По распространенности в природе алюминий занимает первое место среди металлов; его содержание в земной коре составляет 7,45%. Однако, несмотря на широкую распространенность в природе, алюминий до конца XIX века принадлежал к числу редких металлов. В чистом виде алюминий не встречается вследствие своей высокой химической активности. Он преимущественно встречается в виде соединений с кислородом и кремнием – алюмосиликатов.
Рудами алюминия могут служить лишь породы, богатые глиноземом (Al2O3) и залегающие крупными массами на поверхности земли. К таким породам относятся бокситы, нефелины — (Na, K)2O?Al2O3?2SiO2, алуниты — (Na, K)2SO4?Al2(SO4)3?4Al(OH)3 и каолины (глины), полевой шпат (ортоклаз) — K2O?Al2O3?6SiO2.
Основной рудой для получения алюминия являются бокситы. Алюминий в них содержится в виде гидроокисей Al(OH), AlOOH, корунда Al2O3 и каолинита Al2O3?2SiO2?2H2O. Химический состав бокситов сложен: 28-70% глинозема; 0,5-20% кремнезема; 2-50% окиси железа; 0,1-10% окиси титана. В последнее время в качестве руды стали применять нефелины и алуниты.
Крупные месторождения бокситов находятся на Урале, в Тихвинском районе Ленинградской области, в Алтайском и Красноярском краях.
Нефелин (K?Na2O?Al2O3?2SiO2) входит в состав апатитонефелиновых пород (на Кольском полуострове).
Впервые в свободном виде алюминий был выделен в 1825 г. датским физиком Эрстедом путем воздействия амальгамы калия на хлорид алюминия. В 1827г. немецкий химик Велер усовершенствовал способ Эрстеда, заменив амальгаму калия металлическим калием:
AlCl3 + 3K?3KCl + Al (Реакция протекает с выделением тепла).
В 1854 г. Сент-Клер Девиль во Франции впервые применил способ Велера для промышленного производства алюминия, использовав вместо калия более дешевый натрий, а вместо гигроскопичного хлорида алюминия — более стойкий двойной хлорид алюминия и натрия. В 1865 г. русский физико-химик Н. Н. Бекетов показал возможность вытеснения алюминия магнием из расплавленного криолита. Эта реакция в 1888 г. была использована для производства алюминия на первом немецком заводе в Гмелингене. Производство алюминия этими так называемыми «химическими» способами осуществлялось с 1854 г. по 1890 г. В течение 35 лет с помощью этих способов, было получено в общей сложности около 20 т алюминия.
В конце 80-х годов позапрошлого столетия химические способы вытеснил электролитический способ, который позволил резко снизить стоимость алюминия и создал предпосылки к быстрому развитию алюминиевой промышленности. Основоположники современного электролитического способа производства алюминия Эру во Франции и Холл в США независимо друг от друга подали в 1886 г. почти аналогичные заявки на патентование способа получения алюминия электролизом глинозема, растворенного в расплавленном криолите. С момента появления патентов Эру и Холла и начинается современная алюминиевая промышленность, которая более чем за 115 лет своего существования выросла в одну из крупнейших отраслей металлургии.
Технологический процесс получения алюминия состоит из трех основных стадий:
1). Получение глинозема (Al2O3) из алюминиевых руд;
2). Получение алюминия из глинозема;
3). Рафинирование алюминия.
Получение глинозема из руд.
Глинозем получают тремя способами: щелочным, кислотным и электролитическим. Наибольшее распространение имеет щелочной способ (метод К. И. Байера, разработанный в России в конце позапрошлого столетия и применяемый для переработки высокосортных бокситов с небольшим количеством (до 5-6%) кремнезема). С тех пор техническое выполнение его было существенно улучшено. Схема производства глинозема по способу Байера представлена на рис. 1.
