Чтение RSS
Рефераты:
 
Рефераты бесплатно
 

 

 

 

 

 

     
 
Машинная память

Машинная память

Ульяновский государственный технический университет

Кафедра: "Вычислительная техника"

Введение

Внедрение в практику техники переработки информации различных классов вычислительных машин является характерной чертой современного этапа научно-технического прогресса. Область применения вычислительной техники непрерывно возрастает, разрабатываются новые вычислительные машины с улучшенными параметрами. В них уже сегодня закладываются некоторые принципы, характерные для построения и работы мозга - самого сложного и загадочного из известных нам творений природы.

Электронные вычислительные машины следующих поколений по своим функциональным характеристикам, возможно, с некоторыми допущениями будут сравнимы с памятью человека. Такой машине будет достаточно поставить задачу, и она сама определит, как её решать. Критериями её "умственных способностей" будут объём памяти, возможности образования логических цепей, способность к целенаправленному поведению в незнакомой информационной среде и другие не менее важные качества. Такие машины можно будет сравнивать с мозгом человека не только по принципу построения, но и по количеству запоминаемой информации.

Сегодня совершенствование вычислительных машин находится в прямой зависимости от развития и совершенствования устройств памяти, основными показателями которой являются ёмкость, быстродействие, надежность работы, экономичность.

При создании любой вычислительной системы наиболее сложной и, как правило, проблемной задачей является создание устройств как внутренней, так и внешней памяти. В последние годы в этой области были достигнуты значительные успехи благодаря разработкам новых электронных приборов, новых структур вычислительных устройств и систем математического обеспечения.

Своими успехами техника хранения и обработки информации в значительной степени обязана успехам в области микроэлектроники и в особенности в разработке больших и сверхбольших интегральных схем. Однако, как это можно проследить на примере полупроводниковой техники, только интеграция элементов в силу ряда причин не обеспечивает положительного результата. Микроэлектроника в своём развитии может вскоре столкнуться с рядом проблем, которые станут своеобразным тормозом на пути дальнейшего развития интегральных схем памяти, надежности их работы. Очевидно, перспективы развития элементной базы устройств хранения информации должны быть связаны и с использованием новых сред, новых физических принципов и явлений, которые могу быть положены в основу создания устройств с качественно иными, более высокими технико-экономическими показателями.

В настоящее время существуют различные виды машинной памяти. Одни конструктивно-технологически хорошо развиты, другие находятся на стадии становления. В то же время информация об особенностях построения и функционирования элементов памяти различных типов запоминающих устройств рассредоточена в отдельных публикациях, монографиях, а также в отдельных главах книг по вычислительной технике. Такое положение затрудняет ознакомление с состоянием и перспективами развития этого важного направления информатики и вычислительной техники.

В данном реферате сделана попытка обобщить и систематизировать наиболее важные сведения о принципах действия, физических особенностях построения и информационных возможностях различных типов запоминающих устройств.

Общие сведения о памяти и запоминающих устройствах

Информация и память

Одна из удивительнейших способностей живого организма - способность воспринимать, хранить и обрабатывать разнообразную информацию. Поиск аналогичных качеств, присущих в одинаковой степени и искусственным системам, привел к созданию новой науки - кибернетики.

Кибернетика в момент своего рождения (в конце сороковых - начале пятидесятых годов нашего столетия) привлекла всеобщее внимание главным образом потому, что указала на подобие процессов управления и связи в машинах и живых организмах, подчеркнула, что эти процессы имеют информационный     характер. Объект управления (будь то машина, биологическая система или коллектив людей) и управляющее устройство (нервная ткань живого организма, автомат) обмениваются между собой информацией.

Между отдельными элементами какой-либо кибернетической системы и между различными системами существуют связи, посредством которых они взаимодействуют друг с другом. Эти связи могут состоять в обмене энергией или веществом между взаимодействующими объектами. Однако связи могут быть и такими, когда на передний план выступает на преобразование энергии, а информационное их содержание, т.е. сведения, получаемые данным объектом о состоянии других объектов.

