Чтение RSS
Рефераты:
 
Рефераты бесплатно
 

 

 

 

 

 

     
 
Интегральные преобразования

Интегральные преобразования

Операционное исчисление и некоторые его приложения

Пусть задана функция действительного переменного t, которая удовлетворяет условиям :

Функция f(t) кусочно-непрерывная (имеет конечное число точек разрыва первого рода).

Для любого значения параметра t>0 существует M>0 и S0³0 такие, что выполняется условие : |f(t)|S0 имеем :

Аналогично можно доказать, что существует и сходится второй интеграл в равенстве (2).

Таким образом при a>S0 интеграл, стоящий в левой части равенства (2) также существует и сходится. Этот интеграл определяет собой функцию от комплексного параметра р :

             (3)

Функция F(p) называется изображением функции f(t) по Лапласу, а функция f(t) по отношению к F(p) называется оригиналом.

f(t) Ü F(p), где F(p) – изображение функции f(t) по Лапласу.

 - это оператор Лапласа.

Смысл введения интегральных преобразований.

Этот смысл состоит в следующем : с помощью перехода в область изображения удается упростить решение многих задач, в частности свести задачу решения многих задач дифференциального, интегрального и интегро-дифференциального уравнения к решению алгебраических уравнений.

Теорема единственности: если две функции j( t)  и Y(t) имеют одно и то же изображение F(p), то эти функции тождественно равны.

Смысл теоремы : если при решении задачи мы определим изображение искомой функции, а затем по изображению нашли оригинал, то на основании теоремы единственности можно утверждать, что найденная функция является решением в области оригинала и причем единственным.

Изображение функций s0(t), sin (t), cos (t).

Определение:  называется единичной функцией.

Единичная функция удовлетворяет требованиям, которые должны быть наложены на функцию для существования изображения по Лапласу. Найдем это изображение :

Изображение единичной функции

Рассуждая аналогичным образом получим изображение для функции sin(t) :

интегрируя по частям получим :

  т.е.

Аналогично можно доказать, что cos (t) переходит в функцию в области преобразований. Откуда :

Изображение функции с измененным масштабом независимого переменного.

где а – константа.

Таким образом :

  и

Свойства линейности изображения.

Теорема : изображение суммы нескольких функций умноженное на постоянные равны сумме изображений этих функций умноженных на те же постоянные.

Если , то , где

Теорема смещения : если функция F(p) это изображение f(t), то F(a+p) является изображением функции e-at f(t)                                 (4)

Доказательство :

Применим оператор Лапласа к левой части равенства (4)

Что и требовалось доказать.

Таблица основных изображений:

F(p)

f(t)

F(p)

f(p)

1

Изображение производных.

Теорема. Если , то справедливо выражение :

                                             (1)

Доказательство :

                           (2)

    (3)

Подставляя (3) в (2) и учитывая третье условие существования функции Лапласа имеем :

Что и требовалось доказать.

Пример: Решить дифференциальное уравнение :

  Если x(0)=0   и x’(0)=0

Предположим, что x(t) – решение в области оригиналов и , где - решение в области изображений.

       

Изображающее уравнение :

Теорема о интегрировании оригинала. Пусть  находится в области оригиналов, , тогда также оригинал, а его изображение .

Таким образом операции интегрирования в области оригиналов соответствует операция деления в области изображений.

Теорема о интегрировании изображений : Пусть  – функция оригинал, которая имеет изображение и  также оригинал, а - является сходящимся интегралом, тогда .

Толкование теоремы : операция деления на аргумент в области оригиналов соответствует операции интегрирования в пределах от р до ¥ в области изображений.

Понятие о свертке функций. Теорема о свертке.

Пусть заданы две функции a(t) и b(t), удовлетворяющие условиям существования изображения по Лапласу, тогда сверткой таких функций называется следующая функция :

            (1)

Свертка обозначается следующим образом :

                         (1’)

Равенства (1) и (1’) идентичны.

Свертка функции подчиняется переместительному закону.

Доказательство:

 Теорема о умножении изображений. Пусть и , тогда произведение изображений  представляется сверткой оригиналов .

Доказательство :

Пусть изображение свертки

                      (1)

Интеграл (1) представляет собой повторный интеграл относительно переменных t и t . Изменим порядок интегрирования. Переменные t и t входят в выражение симметрично. Замена переменной производится эквивалентно.

Если в последнем интеграле сделать замену переменной, то после преобразований последний интеграл преобразуется в функцию F2(p).

Операция умножения двух функций в пространстве изображений соответствует операции свертки их оригиналов в области оригиналов. Обобщением теоремы о свертке есть теорема Эфроса.

Теорема Эфроса. Пусть функция  находится в области оригиналов, , а Ф(р) и q(р) – аналитические функции в области изображений, такие, что , тогда  .

В практических вычислениях важную роль играет следствие из теоремы о свертке, наз. интеграл  Дюамеля. Пусть все условия теоремы выполняются, тогда

  (2)

Соотношение (2) применяется при решении дифференциальных уравнений.

Обратное преобразование Лапласа.

 - Это прямое преобразование Лапласа.

Обратное преобразование есть возможность получить функцию-оригинал через известную функцию-изображение :

, где s – некоторая константа.

Пользоваться формулой для обратного преобразования можно при определенном виде функции F(p), либо для численного нахождения функции-оригинала по известному изображению.

Теоремы разложения.

Известная методика разложения дробно-рациональных функций на сумму элементарных дробей (1)-(4) может быть представлена в виде двух теорем разложения.

Первая теорема разложения. Пусть F(p) – изображение некоторой функции, тогда эта функция представляется в виде ,  k – постоянная, может быть сколь угодно большим числом, , то возможен почленный переход в пространство оригиналов с помощью формулы : .

Вторая теорема разложения. Если изображение представляется дробно-рациональной функцией . Степень числа s меньше степени знаменателя n, знаменатель имеет корни a1, a2, …, a n соответствующий кратности k1, k2, …, kn , при этом k1+ k2 +…+ kn = n. В этом случае оригинал функции определяется по формуле :

                                       (3)

Например :

Связь между преобразованиями Фурье и Лапласа.

Преобразование Лапласа имеет вид :

                            (1)

На  f(t) наложены условия :

f(t) определена и непрерывна на всем интервале: (-¥ ; ¥ )

f(t) º 0 , t Î (- ¥ ;0)

При  M, S0 >0 , для всех t > 0 выполняется условие |f(t)|

 
     
Бесплатные рефераты
 
Банк рефератов
 
Бесплатные рефераты скачать
| мероприятия при чрезвычайной ситуации | Чрезвычайная ситуация | аварийно-восстановительные работы при ЧС | аварийно-восстановительные мероприятия при ЧС | Интенсификация изучения иностранного языка с использованием компьютерных технологий | Лыжный спорт | САИД Ахмад | экономическая дипломатия | Влияние экономической войны на глобальную экономику | экономическая война | экономическая война и дипломатия | Экономический шпионаж | АК Моор рефераты | АК Моор реферат | ноосфера ба забони точики | чесменское сражение | Закон всемирного тяготения | рефераты темы | иохан себастиян бах маълумот | Тарых | шерхо дар борат биология | скачать еротик китоб | Семетей | Караш | Influence of English in mass culture дипломная | Количественные отношения в английском языках | 6466 | чистонхои химия | Гунны | Чистон
 
Рефераты Онлайн
 
Скачать реферат
 
 
 
 
  Все права защищены. Бесплатные рефераты и сочинения. Коллекция бесплатных рефератов! Коллекция рефератов!