Сущность способа состоит в том, что алюминиевые растворы быстро разлагаются при введении в них гидроокиси алюминия, а оставшийся от разложения раствор после его выпаривания в условиях интенсивного перемешивания при 169-170оС может вновь растворять глинозем, содержащийся в бокситах. Этот способ состоит из следующих основных операций:
1). Подготовки боксита, заключающийся в его дроблении и измельчении в мельницах; в мельницы подают боксит, едкую щелочь и небольшое количество извести, которое улучшает выделение Al2O3; полученную пульпу подают на выщелачивание;
2). Выщелачивания боксита (в последнее время применяемые до сих пор блоки автоклав круглой формы частично заменены трубчатыми автоклавами, в которых при температурах 230-250°С (500-520 К) происходит выщелачивание), заключающегося в химическом его разложении от взаимодействия с водным раствором щелочи; гидраты окиси алюминия при взаимодействии со щелочью переходят в раствор в виде алюмината натрия:
AlOOH+NaOH?NaAlO2+H2O
или
Al(OH)3+NaOH?NaAlO2+2H2O;
содержащийся в боксите кремнезем взаимодействует со щелочью и переходит в раствор в виде силиката натрия:
SiO2+2NaOH?Na2SiO3+H2O;
в растворе алюминат натрия и силикат натрия образуют нерастворимый натриевый алюмосиликат; в нерастворимый остаток переходят окислы титана и железа, предающие остатку красный цвет; этот остаток называют красным шламом. По окончании растворения полученный алюминат натрия разбавляют водным раствором щелочи при одновременном понижении температуры на 100°С;
3). Отделения алюминатного раствора от красного шлама обычно осуществляемого путем промывки в специальных сгустителях; в результате этого красный шлам оседает, а алюминатный раствор сливают и затем фильтруют (осветляют). В ограниченных количествах шлам находит применение, например, как добавка к цементу. В зависимости от сорта бокситов на 1 т полученной окиси алюминия приходится 0,6-1,0 т красного шлама (сухого остатка);
4). Разложения алюминатного раствора. Его фильтруют и перекачивают в большие емкости с мешалками (декомпозеры). Из пересыщенного раствора при охлаждении на 60°С (330 К) и постоянном перемешивании извлекается гидроокись алюминия Al(OH)3. Так как этот процесс протекает медленно и неравномерно, а формирование и рост кристаллов гидроокиси алюминия имеют большое значение при ее дальнейшей обработке, в декомпозеры добавляют большое количество твердой гидроокиси — затравки:
Na2O?Al2O3+4H2O?Al(OH)3+2NaOH;
5). Выделения гидроокиси алюминия и ее классификации; это происходит в гидроциклонах и вакуум-фильтрах, где от алюминатного раствора выделяют осадок, содержащий 50-60% частиц Al(OH). Значительную часть гидроокиси возвращают в процесс декомпозиции как затравочный материал, которая и остается в обороте в неизменных количествах. Остаток после промывки водой идет на кальцинацию; фильтрат также возвращается в оборот (после концентрации в выпарных аппаратах — для выщелачивания новых бокситов);
6). Обезвоживания гидроокиси алюминия (кальцинации); это завершающая операция производства глинозема; ее осуществляют в трубчатых вращающихся печах, а в последнее время также в печах с турбулентным движением материала при температуре 1150-1300оС; сырая гидроокись алюминия, проходя через вращающуюся печь, высушивается и обезвоживается; при нагреве происходят последовательно следующие структурные превращения:
Al(OH)3?AlOOH? ?-Al2O3? ?-Al2O3
200 оС–
950 оС–
1200 оС.
В окончательно прокаленном глиноземе содержится 30-50% ?-Al2O3 (корунд), остальное ?-Al2O3.
Этим способом извлекается 85-87% от всего получаемого глинозема. Полученная окись алюминия представляет собой прочное химическое соединение с температурой плавления 2050 оС.