Понятие информации, таким образом, может быть использовано для описания поведения системы: процессы в системе могут быть описаны как процессы преобразования информации. Такой способ описания не только возможен, но даже вполне естествен и оправдан. Информация - это физическая величина, такая же, как, например, энергия или скорость. Определенным образом и в определенных условиях информация равным образом описывает как процессы, происходящие в естественных физических системах, так и процессы в системах, искусственно созданных. При этом информационные связи осуществляются посредством сигналов, циркулирующих в системах. Сигнал - физический носитель информации.

Разумеется, в разных системах могут быть различными по своей природе носители информации: звуковые, световые, электрические, механические и др. Однако независимо от материального носителя информации процессы её передачи подчиняются общим количественным закономерностям.

Передача информации по каналу связи. Любой канал связи можно рассматривать как некоторую систему, по которой передаётся информация - от входа к выходу (рис. 1). При передаче информации по каналу связи на неё воздействуют помехи Р. В общем случае количество входов и выходов может быть неограниченно большим.

  

Рис. 1.

Пусть на вход поступает некоторый сигнал St. Система реагирует на это воздействие появлением на выходе сигнала St, который обязательно будет запаздывать по отношению к входному сигналу на некоторое время t - время задержки в системе - и обязательно подвергнется некоторой модификации. Время задержки t является, как правило, нежелательным свойством канала и должно быть по возможности минимизировано. С другой стороны, любое устройство хранения информации можно рассматривать как канал связи, также осуществляющий передачу информации со входа на выход, но одновременно обеспечивающий задержку этой информации на  некоторой, желательно регулируемое время, которое можно назвать временем хранения информации.

Накопление информации.

Способность к накоплению и хранению информации, т.е. наличие памяти, - одной из важнейших свойств любой кибернетической системы, без которого немыслимо её целесообразное функционирование.

Физическую систему называют запоминающим устройством (ЗУ) или, в информационном смысле, каналом накопления, если она обладает способностью обеспечивать достаточно длинный временной интервал между моментами прихода и использования информации.

Это значит, что сигнал St, относящийся к моменту времени t, может быть воспроизведен с помощью такой системы в любое произвольное время t в виде сигнала St.

Простейшая системная модель, обладающая свойством памяти, состоит из запоминающей среды, которая включает в общем случае множество элементов, связанных так или иначе с каналом ввода и вывода информации. Основное свойство такой среды заключается в способности фиксировать и сохранять во времени следы информационных воздействий, а затем при определённых условиях частично или полностью воспроизводить их. Для этого необходимо иметь некоторую систему элементов, состояние которых можно было бы изменить желаемым образом. Эти изменения могут происходить либо непрерывно, либо скачкообразно. В первом случае говорят о запоминающих элементах аналогового типа, во втором - об элементах дискретного типа.

Необходимый элементный состав запоминающей среды определяет способ представления информации. В вычислительной технике используются элементы памяти дискретного типа, пригодные для запоминания двоичного кода. Такой выбор кода записи обусловлен тем, что в физическом мире наиболее просто реализуются системы, обладающие двумя устойчивыми состояниями. Соответственно запоминающая среда должна содержать набор бистабильных элементов, которые могут находиться в двух устойчивых состояниях. В основе действия таких элементов - принцип статического хранения за счёт вынужденного перехода элемента из одного состояния в другое и последующего длительного сохранения этого состояния.

Таким образом, среда - носитель информации - должна хранить в виде следа навязанное ей состояние, которое в идеальном накопителе должно остаться неизменным в течение всего данного промежутка времени хранения. Однако под влиянием внешних воздействий, а также внутренних процессов, свойственных всякой системе, к началу считывания информации состояние среды неизбежно изменяется.

Воспроизведение информации.

Считывание (воспроизведение) информации - заключительный этап процессов памяти. При нарушении воспроизведения поведение системы меняется так, как если бы память в ней отсутствовала.

