 5 мсек., при этом фаза реполяризации всегда продолжительнее фазы деполяризации. Охлаждение волокна на 10° удлиняет потенциал действия примерно в 3 раза, особенно его нисходящую фазу.



Следовые потенциалы

Потенциал действия, как правило, сопровождается так называемыми следовыми потенциалами. Они были впервые зарегистрированы Д. С. Воронцовым (1926), а в дальнейшем подробно изучены Дж. Эрлангером и Г. Гассером и др.
Различают отрицательные и положительные следовые потенциалы. Амплитуда, как тех, так и других не превышает нескольких милливольт, а длительность варьирует от нескольких миллисекунд до нескольких десятков или даже сотен миллисекунд. Следовые потенциалы связаны с восстановительными процессами, медленно развивающимися в нервных и мышечных волокнах после окончания возбуждения.
Взаимоотношения между потенциалом действия и следовым отрицательным потенциалом могут быть рассмотрены на примере потенциала действия скелетного мышечного волокна. Фаза реполяризации делится на две неравные по длительности части. Вначале реполяризация мембраны идет быстро, а затем замедляется и приостанавливается. Этому моменту и соответствует начало следового отрицательного потенциала. Мембрана в течение некоторого времени остается частично деполяризованной, лишь примерно через 15 мсек происходит полное восстановление мембранного потенциала до исходной величины - 85 мВ. Следовой отрицательный потенциал часто называют следовой деполяризацией мембраны.
Следовой положительный потенциал выражается в усилении нормальной поляризации - гиперполяризации - мембраны. Он особенно хорошо выражен в безмякотных нервных волокнах. Так, в безмякотном гигантском аксоне кальмара нисходящая фаза потенциала действия непосредственно переходит в положительный следовой потенциал, амплитуда которого достигает примерно 15 мВ, к лишь затем мембранный потенциал возвращается к исходному уровню покоя.
В миелинизированных нервных волокнах следовые изменения потенциала имеют более сложный характер: следовой отрицательный потенциал часто сменяется следовым положительным потенциалом, затем иногда развивается новая электроотрицательность и лишь после этого происходит полное восстановление потенциала покоя.
При ритмическом раздражении нерва следовые потенциалы суммируются, вследствие чего их амплитуда и длительность возрастают.

Ионный механизм возникновения потенциала действия

Причиной возникновения потенциала действия в нервных и мышечных волокнах является изменение ионной проницаемости мембраны.
Как уже говорилось выше, в состоянии покоя проницаемость мембраны для калия превышает проницаемость для натрия. Вследствие этого поток положительно заряженных ионов К' из протоплазмы во внешний раствор превышает противоположно направленный поток катионов Na' из внешнего раствора внутрь клетки. Поэтому наружная сторона мембраны в покое имеет положительный заряд по отношению к внутренней.
При действии на клетку раздражителя проницаемость мембраны для ионов Na' резко повышается и становится примерно в 10 раз больше проницаемости для ионов К'. Поэтому поток положительно заряженных ионов Na' из внешнего раствора в протоплазму начинает значительно превышать направленный наружу поток ионов К'. Это приводит к перезарядке мембраны, наружная поверхность которой становится заряженной электроотрицательно по отношению к внутренней поверхности. Указанный сдвиг регистрируется в виде восходящей ветви кривой потенциала действия (фаза деполяризации).
Повышение проницаемости мембраны для ионов натрия продолжается в нервных волокнах лишь очень короткое время. Вслед за этим в клетке возникают восстановительные процессы, приводящие к тому, что проницаемость мембраны для ионов Na' вновь понижается, а проницаемость ее для ионов К' возрастает.
Процесс, ведущий к понижению натриевой проницаемости мембраны, Ходжкин назвал инактивацией. В результате инактивации поток положительно заряженных ионов натрия внутрь протоплазмы резко ослабляется. Одновременное же увеличение калиевой проницаемости вызывает усиление потока положительно заряженных ионов К' из протоплазмы во внешний раствор. В итоге этих двух процессов и происходит реполяризация мембраны - наружная ее поверхность вновь приобретает положительный заряд, а внутренняя - отрицательный. Этот сдвиг регистрируется в виде нисходящей ветви кривой потенциала действия (фаза реполяризации).
Следовые потенциалы также связаны с изменениями проницаемости мембраны для ионов Na' и К'. Так, принимается, что следовой положительный потенциал обусловлен тем, что после окончания потенциала действия проницаемость мембраны для ионов К' остается некоторое время повышенной но сравнению с исходной величиной. Усиление же выходящего из протоплазмы потока ионов К' приводит к повышению мембранного потенциала, т. е. к следовой гиперполяризации мембраны.
Следовой отрицательный потенциал, по-видимому, обусловлен тем, что проницаемость мембраны для ионов Na' после окончания потенциала действия остается в течение некоторого времени повышенной по сравнению с исходной величиной.
Натриевая теория происхождения потенциала действия была выдвинута А. Ходжкином, Б. Катцем и А. Хаксли в 1952 г. Одним из важных аргументов в пользу этой теории был факт прямой зависимости амплитуды потенциала действия от концентрации ионов натрия во внешнем растворе.
Опыты на гигантских нервных волокнах, перфузируемых искусственными солевыми растворами, позволили получить новые важные подтверждения правильности этих представлений. Было установлено, что при замене аксоплазмы солевым раствором, богатым ионами калия, мембрана волокна не только удерживает нормальный потенциал покоя, но и сохраняет также способность в течение длительного времени генерировать сотни тысяч потенциалов действия нормальной амплитуды.
Если же ионы К' во внутриклеточном растворе частично заменить на ионы Na' и тем самым снизить градиент концентраций Na' между наружной средой и внутренним раствором, потенциалы действия резко понижаются. При полной замене К' на Na' волокно полностью утрачивает способность генерировать потенциалы действия.
Эти опыты не оставляют сомнения в том, что поверхностная мембрана действительно является местом возникновения скачка потенциала как в покое, так и при возбуждении. Становится очевидным, что разность концентраций ионов Na' и К' внутри и вне волокна является источником электродвижущей силы, обусловливающей возникновение потенциала покоя и потенциала действия. Причиной возникновения потенциала действия являются изменения ионной проницаемости клеточной мембраны.
0008 Законы раздражения