Получение алюминия из его окиси
Электролиз окиси алюминия
Электролитическое восстановление окиси алюминия, растворенной в расплаве на основе криолита, осуществляется при 950-970°С в электролизере. Электролизер состоит из футерованной углеродистыми блоками ванны, к подине которой подводится электрический ток. Выделившийся на подине, служащей катодом, жидкий алюминий тяжелее расплава соли электролита, поэтому собирается на угольном основании, откуда его периодически откачивают (рис. 2). Сверху в электролит погружены угольные аноды, которые сгорают в атмосфере выделяющегося из окиси алюминия кислорода, выделяя окись углерода (CO) или двуокись углерода (CO2). На практике находят применение два типа анодов:
а) самообжигающиеся аноды Зедерберга, состоящие из брикетов, так называемых «хлебов» массы Зедерберга (малозольный уголь с 25-35% каменноугольного пека), набитых в алюминиевую оболочку; под действием высокой температуры анодная масса обжигается (спекается);
б) обожженные, или «непрерывные», аноды из больших угольных блоков (например, 1900?600?500 мм массой около 1,1 т).
Сила тока на электролизерах составляет 150 000 А. Они включаются в сеть последовательно, т. е. получается система (серия) — длинный ряд электролизеров.
Рабочее напряжение на ванне, составляющее 4-5 В, значительно выше напряжения, при котором происходит разложение окиси алюминия, поскольку в процессе работы неизбежны потери напряжения в различных частях системы. Баланс сырья и энергии при получении 1 т алюминия представлен на рис. 3.
Электролиз хлорида алюминия (метод фирмы Алкоа)
В реакционном сосуде окись алюминия превращается сначала в хлорид алюминия. Затем в плотно изолированной ванне происходит электролиз AlCl3, растворенного в расплаве солей KCl, NaCl. Выделяющийся при этом хлор отсасывается и подается для вторичного использования; алюминий осаждается на катоде.
Преимуществами данного метода перед существующим электролизом жидкого криолитоглиноземного расплава (Al2O3, растворенная в криолите Na3AlF6) считают: экономию до 30% энергии; возможность применения окиси алюминия, которая не годится для традиционного электролиза (например, Al2O3 с высоким содержанием кремния); замену дорогостоящего криолита более дешевыми солями; исчезновение опасности выделения фтора.
Восстановление хлорида алюминия марганцем (Toth — метод)
При восстановлении марганцем из хлорида алюминия освобождается алюминий. Посредством управляемой конденсации из потока хлорида марганца выделяются связанные с хлором загрязнения. При освобождении хлора хлорид марганца окисляется в окись марганца, которая затем восстанавливается до марганца, пригодного к вторичному применению. Сведения в имеющихся публикациях весьма неточны, так что в данном случае придется отказаться от оценки метода.
Получение рафинированного алюминия
Для алюминия рафинирующий электролиз с разложением водных солевых растворов невозможен. Поскольку для некоторых целей степень очистки промышленного алюминия (Al 99,5 — Al 99,8), полученного электролизом криолитоглиноземного расплава, недостаточна, то из промышленного алюминия или отходов металла путем рафинирования получают еще более чистый алюминий (Al 99, 99 R). Наиболее известен метод рафинирования — трехслойный электролиз.
Рафинирование методом трехслойного электролиза
Одетая стальным листом, работающая на постоянном токе (представленная на рис. 4 — см. выше) ванна для рафинирования состоит из угольной подины с токоподводами и теплоизолирующей магнезитовой футеровки. В противоположность электролизу криолитоглиноземного расплава анодом здесь служит, как правило, расплавленный рафинируемый металл (нижний анодный слой). Электролит составляется из чистых фторидов или смеси хлорида бария и фторидов алюминия и натрия (средний слой). Алюминий, растворяющийся из анодного слоя в электролите, выделяется над электролитом (верхний катодный слой). Чистый металл служит катодом. Подвод тока к катодному слою осуществляется графитовым электродом.
Ванна работает при 750-800°С, расход электроэнергии составляет 20 кВт?ч на 1 кг чистого алюминия, т. е. несколько выше, чем при обычном электролизе алюминия.
Металл анода содержит 25-35% Cu; 7-12% Zn; 6-9% Si; до 5% Fe и незначительное количество марганца, никеля, свинца и олова, остальное (40-55%) — алюминий. Все тяжелые металлы и кремний при рафинировании остаются в анодном слое. Наличие магния в электролите приводит к нежелательным изменениям состава электролита или к сильному его ошлакованию. Для очистки от магния шлаки, содержащие магний, обрабатывают флюсами или газообразным хлором.