Для воспроизведения информации из памяти необходимо активировать определённую группу запоминающих элементов, составляющих ячейку памяти. При этом активирующее воздействие должно иметь такую природу, чтобы запоминающие элементы под его влиянием вырабатывать сигнал, соответствующий его состоянию. Кроме того, оно должно быть индифферентным - одинаковым для любой ячейки независимо от их содержимого. Если состояние запоминающих элементов однозначно соответствует сигналу, пришедшему на вход записи, то эта информация будет воспроизведена.

При использовании некоторых физических сред считывании приводит к разрушению хранящейся в ячейке информации. В этом случае после каждого считывания необходимо производить запись той же самой информации в ту же ячейку.

Запись информации в какую-либо ячейку и её считывание (с восстановлением) из какой-либо ячейки памяти производится за время, называемое периодом обращения. Время, необходимое для считывания информации из ячейки памяти, называют временем выборки.

Одной из характеристик систем памяти является метод поиска информации.

Поиск информации, по сути дела, сводится к поиску соответствующих запоминающих элементов (ячеек).

Тип поиска, при котором происходит обращение к какой-либо ячейке ЗУ по её номеру независимо от содержания искомой информации, называется адресным. В машинной памяти адресный принцип получил самое широкое распространение. Но это не единственный способ описка отдельных объектов информации.

Информация может быть выбрана и по некоторым её признакам или по некоторой известной её части. Такой принцип поиска - его можно назвать ассоциативным - характерен, в частности, для биологических систем. При этом на входе появляется некоторый ключ - стимул, а на выходе памяти формируется специальная ответная реакция, связанная с ключом. Как стимул, так и ответная реакция представляют собой сложные сигналы - образы. Помимо этого на входе может быть указана дополнительная информация, с помощью которой можно долее точно конкретизировать элемент, подлежащий выборке. С созданием ассоциативных ЗУ коренным образом меняется структура вычислительных машин и по-новому осуществляется управление сложными сигналами.

Мозг и машина

В ходе эволюции мозг человека достиг высочайшей степени совершенства как чрезвычайно эффективная информационно-управляющая система с исключительной надежностью функционирования. Поэтому естественны и закономерны предпринимаемые попытки использовать достижения современной техники и технологии для моделирования работы мозга и создания на этой основе принципиально новых систем обработки и хранения информации. Следует ли ожидать, что со временем люди смогут наделить управляющие машины искусственным мозгом, таким же, как головной мозг человека?

Уже созданные и вновь разрабатываемые машины во многом уступают человеку. Хотя они и начинают уже выполнять некоторые функции интеллекта человека, они не способны мере мыслить как человек, не могут как человек ставить цели, которые в дальнейшем должны быть достигнуты.

Но вместе с тем уже сейчас они значительно превосходят человека по скорости выполнения вычислительных и логических операций при большом числе логических переменных. Очень важно, что современные ЭВМ способны воспринимать и перерабатывать не только числовую, но и символьную информацию. С тех пор, как машины начали оперировать с символьной информацией, оказался открытым путь для развертывания работ по приданию машине способности к выполнению функций мыслящего человека. В этом смысле и название "вычислительные" по отношению к ЭВМ является сейчас по меньшей мере условным, не отражает всех их возможностей.

Сопоставим возможности современной вычислительной техники и мозга человека. Сравнение проведем по трём важнейшим параметрам: скорости обработки информации, ёмкости памяти и надёжности функционирования. Для ЭВМ, использующих цифровой механизм обработки информации, эти параметры определяются количеством арифметических операций в секунду, объёмом (количеством) хранимой информации в битах и вероятностью сохранения основных параметров в заданных пределах в течении заданного промежутка времени.

Что касается работы мозга, то дать сколько-нибудь точную количественную оценку этих параметров не представляется возможным. Вся информация, которая вводится в память машины при условии её исправного функционирования, запоминается, сохраняется и может быть воспроизведена, т.е. отношение количества воспроизведенной информации к принятой равна единице. У человека же количество воспроизведенной информации, как правило, оказывается меньше воспринятой, т.е. наблюдаются некоторые потери информации, особенно при её фиксации. С другой стороны человек никогда не сталкивается с ситуацией, когда его память настолько загружена, что он не способен воспринимать новые порции информации. Мозг, который заключён в ограниченном объёме и содержит пусто очень большое, но конечное число элементов, никогда не переполняется информацией, непрерывно поступающей из окружающей среды. Это свойство объясняется, конечно, не беспредельной ёмкостью памяти, а спецификой механизмов, предохраняющих человеческую память от "переполнения".