Любой агент, повышающий натриевую проницаемость мембраны, является раздражителем возбудимой ткани. Раздражителями нервных и мышечных волокон могут быть: электрический ток, механические воздействия (щипок, удар, разрез), резкое охлаждение или согревание, различные кислоты, щелочи, концентрированные растворы солей и т. д.
Среди всех указанных раздражителей электрический ток занимает особое место, так как, во-первых, он может быть легко и точно дозирован по силе, длительности и крутизне нарастания, а во-вторых, он не повреждает живую ткань и его действие быстро и полностью обратимо при тех его силах, которые достаточны для вызова возбуждения. Изучение действия электрического раздражения на возбудимые ткани представляет большой интерес для физиологии, потому что проведение возбуждения в нервах и мышцах осуществляется с помощью локальных электрических токов, возникающих между возбужденным и покоящимся участком ткани.
В лабораторных условиях и при проведении некоторых клинических исследований для раздражения нервов и мышц применяют электрические стимулы различной формы: прямоугольной, синусоидальной, линейно и экспоненциально нарастающей, индукционные удары, конденсаторные разряды и т. п.
Механизм раздражающего действия тока при всех видах стимулов в принципе одинаков, однако в наиболее отчетливой форме он выявляется при использовании постоянного тока прямоугольной формы.
Для того чтобы раздражитель вызвал возбуждение, он должен иметь достаточную силу, длительность и крутизну нарастания.

Порог раздражения

Та наименьшая сила раздражителя, которая необходима для возникновения потенциала действия в возбудимой ткани, называется порогом раздражения. Стимулы, сила которых ниже пороговой величины, называются подпороговыми, а более сильные, чем пороговые,- сверхпороговыми.
При использовании в качестве раздражителя электрического тока порог выражается в единицах силы тока или напряжения.
Абсолютная величина порога зависит от свойств и физиологического состояния ткани, а также от способа нанесения раздражения.
Существует два способа подведения электрического тока к ткани: внеклеточный и внутриклеточный. Первый состоит в том, что оба электрода располагают на поверхности раздражаемой ткани. Ток входит в ткань в области анода и выходит в области катода. Недостаток этого метода заключается в значительном ветвлении тока: только часть его проходит через мембраны клеток, часть же ответвляется в межклеточные щели. Вследствие этого при раздражении приходится применять значительно большую силу тока, чем это в действительности необходимо для возникновения возбуждения.
Более точным является второй способ раздражения посредством внутриклеточного электрода. Микроэлектрод с диаметром кончика около 0,5 мК вводят в клетку, второй - обычный электрод - прикладывают к поверхности ткани. В этом случае весь приложенный ток проходит через мембрану клетки, что позволяет точно определить величину порога раздражения: у различных клеток он варьирует в пределах 10~7-10~9 а. Внутриклеточное раздражение обычно сочетают с регистрацией потенциалов через другой, внутриклеточный электрод.

Полезное время раздражения

Минимальное время, в течение которого электрический ток должен действовать на ткань, чтобы вызвать распространяющееся возбуждение, находится в обратной зависимости о
 
     
Бесплатные рефераты
 
Банк рефератов
 
Бесплатные рефераты скачать
| мероприятия при чрезвычайной ситуации | Чрезвычайная ситуация | аварийно-восстановительные работы при ЧС | аварийно-восстановительные мероприятия при ЧС | Интенсификация изучения иностранного языка с использованием компьютерных технологий | Лыжный спорт | САИД Ахмад | экономическая дипломатия | Влияние экономической войны на глобальную экономику | экономическая война | экономическая война и дипломатия | Экономический шпионаж | АК Моор рефераты | АК Моор реферат | ноосфера ба забони точики | чесменское сражение | Закон всемирного тяготения | рефераты темы | иохан себастиян бах маълумот | Тарых | шерхо дар борат биология | скачать еротик китоб | Семетей | Караш | Influence of English in mass culture дипломная | Количественные отношения в английском языках | 6466 | чистонхои химия | Гунны | Чистон
 
Рефераты Онлайн
 
Скачать реферат
 
 
 
 
  Все права защищены. Бесплатные рефераты и сочинения. Коллекция бесплатных рефератов! Коллекция рефератов!