В результате рафинирования получают чистый алюминий (99,99%) и продукты сегрегации (зайгер-продукт), которые содержат тяжелые металлы и кремний и выделяются в виде щелочного раствора и кристаллического остатка. Щелочной раствор является отходом, а твердый остаток применяется для раскисления.
Рафинированный алюминий имеет обычно следующий состав, %: Fe 0,0005-0,002; Si 0,002-0,005; Cu 0,0005-0,002; Zn 0,0005-0,002; Mg следы; Al остальное.
Рафинированный алюминий перерабатывают в полуфабрикат в указанном составе или легируют магнием (см. табл. 1.2.).
* Насколько возможно определить обычными методами исследования.
** Чистый алюминий для электротехники (алюминиевые проводники) поставляют в виде первичного алюминий 99,5, содержащего не более 0,03% (Ti + Cr + V + Mn); обозначается в этом случае E-A1, номер материала 3.0256. В остальном соответствует нормам VDE-0202.
Рафинирование путем алюмоорганических комплексных соединений и зонной плавкой
Алюминий степени чистоты выше марки A1 99,99 R может быть получен рафинирующим электролизом чистого или технически чистого алюминия с применением в качестве электролита комплексных алюмоорганических соединений алюминия. Электролиз проходит при температуре около 1000°С между твердыми алюминиевыми электродами и в принципе схож с рафинирующим электролизом меди. Природа электролита диктует необходимость работать без доступа воздуха и при низкой плотности тока.
Этот вид рафинирующего электролиза, применяемым сначала лишь в лабораторном масштабе, уже осуществляется в небольшом производственном масштабе — изготовляется несколько тонн металла в год. Номинальная степень очистки получаемого металла 99,999-99,9999%. Потенциальными областями применения металла такой чистоты являются криогенная электротехника и электроника.
Возможно применение рассмотренного метода рафинирования и в гальванотехнике.
Еще более высокую чистоту — номинально до A1 99,99999 — можно получить последующей зонной плавкой металла. При переработке алюминия повышенной чистоты в полуфабрикат, лист или проволоку необходимо, учитывая низкую температуру рекристаллизации металла, принимать особые меры предосторожности. Примечательным свойством рафинированного металла является его высокая электропроводность в области криогенных температур.
Получение вторичного алюминия
Переработка вторичного сырья и отходов производства является экономически выгодной. Получаемыми при этом вторичными сплавами удовлетворяется около 25% общей потребности в алюминии.
Важнейшей областью применения вторичных сплавов является производство алюминиевого фасонного литья. В DIN 1725, лист 2 наряду со стандартными марками сплавов приведены многочисленные марки сплавов, производимых литейными заводами. Перечень сплавов, выпускаемых этими заводами, содержит, кроме стандартных, некоторые нестандартные сплавы.
Безупречное приготовление алюминиевого скрапа в самых разнообразных пропорциях можно осуществлять только на специально оборудованных плавильных заводах. Представление о сложном рабочем процессе на таком заводе дает рис. 5.
Отходы переплавляют после грубой предварительной сортировки. Содержащиеся в этих отходах железо, никель или медь, точка плавления которых выше точки плавления алюминия, при плавке в плавильной пороговой печи остаются в ней, а алюминий выплавляется. Для удаления из отходов неметаллических включений типа окислов, нитридов, карбидов или газов применяют обработку расплавленного металла солями или (что рациональней) продувку газом — хлором или азотом.
Для удаления металлических примесей из расплава известны различные методы, например присадка магния и вакуумирование — метод Бекша (Becksche); присадка цинка или ртути с последующим вакуумированием — субгалогенный метод. Удаление магния ограничивается введением в расплавленный металл хлора. Путем введения добавок, точно определяемых составом расплава, получают заданный литейный сплав.
Производство алюминия технической чистоты
Электролитический способ — единственный применяющийся во всем мире для производства металлического алюминия технической чистоты. Все другие способы (цинкотермический, карбидотермический, субхлоридный, нитридный и др.), с помощью которых алюминий может быть извлечен из алюминиевых руд, разрабатывались в лабораторном и опытно-промышленных масштабах, однако пока не нашли практического применения.