По быстродействию (скорости записи и воспроизведения информации) машинная память значительно превосходит память человека.

Скорость срабатывания элементов, на основе которых строятся современные ЗУ, определяется в конечном счете скоростью протекания электронных процессов, в то время как скорость срабатывания биологических элементов - нервных клеток - определяется скоростью протекания значительно более инерционных процессов.

Однако простое сравнение по быстродействию мозга человека с машиной едва ли можно назвать достаточно наглядным, учитывая то обстоятельство, что они характеризуются совершенно несоизмеримыми информационными ёмкостями. Поэтому будем считать вычислительную мощность мозга равной мощности ЭВМ, которая потребуется , чтобы смоделировать его работу, а объём памяти - равным памяти ЭВМ, в которой можно записать всю информацию, хранимую в нейронных связях мозга. В память машины записываются адреса конца и начала каждой связи между нейронами, степень влияния данного входа на состояние нейрона, пороги возбуждения нейронов и т.д.

Для упрощенной модели нейрона (рис. 2) передаточная

 

Рис. 2

функция может быть записана в виде S = Sф + åmiSi, где параметры mi характеризуют активность синапсов; Sф - фоновая активность. При передаче сигнала по межнейронной связи выполняется одна аналоговая операция умножения. Затем сигналы суммируются с остальными на входе нейрона. Таким образом, на каждый акт прохождения сигнала по межнейронной связи приходится одна операция умножения и одна - сложения. Число одновременно выполняемых операций при работе всего мозга равно числу его межнейронных связей, а общая вычислительная мощность равна числу межнейронных связей, умноженному на частоту повторения сигнала. При моделировании работы мозга на ЭВМ все эти операции выполняются цифровым способом. Необходимая для этого мощность машины должна быть не менее вычислительной мощности мозга. Если принять число межнейронных связей равным 1014, а частоту повторения сигнала - 102 с-1, то эквивалентная вычислительная мощность мозга равна 1016 операций в секунду.

Обычная вычислительная мощность ЭВМ порядка 108 операций в секунду, а мощность отдельных уникальных машин приближается к 109 операций в секунду. Значения 109 и 1016 отражают не столько количественную разницу, сколько качественный скачок в технологии обработки информации. Для реализации параллельных алгоритмов обработки информации, как в мозге человека, требуются принципиально новые технические средства, во много раз более мощные, чем существующие.

Рассмотрим теперь другую проблему. Расширение функциональных возможностей систем хранения и обработки информации связано с усложнением их структур и увеличением количества их элементов. Основным препятствием при увеличении числа элементов системы служит проблема её надёжности. Мозг же представляет собой супермногоэлементную систему, но тем не менее безотказно служит человеку всю жизнь. По-видимому, природа каким-то способом нашла возможность обойти закон жёсткой обратной зависимости надёжности от число активных элементов.

Технические элементы памяти строятся на основе высоконадёжных запоминающих элементов. Но для сложной системы, содержащей большое количество элементов, это может оказаться недостаточным. Работоспособность системы памяти определяется как физическими особенностями носителя информации, так и его информационной структурой. Надёжность нейронов значительно ниже надёжности электронных элементов ЗУ, однако биологическая система сохраняет способность функционировать, запоминать и выдавать информацию даже при серьёзных повреждениях, когда выводятся из строя миллионы нервных клеток. Поэтому необходимо строить систему машинной памяти так, чтобы нарушение работы какого-либо элемента или части её элементов не было критическим, не привело к нарушению нормального её функционирования. Задача построения надёжно работающих систем на недостаточно надёжных элементах - одна из главных задач в кибернетике. 

