Чтение RSS
Рефераты:
 
Рефераты бесплатно
 

 

 

 

 

 

     
 
Логический вывод на основе нечеткой метаимпликации

Логический вывод на основе нечеткой метаимпликации

О.А. Мелихова

В работе подробно рассмотрена суть логического вывода на основе нечеткой метаимпликации, с помощью примеров показана максиминная свертка нечетких отношений, используемая в моделях принятия решений и при распознавании нечетких образов.

При выполнении нечетких выводов используются нечеткие соответствия R, заданные между одной проблемной областью (множество X) и другой областью (множество Y) в виде нечеткого подмножества прямого произведения , определяемого по формуле [7,13]:

,                          (1.1)

где  – область отправления,  – область прибытия,  – функция принадлежности  нечеткому соответствию R, а знак означает совокупность (объединение) множеств.

Если существует правило типа “если A, то B”, использующее нечеткие множества A  и B , то один из способов построения нечеткого соответствия R состоит в следующем:

или

,               (1.2)

где  – функции принадлежности элементов x, y соответственно множествам A и B.

Пример 1. Пусть X и Y- области натуральных чисел от 1 до 4. Определим следующим образом нечеткие множества: A= “маленькие”, B= “большие”.

X=Y={1,2,3,4}, т.е. для примера взят частный случай соответствия- отношение на множестве {1,2,3,4}:

.

Для примера “если x маленькое, то y большое” (или , где знак означает операцию нечеткой метаимпликации) можно построить нечеткое отношение R следующим образом:

y1

y2

y3

y4

x1

0

0,1

0,6

1

R=

x2

0

0,1

0,6

0,6

x3

0

0,1

0,1

0,1

x4

0

0

0

0

В качестве элементов матрицы R записаны значения , вычисленные по формуле (1.2).

Для свертки нечетких отношений чаще выбирается свертка max-min (максиминная композиция). Пусть R – нечеткое соответствие множества X и множества Y, а S – нечеткое соответствие множества Y и множества V. Тогда нечеткое соответствие между X и V определяется как свертка (композиция) , где

или

.               (1.3)

Пример 2. Пусть  и заданы нечеткие множества A = “не маленькие”, H = “очень большие”, где

  .

Тогда для правила “если y не маленькое, то v очень большое” (или ), в соответствии с формулой (1.2) нечеткое соответствие S определяется как

v1

v2

v3

v4

y1

0

0

0

0

S=

y2

0

0

0,4

0,4

y3

0

0

0,5

0,9

y4

0

0

0,5

1

Если теперь по формуле (1.3) вычислить свертку max-min с нечетким отношением R, полученным в примере 1.1, то из двух отношений:

 если x маленькое, то y большое,

если y не маленькое, то v очень большое

можно построить нечеткое отношение из X в V.

y1

y2

y3

y4

v1

v2

v3

v4

x1

0

0,1

0,6

1

y1

0

0

0

0

  =

x2

0

0,1

0,6

0,6

y2

0

0

0,4

0,4

=

x3

0

0,1

0,1

0,1

y3

0

0

0,5

0,9

x4

0

0

0

0

y4

0

0

0,5

1

v1

v2

v3

v4

x1

0

0

0,5

1

=

x2

0

0

0,5

0,6

x3

0

0

0,1

0,1

x4

0

0

0

0

Модель принятия решений на основе композиционного правила вывода описывает связь всех возможных состояний сложной системы с управляющими решениями. Формально модель задается в виде тройки (X,R,Y), где  – базовые множества, на которых заданы, соответственно, входы  и выходы  системы, R – нечеткое соответствие “вход-выход”. Соответствие R строится на основе словесной качественной информации специалиста (эксперта), путем непосредственной формализации его нечетких стратегий. Эксперт описывает особенности принятия решений при функционировании сложной системы в виде ряда высказываний типа “если , то , иначе, если , то , иначе, ..., если , то ”. Здесь , ,...,  – нечеткие подмножества, определенные на базовом множестве X, а , ,...,  – нечеткие подмножества из базового множества Y. Все эти нечеткие подмножества задаются функциями принадлежности  и .

Способ построения нечеткого отношения связывает высказывания эксперта по правилу “если , то ” и определяется функцией принадлежности , получаемой по формуле (1.2). Связка “иначе” между правилами понимается как или-связка, поскольку общее нечеткое отношение состоит из: правило 1, или правило 2 , или, ..., или правило N. Поэтому общее отношение R формально определяется следующим образом:

, где i=1,..., N.         (1.4)

Если предположить, что мы имеем нечеткое событие , т.е. входную ситуацию, представленную нечетким подмножеством, и известно общее отношение R, тогда результирующее действие выводится по композиционному правилу вывода: . Значение функции принадлежности для  вычисляется посредством максиминной операции, определяемой уравнением

.                        (1.5)

Рассмотренный логический вывод на основе нечеткой обобщенной метаимпликации хорошо зарекомендовал себя при использовании в экспертных системах, а также при принятии решений в реальном масштабе времени в задачах управления и контроля.

Список литературы

Заде Л.А. Основы нового подхода к анализу сложных систем и процессов принятия решений. /М.: Математика сегодня, 1974, с.5-49.

Дюбуа Д., Прад А. Теория возможностей. Приложения к представлению знаний в информатике. Пер. с франц. М.: Радио и связь, 1990, 288с.

 
     
Бесплатные рефераты
 
Банк рефератов
 
Бесплатные рефераты скачать
| Интенсификация изучения иностранного языка с использованием компьютерных технологий | Лыжный спорт | САИД Ахмад | экономическая дипломатия | Влияние экономической войны на глобальную экономику | экономическая война | экономическая война и дипломатия | Экономический шпионаж | АК Моор рефераты | АК Моор реферат | ноосфера ба забони точики | чесменское сражение | Закон всемирного тяготения | рефераты темы | иохан себастиян бах маълумот | Тарых | шерхо дар борат биология | скачать еротик китоб | Семетей | Караш | Influence of English in mass culture дипломная | Количественные отношения в английском языках | 6466 | чистонхои химия | Гунны | Чистон | Кус | кмс купить диплом о language:RU | купить диплом ргсу цена language:RU | куплю копии дипломов для сро language:RU
 
Рефераты Онлайн
 
Скачать реферат
 
 
 
 
  Все права защищены. Бесплатные рефераты и сочинения. Коллекция бесплатных рефератов! Коллекция рефератов!