Для получения алюминиево-кремниевых сплавов успешно применяется электротермический способ, впервые разработанный и осуществленный в промышленном масштабе в СССР. Он состоит из двух стадий: на первой стадии получают первичный алюминиево-кремниевый сплав с содержанием 60-63 % Al путем прямого восстановления алюмо-кремнистых руд в рудно-термических электрических печах; на второй стадии первичный сплав разбавляют техническим алюминием, получая силумин и другие литейные и деформируемые алюминиево-кремниевые сплавы. Ведутся исследования по извлечению из первичного сплава алюминия технической чистоты.
В целом получение алюминия электролитическим способом включает в себя производство глинозема (окиси алюминия) из алюминиевых руд, производство фтористых солей (криолита, фтористого алюминия и фтористого натрия), производство углеродистой анодной массы, обожженных угольных анодных и катодных блоков и других футеровочных материалов, а также собственно электролитическое производство алюминия, которое является завершающим этапом современной металлургии алюминия.
Характерным для производства глинозема, фтористых солей и углеродистых изделий является требование максимальной степени чистоты этих материалов, так как в криолитоглиноземных расплавах, подвергающихся электролизу, не должны содержаться примеси элементов, более электроположительных, чем алюминий, которые, выделяясь на катоде в первую очередь, загрязняли бы металл.
В глиноземе марок Г-00, Г-0 и Г-1, которые преимущественно используются при электролизе, содержание SiO2 составляет 0,02-0,05%, a Fe2O3 — 0,03-0,05%. В криолите всреднем содержится 0,36-0,38% SiO2 и 0,05-0,06% Fe2O3, во фтористом алюминии 0,30-0,35%(SiO2 + Fe2O3). В анодной массе содержится не более 0,25% SiO2 и 0,20% Fe2O3.
Важнейшая алюминиевая руда, из которой извлекают глинозем, боксит. В боксите алюминий присутствует в форме гидроокиси алюминия. В Советском Союзе, кроме боксита, для получения глинозема применяют нефелиновую породу — алюмосиликат натрия и калия, а также алунитовую породу, в которой алюминий находится в виде его сульфата. Сырьем для изготовления анодной массы и обожженных анодных блоков служат углеродистые чистые материалы — нефтяной или пековый кокс и каменноугольный пек в качестве связующего, а для производства криолита и других фтористых солей — фтористый кальций (плавиковый шпат).
При электролитическом получении алюминия глинозема Al2O3, растворенный в расплавленном криолите Na3AlF6, электрохимически разлагается с разрядом катионов алюминия на катоде (жидком алюминии), а кислородсодержащих ионов (ионов кислорода) — на углеродистом аноде.
По современным представлениям, криолит в расплавленном состоянии диссоциирует на ионы и : , а глинозем — на комплексные ионы и : , которые находятся в равновесии с простыми ионами: , .
Основным процессом, происходящим на катоде, является восстановление ионов трехвалентного алюминия: Al3+ + 3e ? Al (I).
Наряду с основным процессом возможен неполный разряд трехвалентных ионов алюминия с образованием одновалентных ионов: Al3+ + 2e ? Al+ (II) и, наконец, разряд одновалентных ионов с выделением металла: Al+ + e ? Al (III).
При определенных условиях (относительно большая концентрация ионов Na+, высокая температура и др.) может происходить разряд ионов натрия с выделением металла:Na+ + e ? Na (IV). Реакции (II) и (IV) обусловливают снижение выхода алюминия по току.
На угольном аноде происходит разряд ионов кислорода: 2O2– – 4e ? O2. Однако кислород не выделяется в свободном виде, так как он окисляет углерод анода с образованием смеси CO2 и CO.
Суммарная реакция, происходящая в электролизере, может быть представлена уравнением Al2O3 + xC ? 2Al + (2x–3)CO + (3–x)CO2.