Существуют различные способы обеспечения надёжного функционирования сложных систем. Одним из них является построение систем с избыточным числом элементов, в которой в случае нарушения работы некоторых элементов их функции берут на себя другие, автоматически включающиеся в работу. Так часто происходит в живой природе как на уровне клеток, так и целых органов. В технических системах при наличии в них избыточных элементов замена ими вышедших из строя производится сравнительно легко при условии, что система строится на базе так называемых однородных структур. Имеется большое количество однотипных ячеек, являющихся первичными элементами, и при отказе в работе одной из них автоматически включается другая, к этому времени не занятая.

Весьма эффективным способом повышения надёжности сложных систем является преобразование информации, при котором переходят от обычной, естественной пространственно-временной формы её представления к частотно спектральной форме, в которой далее она хранится, обрабатывается и передаётся по каналам связи. Очень важно, что структурная избыточность дополняется различными видами функциональной, в частности воспроизведение этих свойств в технических средах позволяют высоконадёжные информационно-перерабатывающие самоорганизующиеся адаптивные системы переменной структуры, обладающие способностями к приспособлению.

Основные характеристики, классификация и иерархия ЗУ

В современных электронных вычислительных системах около 70% объёма и стоимости приходится на долю запоминающих устройств (ЗУ), которые представляют собой комплекс технических средств, предназначенных, для записи, хранения и выдачи информации. В ЗУ в двоичном коде хранятся программы вычислений, исходные данные, промежуточные результаты и команды.

Характеристики запоминающего устройства (ЗУ) определяют качество и целесообразность его применения в той или иной вычислительной машине или системе. Основными характеристиками ЗУ являются информационная ёмкость, быстродействие и надёжность.

Информационная ёмкость ЗУ определяется количеством двоичных единиц информации (бит), которое может храниться в нём (иногда ёмкость выражается в байтах. Обычно один байт равен восьми битам). Если ЗУ рассчитано на хранение N чисел, каждое из которых имеет р разрядов, то информационная ёмкость М = N*p.

Возможность решения на ЭВМ той или иной задачи в значительной степени зависит от ёмкости ЗУ машины.

Быстродействие ЗУ характеризуется его временными характеристиками, к которым относятся: время обращения к ЗУ при записи и считывании информации, время записи информации, время считывания или выборки информации. Время обращения (время цикла) характеризуем максимальную частоту обращения к данному ЗУ при считывании или записи информации. Время считывания или выборки информации - интервал времени обращения к ЗУ до получения выходного сигнала от подачи сигнала считывания. Время записи информации - интервал времени от момента подачи сигнала обращения к ЗУ до момента готовности информации к считыванию.

Надёжность ЗУ определяется числовыми значениями параметров конструктивной и информационной надёжности. Под конструктивной, или элементной, надёжностью понимают вероятность безотказной работы всех элементов или устройства в заданном интервале времени и заданных условиях эксплуатации. Таким образом понятие конструктивной надёжности совпадает с общепринятым определением надёжности радиоэлектронных устройств.

Количественно конструктивную надёжность можно выразить произведением

Р = qгqб,

где qг - готовность устройства к работе, т.е. вероятность его исправности к началу работы

qг = (1 + Ltрем)-1

qб - вероятность безотказной работы устройства в течении заданного промежутка времени, т.е. вероятность невыхода его из строя:

qб = (1 +Ltраб)-1,  L =  åLi.

L - интенсивность отказов, или средняя частота отказов в час; n - количество элементов устройства, а Li - средняя частота отказов отдельных элементов; tрем - среднее время нахождения и устранения отдельных неисправностей; tраб - время работы системы. Среднее время безотказной работы устройства Tср = 1/L.

Информационная надёжность ЗУ определяет способность устройств сохранять, принимать и выдавать требуемую информацию без её искажения. Численно информационная надёжность может быть оценена соотношением амплитуд информационных и сигналов помех в моменты записи и считывания информации. Большое отношение амплитуд сигналов и помех гарантирует высокую информационную надёжность.

Важными характеристиками ЗУ, как и любого другого устройства машины, являются также габариты, масса, потребляемая мощность и стоимость. Кроме того, к специальным ЗУ предъявляют особые требования по параметрам механических и климатических воздействий.

Классификация ЗУ. Запоминающие устройства можно классифицировать в зависимости от особенностей их построения и функционирования по назначению, адресации информации, характеру хранения информации, по кратности считывания, физическим принципам работы запоминающих элементов, технологии изготовления запоминающих элементов.

 По назначению ЗУ делятся на кратковременные и долговременные. В свою очередь, ЗУ с долговременным хранением делятся на постоянные ЗУ (ПЗУ) и полупостоянные ЗУ (ППЗУ). Характерной чертой ПЗУ и ППЗУ является сохранение информации при отключении источников питания. При этом в ПЗУ возможна лишь однократная запись информации, производимая либо а процессе производства, либо в результате программирования. В ППЗУ возможно многократное изменение хранимой информации при эксплуатации.

ЗУ с кратковременным хранением информации используются для хранения оперативной часто меняющейся информации. В этих ЗУ отключение источников питания, как правило, приводит к потере хранимой информации. Следует отметить, что ППЗУ при сокращении длительности цикла записи могут быть использованы и для хранения оперативной информации. Разумеется, ППЗУ могут быть в большинстве случаев использованы и в качестве ПЗУ.

По адресации ЗУ могут быть с произвольной, последовательной и ассоциативной выборкой. В ЗУ с произвольной выборкой (или доступом) время обращения не зависит от адреса числа в устройстве. В ЗУ с последовательной выборкой для нахождения числа по определённому адресу необходимо последовательно просмотреть все ячейки, предшествующие заданной. Очевидно, что в этих устройствах время обращения зависит от адреса. Для поиска определённой информационной единицы в таком ЗУ неоходимо сначала отыскать соответствующий массив, а затем информационную единицу в этом массиве.

В ассоциативных ЗУ (АЗУ) поиск и извлечение информации происходят не по местонахождению (адресу), а по некоторым признакам самой информации, содержащейся в ячейке. Такая память, в сущности, состоит из адресуемых ячеек, однако в системе предусмотрен также механизм проверки или сравнения ключевой информации со всеми записанными словами.

По характеру хранения информации ЗУ делятся на статические и динамические. В статических ЗУ кодирующее информацию физическое состояние остаётся неподвижным относительно носитель информации, тогда как в динамических ЗУ кодирующее информацию физическое состояние перемещается периодически по отношению к среде носителя информации.

По кратности считывания различают ЗУ со считыванием без разрушения информации и ЗУ со считыванием с разрушением информации. В последнем случае для сохранения информации необходимо восстанавливать (регенерировать) считанную информацию в каждом цикле обращения к ЗУ, чтобы иметь возможность её последующего использования.

По физическим принципам работы запоминающих элементов ЗУ делят на магнитные, полупроводниковые, сверх проводниковые и т.д. в современных ЭВМ наиболее широко используют двоичную систему счисления. Поэтому для кодирования и хранения информации могут использоваться различные физические процессы, определяющие два различных состояния вещества, например различные состояния намагниченности магнитных материалов, наличие или отсутствие заряда в данной области полупроводника или диэлектрика, конечное электрическое сопротивление участка цепи и нулевое сопротивление этого же участка, возникающее вследствие эффекта сверхпроводимости некоторых веществ, и т.д.

Создание блоков памяти, обладающих достаточно большой ёмкостью и в то же время приемлемых по габаритам и экономичности, может быть реализовано только при условии максимальной миниатюризации как всего блока памяти в целом, так и основной его части - накопителя информации. Наибольшие успехи в микро миниатюризации в настоящее время достигнуты при использовании полупроводниковых элементов, выполняемых по интегральной технологии, что в значительной мере и определило широкое применение их в системах памяти современных ЭВМ.

Иерархия запоминающих устройств

Совершенствование современных систем обработки информации связано с совершенствованием их памяти, т.е. с созданием памяти, обладающей большой информационной ёмкостью, высоким быстродействием и надёжностью и низкой стоимостью. Так как требуемое сочетание всех параметров в одном типе ЗУ получить не представляется возможным (с увеличением ёмкости ЗУ снижается его быстродействие), то единственный путь решения этой проблемы - объединение в систему различных (а иногда и однотипных) ЗУ в целях получения такой структуры памяти, которая максимально удовлетворила бы приведённым выше требованиям.