В состав электролита промышленных алюминиевых электролизеров, помимо основных компонентов — криолита, фтористого алюминия и глинозема, входят небольшие количества (в сумме до 8-9%) некоторых других солей — CaF2, MgF2, NaCl и LiF (добавки), которые улучшают некоторые физико-химические свойства электролита и тем самым повышают эффективность работы электролизеров. Максимальное содержание глинозема в электролите составляет обычно 6-8%, снижаясь в процессе электролиза. По мере обеднения электролита глиноземом в него вводят очередную порцию глинозема. Для нормальной работы алюминиевых электролизеров отношение NaF: AlF3 в электролите поддерживают в пределах 2,7-2,8, добавляя порции криолита и фтористого алюминия.
В производстве алюминия применяют электролизеры с самообжигающимися угольными анодами и боковым или верхним подводом тока, а также электролизеры с предварительно обожженными угольными анодами. Наиболее перспективна конструкция электролизеров с обожженными анодами, позволяющая увеличить единичную мощность агрегата, снизить удельный расход электроэнергии постоянного тока на электролиз, получить более чистый металл, улучшить санитарно-гигиенические условия труда и уменьшить выбросы вредных веществ в атмосферу.
Основные технические параметры и показатели работы алюминиевых электролизеров различного типа приведены в табл. 1.3.
Первичный алюминий, извлекаемый из электролизеров (алюминий-сырец), содержит ряд примесей, которые можно подразделить на три группы: неметаллические (фтористые соли, ?- и ?-глинозем, карбид и нитрид алюминия, угольные частицы, механически увлекаемые при выливке металла из электролизера); металлические (железо, кремний), переходящие из сырья, угольных материалов и конструктивных элементов электролизера; газообразные — преимущественно водород, который образуется в металле в результате электролитического разложения воды, попадающей в электролит с сырьем.
Из металлических примесей, помимо железа и кремния, содержится наибольшее количество галлия, цинка, титана, марганца, натрия, ванадия, хрома, меди. Содержание этих и некоторых других металлических микропримесей в электролитическом алюминии приведено ниже, %:
Основным источником поступления металлических микропримесей в алюминий является глинозем, который в зависимости от вида исходного сырья может содержать галлий, цинк, калий, фосфор, серу, ванадий, титан и хром. Углеродистые материалы (анодная масса, обожженные аноды, катодные изделия) служат источником таких микропримесей, как, например, ванадий, титан, марганец, цинк.
Электролизом криолито-глиноземных расплавов при условии применения чистых исходных материалов (в первую очередь глинозема и углеродистых материалов) удается получить алюминий-сырец марок А85 и А8 (99,85 и 99,80%). Наибольшая доля металла этих марок (60-70 % от общего выпуска) получается на электролизерах с обожженными анодами, а также на электролизерах с боковым подводом тока (до 70 % от общего производства). На электролизерах с самообжигающимися анодами и верхним токоподводом выпуск алюминия-сырца марки А8 невысок (составляет 1-3%), а металл марки А85 получить не удается из-за значительных примесей железа, поступающего в алюминий из несырьевых источников (анодные штыри, чугунные секции газосборников, технологический инструмент, катодный узел).
Расплавленный первичный алюминий, извлеченный из электролизеров с помощью вакуумного ковша, поступает в литейное отделение для рафинирования от неметаллических и газовых примесей и дальнейшей переработки в товарную продукцию (чушки, цилиндрические и плоские слитки, катанку и т. п.). Перед разливкой алюминий-сырецвыдерживают в расплавленном состоянии в электрических печах сопротивления (миксерах) или в газовых отражательных печах. В этих печах не только проводят рациональную шихтовку различных по составу порций жидкого алюминия, но и частично очищают от неметаллических включений, окисных пленок и натрия.
Разливка алюминия из миксера в чушки производится с помощью литейных машин конвейерного типа; цилиндрические и плоские слитки изготавливают методом полунепрерывного литья, а для получения катанки применяют специальные агрегаты совмещенного литья и прокатки.