Структура памяти, в которой можно выделить несколько различных по характеристикам уровней, называется иерархической. При иерархической организации структуры памяти обычно каждый уровень (ступенька) памяти с большим быстродействием имеет меньшую емкость ЗУ, использующиеся на самом высоком уровне иерархии, имеют наименьшую информационную ёмкость и наибольшее быстродействие. Эту память часто называют набором регистров и иногда относят к устройствам обработки, она позволяет выполнять некоторые логические и арифметические операции.

На следующей ступени иерархии ЗУ ЭВМ находятся сверхоперативные ЗУ (СОЗУ) - устройства, имеющие быстродействие, соизмеримое с быстродействием процессора, и служащие для хранения информации (чисел и команд), которая наиболее часто встречается в процессе решения задач.

На третьей ступени иерархии находится большая быстрая память, называемая оперативной. Оперативные ЗУ (ОЗУ) имеют более значительную информационную ёмкость и работают с циклом, в несколько раз большим цикла процессора. Для увеличения скорости обмена информацией между процессором и ОЗУ последние иногда разделяют на несколько модулей (блоков или секций) и обращаются к различным блокам непосредственно или через СОЗУ.

На самом нижнем уровне иерархии находится относительно медленная, но вместительная внешняя память. Во внешнем ЗУ (ВЗУ) обычно хранится вся вводимая в машину информация. Чтобы избежать усложнения конструкции системы, к внешним ЗУ не предъявляются требования по быстродействию. ВЗУ являются наиболее экономичными для хранения больших массивов информации.

Данные, хранящиеся во внешнем ЗУ, непосредственно не используются в вычислительном процессе, что и отражается в их названии (внешние). Для использования этой информации необходимо переместить её из ВЗУ в оперативные ЗУ, образующие внутреннюю память системы. Для повышения эффективности обмена информацией между устройствами используют буферную память. Буферное ЗУ (БЗУ) занимает промежуточное положение между внутренним и внешним ЗУ. Оно предназначено для расширения внутренней памяти при условии сохранения быстродействия ЭВМ.

При иерархическом принципе построения ЗУ логическая организация потоков информации производится таким образом, чтобы все вместе взятые типы ЗУ выступали в виде единого ЗУ, имеющего большую информационную ёмкость (за счёт внешних ЗУ) и высокое быстродействие (за счёт внутренних ЗУ). Такое абстрактное ЗУ называют виртуальным. Так, например, при двухступенчатой организации ЗУ, содержащего ОЗУ и СОЗУ, среднее время обращения

t = (1 + aT/T1)T1,

где T1 - время обращения к СОЗУ; T - время обращения к ОЗУ; a - коэффициент, учитывающий долю обращений к ОЗУ. Из этой зависимости следует, что при правильном выборе параметров ОЗУ и СОЗУ и соответствующем выборе информационных потоков общие характеристики виртуального ЗУ будут такими, как если бы оно имело цикл работы СОЗУ, а информационную ёмкость - ОЗУ.

Магнитные устройства памяти

Магнитная запись

Необходимость хранения больших массивов информации привела к использованию в ЗУ известного в технике принципа записи сигналов на магнитную поверхность.

Физической основой магнитной записи сигналов является свойство ферромагнитных материалов сохранять состояние остаточной намагниченности.

Основные принципы записи информации. Магнитная запись основана на взаимодействии магнитного носителя информации и магнитной головки при  их относительном перемещении. При записи изменяющийся во времени электрический ток преобразуется в локальные изменения намагниченности носителя.

В качестве записывающей или считывающей головки используется специально сконструированный, чаще всего кольцевой, электромагнит с щелью, по обмотке которого пропускают импульсный ток. Для уменьшения потерь на вихревые токи магнитопровод собирают из тонких пластин магнитомягких сплавов или делают из феррита. Считывание производится без разрушения хранящейся информации и может выполняться многократно.