На отечественных алюминиевых заводах при литье слитков алюминий, поступающий из миксера в кристаллизатор литейной машины, подвергают простейшему виду рафинирования — фильтрации расплава через стеклосетку с ячейками размером от 0,6?0,6 до 1,7?1,7 мм. Этот метод позволяет очищать алюминий только от очень грубых окисных включений; более совершенен метод фильтрации расплава через стеклосетку в восходящем потоке. При таком способе фильтрования частицы окисных включений, сталкиваясь с сеткой, не захватываются потоком расплава, а осаждаются на дне литейного желоба.
Для одновременной очистки алюминия, как от неметаллических примесей, так и от водорода успешно применяется метод фильтрации через флюсовый фильтр в сочетании с продувкой азотом. В качестве флюса можно использовать кислый электролит алюминиевых электролизеров. В результате такой очистки содержание водорода в алюминии снижается с 0,22 до 0,16 см3 на 100 г металла.
В первичном алюминии, используемом для производства сплавов системы Al—Mg, содержание натрия не должно превышать 0,001 %. Это связано с тем, что присутствие натрия в этих сплавах ухудшает механические и другие эксплуатационные свойства изделий, применяемых в ряде отраслей народного хозяйства.
Наиболее эффективным методом одновременного рафинирования алюминия от натрия, водорода и неметаллических примесей является продувка расплавленного металла газовой смесью азота с 2-10% хлора, вводимой в расплав в виде мелких пузырей с помощью специальных устройств. Этот способ рафинирования позволяет снизить содержание натрия в алюминии до 0,0003—0,001% при расходе газовой смеси от 0,8 до 1,5 м3/т металла.
Расход электроэнергии на производство 1 т товарного алюминия из металла-сырца при использовании электропечей составляет 150-200 кВт?ч; безвозвратные потери металла на литейном переделе равны 1,5-5 % в зависимости от вида товарной продукции.
Получение алюминия высокой чистоты
Для получения алюминия высокой чистоты (марок А995—А95) первичный алюминий технической чистоты электролитически рафинируют. Это позволяет снизить в алюминии содержание металлических и газообразных примесей и тем самым значительно повысить его электропроводность, пластичность, отражательную способность и коррозионную стойкость.
Электролитическое рафинирование алюминия осуществляют электролизом расплавленных солей по трехслойному способу. Сущность способа заключается в следующем. В рафинировочном электролизере имеются три расплавленных слоя. Нижний, наиболее тяжелый, лежит на токопроводящей подине и служит анодом; он называется анодным сплавом и представляет собой сплав рафинируемого алюминия с медью, которую вводят для утяжеления слоя. Средний слой — расплавленный электролит; его плотность меньше плотности анодного сплава и выше плотности чистого рафинированного (катодного) алюминия, находящегося над электролитом (верхний, третий жидкий слой).
При анодном растворении все примеси более электроположительные, чем алюминий (Fe, Si, Ti, Cu и др.), остаются в анодном сплаве, не переходя в электролит. Анодно растворяться будет только алюминий, который в форме ионов Al3+ переходит в электролит: Al – 3e ? Al3+.
При электролизе ионы алюминия переносятся к катоду, на котором и разряжаются: Al3+ + 3e ? Al. В результате на катоде накапливается слой расплавленного рафинированного алюминия.
Если в анодном сплаве присутствуют примеси более электроотрицательные, чем алюминий (например, Ba, Na, Mg, Ca), то они могут электрохимически растворяться на аноде вместе с алюминием и в виде ионов переходить в электролит. Поскольку содержание электроотрицательных примесей в алюминии-сырце невелико, в заметном количестве в электролите они не накапливаются. Разряда этих ионов на катоде практически не происходит, так как их электродный потенциал электроотрицательнее алюминия.
В качестве электролита при электролитическом рафинировании алюминия в Советском Союзе и в большинстве стран применяют фторидно-хлоридный электролит, состав которого 55-60% BaCl2, 35-40% AlF4+NaF и 0-4% NaCl. Молярное отношение NaF : AlF3 поддерживают 1,5-2,0; температура плавления электролита 720-730°C; температура процесса электролиза около 800°C; плотность электролита 2,7 г/см3.
Анодный сплав готовят из первичного алюминия и чистой меди (99,90-99,95% Cu), которую вводят в металл в количестве 30-40%. Плотность жидкого анодного сплава такого состава 3-3,5 г/см3; плотность же чистого расплавленного катодного алюминия равна 2,3 г/см3. При таком соотношении плотностей создаются условия, необходимые для хорошего разделения трех расплавленных слоев.
В четверной системе Al—Cu—Fe—Si, к которой относится анодный сплав, образуется эвтектика с температурой плавления 520°C. Охлаждая анодный сплав, содержащий примеси железа и кремния в количествах выше эвтектических концентраций, можно выделить железо и кремний в твердую фазу в виде интерметаллических соединений FeSiAl5 и Cu2FeAl7. Так как температура анодного сплава в карманах электролизера на 30-40°C ниже температуры анодного сплава в рабочем пространстве ванны, в них (по мере накопления в анодном сплаве железа и кремния) будут выделяться твердые интерметаллические осадки. Периодически удаляя эти осадки, очищают анодный сплав (без его обновления) от примесей железа и кремния. Так как в анодном сплаве концентрируется галлий, то извлекаемые из электролизера осадки (30-40 кг на 1 т алюминия) могут служить источником получения этого металла.
Для электролитического рафинирования служат электролизеры, которые по конструкции напоминают электролизеры с обожженными анодами для электролитического получения первичного алюминия, но имеют другое подключение полюсов: подина служит анодом, а верхний ряд электродов — катодом. Современные электролизеры для электролитического рафинирования алюминия рассчитаны на силу тока до 75 кА.
Ниже приведены основные технико-экономические показатели электролизеров за 1979 г., достигнутые отечественными (1, 2, 3) предприятиями.
Электрохимический выход по току, рассчитанный по вылитому из электролизера металлу, составляет 97-98%. Фактический же выход по току, рассчитанный по количеству товарного металла, составляет 92-96%.
Основным фактором, снижающим выход по току,помимо прямых потерь тока на разряд более электроотрицательных ионов, потерь металла за счет его окисления и механических потерь алюминия, является работа электролизеров с выпуском несортового металла, который вновь возвращается в анодный сплав для последующего рафинирования. Эти периоды работы электролизеров имеют место при пуске электролизеров и нарушениях технологического режима.
Электролитическое рафинирование алюминия является очень энергоемким производством. Расход электроэнергии в переменном токе, включая энергию, затраченную на подготовку электролита и анодного сплава, работу вентиляционных устройств и транспортных средств, а также потери на преобразование переменного тока в постоянный, составляет 18,5-21,0 тыс. кВт?ч на 1 т алюминия. Энергетический к. п. д. рафинировочных электролизеров не превышает 5-7%, т. е. 93-95% энергии расходуется в виде потерь тепла,выделяемого в основном в слое электролита (примерно 80-85% от общего прихода тепла). Следовательно, основными путями дальнейшего снижения удельного расхода электроэнергии на электролитическое рафинирование алюминия являются совершенствование теплоизоляции электролизера (особенно верхней части конструкции) и снижение слоя электролита (уменьшение междуэлектродного расстояния).
Чистота алюминия, рафинированного по трехслойному методу, 99,995%; она определяется по разности с пятью основными примесями — железом, кремнием, медью, цинком и титаном. Количество получаемого металла такой марки может составлять 45-48% от общего выпуска (без его расшихтовки с более низкими, сортами).
Следует, однако, отметить, что в электролитически рафинированном алюминии содержатся в меньших количествах примеси других металлов, что снижает абсолютную чистоту такого алюминия. Радиоактивационный анализ позволяет обнаружить в электролитически рафинированном алюминии до 30 примесей, суммарное содержание которых примерно 60?10–4%. Следовательно, чистота рафинированного алюминия по разности с этими примесями составляет 99,994%.
Помимо примесей, предусмотренных ГОСТом (см. табл. 1.1), в наиболее распространенной марке (А99) электролитически рафинированного алюминия содержится, %: Cr 0,00016; V 0,0001; Ga 0,0006; Pb 0,002; Sn 0,00005; Ca 0,002-0,003; Na 0,001-0,008; Mn 0,001-0,007; Mg 0,001-0,007; As