Характерной особенностью магнитной записи является то, что она не нуждается в какой-либо промежуточной обработке и может быть воспроизведена немедленно. Запись легко может быть "стерта".

Такой процесс осуществляется отдельной стирающей головкой, через обмотку которой обычно пропускается ток высокой частоты. Высокочастотное поле многократно меняет ориентацию диполей, приводя к тому, что их ориентация вновь становится хаотической.

При магнитной форме записи информация в целях увеличения ёмкости запоминающих устройств стремятся как можно полнее использовать рабочую поверхность носителя. Степень её использования определяется плотностью записи информации, т.е. количеством двоичных знаков, размещающихся на единице площади носителя. Плотность записи зависит от характеристик магнитного носителя, конструкции головки, величины зазора между носителем и головкой, используемого способа записи и других факторов.

Теоретический предел плотности записи информации на магнитных носителях равен 1010 - 1011 бит/мм2. Реализуемая плотность записи информации 400 - 1000 бит/мм2, что более чем на семь порядков ниже теоретического. Использование новых методов записи - считывания информации, таких, например, как магнитооптические, позволит значительно улучшить характеристики ВЗУ на магнитных носителях информации.

Накопители на магнитных барабанах, дисках, лентах, картах

Хотя характеристики и конструкции ЗУ, в которых используется магнитная запись, могут быть очень разными, в основе процесса хранения для каждого из них лежит запоминание 0 или 1 на небольшом участке магнитного материала. В каждом случае запоминающая среда динамическая, так как носитель информации перемещается относительно считывающего или записывающего устройства.

ЗУ с магнитной записью информации широко используется в качестве внешней памяти ЭВМ, что объясняется их большой ёмкостью при относительно небольших размерах, возможностью многократного применения носителя информации при стирании старой записи, большим сроком хранения записанной информации без её искажения, относительно высокой скоростью записи и воспроизведения информации.

Накопители на магнитном барабане. Магнитные барабаны были одним из первых недорогих средств хранения больших массивов информации со сравнительно небольшим временем доступа.

Магнитный барабан представляет собой полый вращающийся цилиндр, поверхность которого покрыта слоем материала с прямоугольной петлей гистерезиса. Вдоль поверхности барабана устанавливается ряд головок, производящих запись и считывание информации.

При вращении барабана небольшой участок его поверхности непрерывно проходит под одной из головок. Этот участок называется дорожкой. Каждая дорожка делится на ячейки, а каждая ячейка может запомнить один бит информации. Такого вида память называют памятью с циклическим доступом. Так как каждая ячейка при вращении барабана периодически проходит под головками.

Размеры и ёмкость памяти магнитных барабанов весьма разнообразны от небольших барабанов емкостью менее 200 000 бит до очень больших барабанов, которые могут хранить до 109 бит информации.

Накопители на магнитных дисках. Память на магнитном диске очень напоминает по действию память на магнитном барабане. Носителем зд

 
     
Бесплатные рефераты
 
Банк рефератов
 
Бесплатные рефераты скачать
| мероприятия при чрезвычайной ситуации | Чрезвычайная ситуация | аварийно-восстановительные работы при ЧС | аварийно-восстановительные мероприятия при ЧС | Интенсификация изучения иностранного языка с использованием компьютерных технологий | Лыжный спорт | САИД Ахмад | экономическая дипломатия | Влияние экономической войны на глобальную экономику | экономическая война | экономическая война и дипломатия | Экономический шпионаж | АК Моор рефераты | АК Моор реферат | ноосфера ба забони точики | чесменское сражение | Закон всемирного тяготения | рефераты темы | иохан себастиян бах маълумот | Тарых | шерхо дар борат биология | скачать еротик китоб | Семетей | Караш | Influence of English in mass culture дипломная | Количественные отношения в английском языках | 6466 | чистонхои химия | Гунны | Чистон
 
Рефераты Онлайн
 
Скачать реферат
 
 
 
 
  Все права защищены. Бесплатные рефераты и сочинения. Коллекция бесплатных рефератов! Коллекция рефератов!